首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M Hager  K Biehler  J Illerhaus  S Ruf    R Bock 《The EMBO journal》1999,18(21):5834-5842
The smallest conserved open reading frame in the plastid genome, ycf6, potentially specifies a hydrophobic polypeptide of only 29 amino acids. In order to determine the function of this reading frame we have constructed a knockout allele for ycf6. This allele was introduced into the tobacco plastid genome by chloroplast transformation to replace the wild-type ycf6 allele. Homoplasmic Deltaycf6 plants display a photosynthetically incompetent phenotype. Whereas the two photosystems are intact and physiologically active, we found that the electron transfer from photosystem II to photosystem I is interrupted in Deltaycf6 plants. Molecular analyses revealed that this block is caused by the complete absence of the cytochrome b(6)f complex, the redox-coupling complex that interconnects the two photosystems. Analysis of purified cytochrome b(6)f complex by mass spectroscopy revealed the presence of a protein that has exactly the molecular mass calculated for the Ycf6 protein. This suggests that Ycf6 is a genuine subunit of the cytochrome b(6)f complex, which plays a crucial role in complex assembly and/or stability. We therefore propose to rename the ycf6 reading frame petN.  相似文献   

2.
The small chloroplast open reading frame ORF43 (ycf7) of the green unicellular alga Chlamydomonas reinhardtii is cotranscribed with the psaC gene and ORF58. While ORF58 has been found only in the chloroplast genome of C.reinhardtii, ycf7 has been conserved in land plants and its sequence suggests that its product is a hydrophobic protein with a single transmembrane alpha helix. We have disrupted ORF58 and ycf7 with the aadA expression cassette by particle-gun mediated chloroplast transformation. While the ORF58::aadA transformants are indistinguishable from wild type, photoautotrophic growth of the ycf7::aadA transformants is considerably impaired. In these mutant cells, the amount of cytochrome b6f complex is reduced to 25-50% of wild-type level in mid-exponential phase, and the rate of transmembrane electron transfer per b6f complex measured in vivo under saturating light is three to four times slower than in wild type. Under subsaturating light conditions, the rate of the electron transfer reactions within the b6f complex is reduced more strongly in the mutant than in the wild type by the proton electrochemical gradient. The ycf7 product (Ycf7) is absent in mutants deficient in cytochrome b6f complex and present in highly purified b6f complex from the wild-type strain. Ycf7-less complexes appear more fragile than wild-type complexes and selectively lose the Rieske iron-sulfur protein during purification. These observations indicate that Ycf7 is an authentic subunit of the cytochrome b6f complex, which is required for its stability, accumulation and optimal efficiency. We therefore propose to rename the ycf7 gene petL.  相似文献   

3.
The chloroplast genomes of most higher plants contain two giant open reading frames designated ycf1 and ycf2. In tobacco, ycf1 potentially specifies a protein of 1901 amino acids. The putative gene product of the ycf2 reading frame is a protein of 2280 amino acids. In an attempt to determine the functions of ycf1 and ycf2, we have constructed several mutant alleles for targeted disruption and/or deletion of these two reading frames. The mutant alleles were introduced into the tobacco plastid genome by biolistic chloroplast transformation to replace the corresponding wild-type alleles by homologous recombination. Chloroplast transformants were obtained for all constructs and tested for their homoplastomic state. We report here that all transformed lines remained heteroplastomic even after repeated cycles of regeneration under high selective pressure. A balanced selection was observed in the presence of the antibiotic spectinomycin, resulting in maintenance of a fairly constant ratio of wild-type versus transformed genome copies. Upon removal of the antibiotic and therewith release of the selective pressure, sorting out towards the wild-type plastid genome occurred in all transplastomic lines. These findings suggest that ycf1 and ycf2 are functional genes and encode products that are essential for cell survival. The two reading frames are thus the first higher plant chloroplast genes identified as being indispensable.  相似文献   

