首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. If resistance traits drive recolonisation after drought, then drought refuges should contribute strongly to assemblage composition within streams. If resilience traits drive recolonisation, macroinvertebrates emerging from refuges may disperse widely, colonising many streams. To determine whether the contribution of drought refuges to macroinvertebrate recolonisation in non‐perennial streams was mostly local (within stream) or broader scale (across streams), we measured the association between the composition of invertebrate assemblages in different types of in‐stream drought refuge and the assemblage composition of streams when flow resumed. 2. We sampled 16 streams of varying hydrological regime on the western side of the Victoria Range in the Grampians National Park, Victoria, Australia. Drought refuges (perennial pools, dry sediment, damp sediment, seeps, patches of leaf litter, beneath stones) were identified and sampled during autumn. Most taxa were found in perennial pools; few taxa were found aestivating beneath stones or having desiccation‐resistant stages in dry sediment. Perennial pools and perennially flowing reaches were the refuges that harboured the greatest diversity of macroinvertebrate taxa. 3. Streams were sampled again during spring. Assemblage composition of non‐perennial reaches in spring was unrelated to composition in nearby refuges in the previous autumn. In contrast, assemblage composition in perennial reaches during spring was strongly correlated with composition during autumn. Therefore, drought refuges did not directly influence assemblage composition locally within non‐perennial streams. Rather, both perennially flowing reaches and perennial pools acted as drought refuges across the broader landscape. Resilience traits are likely to drive recolonisation in these streams. 4. Monitoring of drought refuges in a particular stream will therefore not predict species composition when flow resumes. Drought refuges are likely to sustain biodiversity over larger spatial scales such as groups of streams or whole drainage networks. Consequently, stream networks will need to be managed as entities rather than as single waterways and the focus of drought refuge protection should be on perennial pools and reaches.  相似文献   

2.
Abstract: Dry biofilm on rocks and other substrata forms an important drought refuge for benthic algae in intermittent streams following the cessation of flow. This dry biofilm is potentially susceptible to disturbance from bushfires, including direct burning and/or scorching and damage from radiant heat, particularly when streams are dry. Therefore, damage to dry biofilms by fire has the potential to influence algal recolonization and assemblage structure in intermittent streams following commencement of flow. The influence of fire on benthic algal assemblages and recolonization was examined in intermittent streams of the Grampians National Park, Victoria, Australia, using a field survey and manipulative field experiment. The field survey compared assemblages in two intermittent streams within a recently burnt area (within 5 months of the fire) with two intermittent streams within an unburnt area. The two burnt streams were still flowing during the fire so most biofilms were not likely to be directly exposed to flames. Considerable site‐to‐site and stream‐to‐stream variation was detected during the field survey, which may have obscured potential differences attributable to indirect effects of the fire. The manipulative field experiment occurred in two intermittent streams and consisted of five treatments chosen to replicate various characteristics of bushfires that may influence dry biofilms: dry biofilm exposed directly to fire; dry biofilm exposed to radiant heat; dry biofilm exposed to ash; and two procedural controls. After exposure to the different treatments, rocks were replaced in the streams and algae were sampled 7 days after flow commenced. Differences occurred across treatments, but treatment differences were inconsistent across the two streams. For example, direct exposure to fire reduced the abundance of recolonizing algae and altered assemblage structure in both streams, while radiant heat had an effect on assemblage structure in one stream only. The manipulative field experiment is likely to have represented the intensity of a small bushfire only. Nonetheless, significant differences across treatments were detected, so these experimental results suggest that fire can damage dry biofilms, and hence, influence algal recolonization and assemblage structure in intermittent streams.  相似文献   

3.
1. Temporary streams comprise a large proportion of the total length of most stream networks, and the great majority of arid‐land stream networks, so it is important to understand their contribution to biotic diversity at both local and landscape scales. 2. In late winter 2010, we sampled invertebrate assemblages in 12 reaches of a large arid‐land stream network (including perennial and intermittent headwaters, intermittent middle reaches and perennial rivers) in south‐east Arizona, U.S.A. Intermittent reaches had then been flowing for c. 60 days, following a dry period of more than 450 days. We sampled a subset of the perennial study reaches three more times between 2009 and 2011. Since intermittent reaches were dry during these additional sampling periods, we used assemblage data from two other intermittent streams in the study network (sampled in 2004–05 and 2010) to explore interannual variability in intermittent stream assemblage composition. 3. Invertebrate richness was lowest in intermittent reaches, despite their often being connected to species‐rich perennial reaches. The assemblages of these intermittent reaches were not simply a subset of the species in perennial streams, but rather were dominated by a suite of stoneflies, blackflies and midges with adaptations to intermittency (e.g. egg and/or larval diapause). On average, 86% of individuals in these samples were specialists or exclusive to intermittent streams. Predators were 7–14 times more abundant in perennial than in intermittent reaches. 4. Despite being separated by long distances (12–25 km) and having very different physical characteristics, the assemblages of perennial headwaters and rivers were more similar to one another than to intervening intermittent reaches, emphasising the prime importance of local hydrology in this system. 5. The duration and recurrence intervals of dry periods, and the relative importance of dispersal from perennial refuges, probably influence the magnitude of biological differences between neighbouring perennial and temporary streams. Although perennial headwaters supported the highest diversity of invertebrates, intermittent reaches supported a number of unique or locally rare species and as such contribute to regional species diversity and should be included in conservation planning.  相似文献   