4.
The ycf9 (orf62) gene of the plastid genome encodes a 6.6-kDa protein (ORF62) of thylakoid membranes. To elucidate the role of the ORF62 protein, the coding region of the gene was disrupted with an aadA cassette, yielding mutant plants that were nearly (more than 95%) homoplasmic for ycf9 inactivation. The ycf9 mutant had no altered phenotype under standard growth conditions, but its growth rate was severely reduced under suboptimal irradiances. On the other hand, it was less susceptible to photodamage than the wild type. ycf9 inactivation resulted in a clear reduction in protein amounts of CP26, the NAD(P)H dehydrogenase complex, and the plastid terminal oxidase. Furthermore, depletion of ORF62 led to a faster flow of electrons to photosystem I without a change in the maximum electron transfer capacity of photosystem II. Despite the reduction of CP26 in the mutant thylakoids, no differences in PSII oxygen evolution rates were evident even at low light intensities. On the other hand, the ycf9 mutant presented deficiencies in the capacity for PSII-independent electron transport (ferredoxin-dependent cyclic electron transport and NAD(P)H dehydrogenase-mediated plastoquinone reduction). Altogether, it is shown that depletion of ORF62 leads to anomalies in the photosynthetic electron transfer chain and in the regulation of electron partitioning among the different routes of electron transport.  相似文献   

5.
6.
We fully sequenced four and partially sequenced six additional plastid genomes of the model legume Medicago truncatula. Three accessions, Jemalong 2HA, Borung and Paraggio, belong to ssp. truncatula, and R108 to ssp. tricycla. We report here that the R108 ptDNA has a ∼45-kb inversion compared with the ptDNA in ssp. truncatula, mediated by a short, imperfect repeat. DNA gel blot analyses of seven additional ssp. tricycla accessions detected only one of the two alternative genome arrangements, represented by three and four accessions each. Furthermore, we found a variable number of repeats in the essential accD and ycf1 coding regions. The repeats within accD are recombinationally active, yielding variable-length insertions and deletions in the central part of the coding region. The length of ACCD was distinct in each of the 10 sequenced ecotypes, ranging between 650 and 796 amino acids. The repeats in the ycf1 coding region are also recombinationally active, yielding short indels in 10 regions of the reading frames. Thus, the plastid genome variability we report here could be linked to repeat-mediated genome rearrangements. However, the rate of recombination was sufficiently low, so that no heterogeneity of ptDNA could be observed in populations maintained by single-seed descent.  相似文献   

7.
8.
《BBA》2014,1837(12):1981-1988
Minor light-harvesting complexes (Lhcs) CP24, CP26 and CP29 occupy a position in photosystem II (PSII) of plants between the major light-harvesting complexes LHCII and the PSII core subunits. Lack of minor Lhcs in vivo causes impairment of PSII organization, and negatively affects electron transport rates and photoprotection capacity. Here we used picosecond-fluorescence spectroscopy to study excitation-energy transfer (EET) in thylakoid membranes isolated from Arabidopsis thaliana wild-type plants and knockout lines depleted of either two (koCP26/24 and koCP29/24) or all minor Lhcs (NoM). In the absence of all minor Lhcs, the functional connection of LHCII to the PSII cores appears to be seriously impaired whereas the “disconnected” LHCII is substantially quenched. For both double knock-out mutants, excitation trapping in PSII is faster than in NoM thylakoids but slower than in WT thylakoids. In NoM thylakoids, the loss of all minor Lhcs is accompanied by an over-accumulation of LHCII, suggesting a compensating response to the reduced trapping efficiency in limiting light, which leads to a photosynthetic phenotype resembling that of low-light-acclimated plants. Finally, fluorescence kinetics and biochemical results show that the missing minor complexes are not replaced by other Lhcs, implying that they are unique among the antenna subunits and crucial for the functioning and macro-organization of PSII.  相似文献   

9.
Photosystem biogenesis in the thylakoid membrane is a highly complicated process that requires the coordinated assembly of nucleus-encoded and chloroplast-encoded protein subunits as well as the insertion of hundreds of cofactors, such as chromophores (chlorophylls, carotenoids) and iron-sulfur clusters. The molecular details of the assembly process and the identity and functions of the auxiliary factors involved in it are only poorly understood. In this work, we have characterized the chloroplast genome-encoded ycf4 (for hypothetical chloroplast reading frame no. 4) gene, previously shown to encode a protein involved in photosystem I (PSI) biogenesis in the unicellular green alga Chlamydomonas reinhardtii. Using stable transformation of the chloroplast genome, we have generated ycf4 knockout plants in the higher plant tobacco (Nicotiana tabacum). Although these mutants are severely affected in their photosynthetic performance, they are capable of photoautotrophic growth, demonstrating that, different from Chlamydomonas, the ycf4 gene product is not essential for photosynthesis. We further show that ycf4 knockout plants are specifically deficient in PSI accumulation. Unaltered expression of plastid-encoded PSI genes and biochemical analyses suggest a posttranslational action of the Ycf4 protein in the PSI assembly process. With increasing leaf age, the contents of Ycf4 and Y3IP1, another auxiliary factor involved in PSI assembly, decrease strongly, whereas PSI contents remain constant, suggesting that PSI is highly stable and that its biogenesis is restricted to young leaves.  相似文献   

10.
11.
We have engineered and analyzed a chloroplast mutant of Chlamydomonas reinhardtii that lacks ycf8, the chloroplast open reading frame 8, which is highly conserved in location and predicted amino acid sequence in land plants and C.reinhardtii. The ycf8 sequence was replaced with the aadA cassette which confers resistance to spectinomycin when expressed in the chloroplast. Although the mutant is able to grow phototrophically, photosystem II function and cell growth are impaired under stress conditions such as high light intensity and diminished chloroplast protein synthesis induced by spectinomycin. Use of an antibody generated against the ycf8 product has revealed that this hydrophobic polypeptide is associated with photosystem II, based on its severely reduced levels in various photosystem II-deficient mutants and on its copurification with photosystem II. This protein, therefore, appears to be (i) a novel photosystem II subunit and (ii) required for maintaining optimal photosystem II activity under adverse growth conditions.  相似文献   

12.
Dinoflagellate protists harbor a characteristic peridinin-containing plastid that evolved from a red or haptophyte alga. In contrast to typical plastids that have ~100-200 kb circular genomes, the dinoflagellate plastid genome is composed of minicircles that each encode 0-5 genes. It is commonly assumed that dinoflagellate minicircles are derived from a standard plastid genome through drastic reduction and fragmentation. However, we demonstrate that the ycf16 and ycf24 genes (encoded on the Ceratium AF490364 minicircle), as well as rpl28 and rpl33 (encoded on the Pyrocystis AF490367 minicircle), are related to sequences from Algoriphagus and/or Cytophaga bacteria belonging to the Bacteroidetes clade. Moreover, we identified a new open reading frame on the Pyrocystis minicircle encoding a SRP54 N domain, which is typical of FtsY proteins. Because neither of these minicircles share sequence similarity with any other dinoflagellate minicircles, and their genes resemble bacterial operons, we propose that these Ceratium and Pyrocystis minicircles resulted from a horizontal gene transfer (HGT) from a Bacteroidetes donor. Our findings are the first indication of HGT to dinoflagellate minicircles, highlighting yet another peculiar aspect of this plastid genome.  相似文献   

13.
The Ycf37 protein has been suggested to be involved in the biogenesis and/or stability of the cyanobacterial photosystem I (PSI) [A. Wilde, K. Lünser, F. Ossenbühl, J. Nickelsen, T. Börner, Characterization of the cyanobacterial ycf37: mutation decreases the photosystem I content, Biochem. J. 357 (2001) 211-216]. With Ycf37 specific antibodies, we analyzed the localization of Ycf37 within the thylakoid membranes of the cyanobacterium Synechocystis sp. PCC 6803. Inspection of a sucrose gradient profile indicated that small amounts of Ycf37 co-fractionated with monomeric photosynthetic complexes, but not with trimeric PSI. Isolating 3xFLAG epitope-tagged Ycf37 by affinity-tag purification rendered several PSI subunits that specifically co-precipitated with this protein. Blue-native PAGE newly revealed two monomeric PSI complexes (PSI and PSI*) in wild-type thylakoids. The lower amount of PsaK present in PSI* may explain its higher electrophoretic mobility. PSI* was more prominent in high-light grown cells and interestingly proved absent in the Δycf37 mutant. PSI* appeared again when the mutant was complemented in trans with the wild-type ycf37 gene. In the Δycf37 mutant the amount of trimeric PSI complexes was reduced to about 70% of the wild-type level with no significant changes in photochemical activity and subunit composition of the remaining photosystems. Our results indicate that Ycf37 plays a specific role in the preservation of PSI* and the biogenesis of PSI trimers.  相似文献   