4.
5.
6.
Climate change is altering hydrological cycles globally, and in Mediterranean (med-) climate regions it is causing the drying of river flow regimes, including the loss of perennial flows. Water regime exerts a strong influence over stream assemblages, which have developed over geological timeframes with the extant flow regime. Consequently, sudden drying in formerly perennial streams is expected to have large, negative impacts on stream fauna. We compared contemporary (2016/17) macroinvertebrate assemblages of formerly perennial streams that became intermittently flowing (since the early 2000s) to assemblages recorded in the same streams by a study conducted pre-drying (1981/82) in the med-climate region of southwestern Australia (the Wungong Brook catchment, SWA), using a multiple before-after, control-impact design. Assemblage composition in the stream reaches that remained perennial changed very little between the studies. In contrast, recent intermittency had a profound effect on species composition in streams impacted by drying, including the extirpation of nearly all Gondwanan relictual insect species. New species arriving at intermittent streams tended to be widespread, resilient species including desert-adapted taxa. Intermittent streams also had distinct species assemblages, due in part to differences in their hydroperiods, allowing the establishment of distinct winter and summer assemblages in streams with longer-lived pools. The remaining perennial stream is the only refuge for ancient Gondwanan relict species and the only place in the Wungong Brook catchment where many of these species still persist. The fauna of SWA upland streams is becoming homogenised with that of the wider Western Australian landscape, as drought-tolerant, widespread species replace local endemics. Flow regime drying caused large, in situ alterations to stream assemblage composition and demonstrates the threat posed to relictual stream faunas in regions where climates are drying.  相似文献   

7.
8.
The algal and cyanobacterial flora and the chemical environment of six freshwater streams of Schirmacher Oasis, Antarctica were investigated. Over 30 species of algae, predominantly cyanobacteria (Cyanophyceae), were recorded. N2-fixing species, both heterocystous and unicellular diazotrophs, contributed more than 50% to the counts and their dominance was greatest in the middle of the stream where nitrogen and other nutrients were low. Green algae and diatoms also contributed to the flora. The species composition varied between streams. Glacial and snow drift meltwater streams contained a distinctive community. Based on diversity indices, these streams could be classified into two clusters.  相似文献   

9.
1. Small permanent streams are coming under increasing pressure for water abstraction. Although these abstractions might only be required on a short‐term basis (e.g. summer time irrigation), the highest demand for water often coincides with seasonal low flows. 2. We constructed weirs and diversions that reduced discharge in three small streams (<4 m width) to test the hypotheses that short‐term water abstractions would decrease habitat availability and suitability for invertebrates, resulting in increased invertebrate drift, reduced taxonomic richness and decreased benthic invertebrate densities. 3. We sampled benthic invertebrates, invertebrate drift and periphyton at control (upstream) and impact (downstream) sites on each stream before and during 1 month of discharge reduction. 4. Discharge decreased by an average of 89–98% at impact sites and wetted width decreased by 24–30%. Water depth decreased by 28–64% while velocity decreased by 50–62%. Water conductivity, temperature and dissolved oxygen showed varying responses to flow reduction among the three streams, whereas algal biomass and pH were unaffected in all streams. 5. The densities of invertebrate taxa tended to increase in the impact reaches of these streams, even though invertebrate drift increased at impact sites in the first few days following discharge reduction. There were a higher proportion of mayflies, stoneflies and caddisflies at the impact site on one stream after flow reduction. There were no changes to the number of taxa or species evenness at impact sites. 6. Our results suggest that for these small streams, the response of invertebrates to short‐term discharge reduction was to accumulate in the decreased available area, increasing local invertebrate density.  相似文献   