14.
15.
The puf operon in Rhodobacter sphaeroides contains the genes for the light-harvesting antenna complex I (LHI), the reaction centre (RC) L and M subunits and an additional small open reading frame identified as pufX. It has been demonstrated before that a photosynthetically incompetent pufLMX deletion strain was not complemented by a plasmid-borne truncated puf operon version lacking only pufX, although expression of the pufL and pufM gene products was restored. We demonstrate here that the functional reinsertion of only the pufX open reading frame into the same construct is sufficient and necessary for complementation of the non-photosynthetic phenotype. We also demonstrate that the observed lack of photoheterotrophic growth in the absence of pufX is not the result of decreased light-harvesting ability, but rather the result of an impairment in light-driven cyclic electron transfer. Western blots using polyclonal antibodies against a synthetic peptide corresponding to a portion of the DNA-derived pufX amino acid sequence showed that the pufX open reading frame is expressed and that the gene product has an M(r) of 8-10,000 on SDS gels; a value close to the predicted mass of 9 kDa. The pufX polypeptide was localized to the intracytoplasmic membrane fraction and appeared to co-purify with the RC-LHI complex. It is suggested that the pufX polypeptide is associated with the RC-LHI complex and that it may play a critical role in facilitating the interaction between this complex and other components required for light-driven cyclic electron transfer.  相似文献   

16.
In our previous study, Orf101 (Bm101) of Bombyx mori nucleopolyhedrovirus (BmNPV) was identified as a component of the budded virions important for viral late gene expression. In this study we demonstrate that Bm101 is actually a previously unrecognized core gene and that it is essential for mediating budded virus production. To determine the role of Bm101 in the baculovirus life cycle, a Bm101 knockout bacmid containing the BmNPV genome was generated through homologous recombination in Escherichia coli. Furthermore, a Bm101 repair bacmid was constructed by transposing the Bm101 open reading frame with its native promoter region into the polyhedrin locus of the Bm101 knockout bacmid. Bacmid DNA transfection assay revealed that the Bm101 knockout bacmid was unable to produce the infectious budded virus, while the Bm101 repair bacmid rescued this defect, allowing budded-virus titers to reach wild-type levels. Real time PCR analysis indicated that the viral DNA genome in the absence of Bm101 was unaffected in the first 24 h p.t. Thus, studies of a Bm101-null BACmid indicate that Bm101 is required for viral DNA replication during the infection cycle.  相似文献   

17.
Plastid genomes of higher plants contain a conserved set of ribosomal protein genes. Although plastid translational activity is essential for cell survival in tobacco (Nicotiana tabacum), individual plastid ribosomal proteins can be nonessential. Candidates for nonessential plastid ribosomal proteins are ribosomal proteins identified as nonessential in bacteria and those whose genes were lost from the highly reduced plastid genomes of nonphotosynthetic plastid-bearing lineages (parasitic plants, apicomplexan protozoa). Here we report the reverse genetic analysis of seven plastid-encoded ribosomal proteins that meet these criteria. We have introduced knockout alleles for the corresponding genes into the tobacco plastid genome. Five of the targeted genes (ribosomal protein of the large subunit22 [rpl22], rpl23, rpl32, ribosomal protein of the small subunit3 [rps3], and rps16) were shown to be essential even under heterotrophic conditions, despite their loss in at least some parasitic plastid-bearing lineages. This suggests that nonphotosynthetic plastids show elevated rates of gene transfer to the nuclear genome. Knockout of two ribosomal protein genes, rps15 and rpl36, yielded homoplasmic transplastomic mutants, thus indicating nonessentiality. Whereas Δrps15 plants showed only a mild phenotype, Δrpl36 plants were severely impaired in photosynthesis and growth and, moreover, displayed greatly altered leaf morphology. This finding provides strong genetic evidence that chloroplast translational activity influences leaf development, presumably via a retrograde signaling pathway.  相似文献   

18.
The cytochrome b(6)f (Cyt b(6)f) complex in flowering plants contains nine conserved subunits, of which three, PetG, PetL, and PetN, are bitopic plastid-encoded low-molecular-weight proteins of largely unknown function. Homoplastomic knockout lines of the three genes have been generated in tobacco (Nicotiana tabacum 'Petit Havana') to analyze and compare their roles in assembly and stability of the complex. Deletion of petG or petN caused a bleached phenotype and loss of photosynthetic electron transport and photoautotrophy. Levels of all subunits that constitute the Cyt b(6)f complex were faintly detectable, indicating that both proteins are essential for the stability of the membrane complex. In contrast, DeltapetL plants accumulate about 50% of other Cyt b(6)f subunits, appear green, and grow photoautotrophically. However, DeltapetL plants show increased light sensitivity as compared to wild type. Assembly studies revealed that PetL is primarily required for proper conformation of the Rieske protein, leading to stability and formation of dimeric Cyt b(6)f complexes. Unlike wild type, phosphorylation levels of the outer antenna of photosystem II (PSII) are significantly decreased under state II conditions, although the plastoquinone pool is largely reduced in DeltapetL, as revealed by measurements of PSI and PSII redox states. This confirms the sensory role of the Cyt b(6)f complex in activation of the corresponding kinase. The reduced light-harvesting complex II phosphorylation did not affect state transition and association of light-harvesting complex II to PSI under state II conditions. Ferredoxin-dependent plastoquinone reduction, which functions in cyclic electron transport around PSI in vivo, was not impaired in DeltapetL.  相似文献   

19.
Polle JE  Kanakagiri SD  Melis A 《Planta》2003,217(1):49-59
DNA insertional mutagenesis and screening of the green alga Chlamydomonas reinhardtii was employed to isolate tla1, a stable transformant having a truncated light-harvesting chlorophyll antenna size. Molecular analysis showed a single plasmid insertion into an open reading frame of the nuclear genome corresponding to a novel gene ( Tla1) that encodes a protein of 213 amino acids. Genetic analysis showed co-segregation of plasmid and tla1 phenotype. Biochemical analyses showed the tla1 mutant to be chlorophyll deficient, with a functional chlorophyll antenna size of photosystem I and photosystem II being about 50% and 65% of that of the wild type, respectively. It contained a correspondingly lower amount of light-harvesting proteins than the wild type and had lower steady-state levels of Lhcb mRNA. The tla1 strain required a higher light intensity for the saturation of photosynthesis and showed greater solar conversion efficiencies and a higher photosynthetic productivity than the wild type under mass culture conditions. Results are discussed in terms of the tla1 mutation, its phenotype, and the role played by the Tla1 gene in the regulation of the photosynthetic chlorophyll antenna size in C. reinhardtii.  相似文献   

20.
The regulation by light of the photosynthetic apparatus, and composition of light-harvesting complexes in mesophyll and bundle sheath chloroplasts was investigated in maize. Leaf chlorophyll content, level of plastoquinone, PSI and PSII activities and Lhc polypeptide compositions were determined in plants grown under high, moderate and low irradiances. Photochemical efficiency of PSII, photochemical fluorescence quenching and non-photochemical fluorescence quenching over a range of actinic irradiances were also determined, using chlorophyll a fluorescence analysis. Acclimation of plants to different light conditions caused marked changes in light-harvesting complexes, LHCI and LHCII, and antenna complexes were also reorganized in these types of chloroplasts. The level of LHCII increased in plants grown in low light, even in agranal bundle sheath chloroplasts where the amount of PSII was strongly reduced. Irradiance also affected LHCI complex and the number of structural polypeptides, in this complex, generally decreased in chloroplasts from plants grown under lower light. Surprisingly moderate and low irradiances during growth do not affect the light reaction and fluorescence parameters of plants but generated differences in composition of light-harvesting complexes in chloroplasts. On the other hand, the changes in photosynthetic apparatus in plants acclimated to high light, resulted in a higher efficiency of photosynthesis. Based on these observations we propose that light acclimation to high light in maize is tightly coordinated adjustment of light reaction components/activity in both mesophyll and bundle sheath chloroplasts. Acclimation is concerned with balancing light utilization and level of the content of LHC complexes differently in both types of chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号