10.
Movement patterns of invertebrates in temporary and permanent streams   总被引:4,自引:0,他引:4  
C. M. Delucchi 《Oecologia》1989,78(2):199-207
Summary Although it has been shown that invertebrates recolonize reflooded temporary streams from permanent refuges, e.g., the hyporheic zone, it has not been shown that they actively move into these refuges as streams dry. Substrate filled cages and drift nets were used to monitor invertebrate movement in two temporary streams and a permanent stream prior to and during drying to determine whether invertebrates leave drying riffles and enter flooded riffles. Invertebrate movement was essentially unidirectional in the permanent stream with downstream drift and with-in-substrate downstream movement dominating. In the temporary stream, movement vertically downward toward the hyporheic zone and upstream movement substantially contributed to a departure from a unidirectional pattern. In addition, prior to stream drying the relative colonization rate was higher and drift rate was lower in the temporary streams than in the permanent stream. During drying of the temporary stream, upstream movement continued to dominate but hyporheic movement was unimportant. Further, the upstream movement did not occur at the end of the riffle where it would lead to migration into non-drying riffles. Thus, even though movement patterns were different in permanent and temporary streams the pattern observed during stream drying would result in the concentration and subsequent death of invertebrates in drying riffles. This observation demonstrates that movement patterns of stream invertebrates do not necessarily result in behavioral avoidance of a dry period of temporary fiffles.  相似文献   

11.
Mechanisms that determine the strength of trophic cascades from fish to benthic algae via algivorous invertebrates in stream communities have not been clarified. Using seven fish species, we tested the hypothesis that the interspecific variation of predatory behavior of fishes affects the strength of trophic cascades in experimental streams. One or two species of fish were introduced into flow-through pools of 2.5 m2 and the abundances of benthic invertebrates and algae were monitored. Pike gudgeon, a diurnal benthic feeder, triggered a strong trophic cascade but masu salmon, a diurnal drift feeder, did not have a cascading effect. Japanese dace, which is both a diurnal benthic and drift feeder, increased the algal biomass, but the nocturnal benthic feeder cut-tailed bullhead had little cascading effect. The diurnal benthic feeder silver crucian carp also had a cascading effect, but no trophic cascade was triggered either by Asian pond loach or by Japanese common catfish, both of which are nocturnal benthic feeders. Thus, diurnal benthic fish exerted a stronger cascading effect than diurnal drift feeders or nocturnal fish. The combination of two fish species enhanced the per-capita strength of trophic cascades, probably because one of the two species, the benthic feeder, preyed on more invertebrates than in the single-species pools.  相似文献   

12.
1. Tallgrass prairies and their streams are highly endangered ecosystems, and many remaining streams are threatened by the encroachment of woody riparian vegetation. An increase in riparian vegetation converts the naturally open‐canopy prairie streams to closed‐canopy systems. The effects of a change in canopy cover on stream metabolism are unknown. 2. Our goal was to determine the effects of canopy cover on prairie stream metabolism during a 4‐year period in Kings Creek, KS, U.S.A. Metabolic rates from forested reaches were compared to rates in naturally open‐canopy reaches and restoration reaches, the latter having closed canopies in 2006 and 2007 and open canopies in 2008 and 2009. Whole‐stream metabolism was estimated using the two‐station diurnal method. Chlorophyll a concentrations and mass of filamentous algae were measured after riparian removal to assess potential differences in algal biomass between reaches with open or closed canopies. 3. Metabolic rates were spatially and temporally variable even though the sites were on very similar streams or adjacent to each other within streams. Before riparian vegetation removal, whole‐stream community respiration (CR) and net ecosystem production were greater with greater canopy cover. In the vegetation removal reaches, gross primary production was slightly greater after removal. 4. Chlorophyll a concentrations were marginally significantly greater in open (naturally open and removal reaches) than in closed canopy and differed significantly between seasons. Filamentous algal biomass was greater in open than in closed‐canopy reaches. 5. Overall, the restoration allowed recovery of some features of open‐canopy prairie streams. Woody expansion apparently increases CR and moves prairie stream metabolism towards a more net heterotrophic state. An increase in canopy cover decreases benthic chlorophyll, decreases dominance of filamentous algae and potentially alters resources available to the stream food web. The results of this study provide insights for land managers and conservationists interested in preserving prairie streams in their native open‐canopy state.  相似文献   

13.
This is a review on benthic algae from streams situated above the tree line in the Alps. It integrates published and unpublished data from alpine streams in Austria and in the Trento Province (Northern Italy). The main focus is on the structural and taxonomic composition of benthic algae including macro- and micro-algae and their contribution to the epilithic biofilm and the stream food-web. The environmental conditions relevant to algae within the two major stream types, the glacial (glacier-fed) and non-glacial krenal (spring-fed) stream are discussed. The paper considers both the maximum possible structural complexity of transverse algae zonation in cascading alpine/subalpine stream segments, and the effects of glacial water on species richness in the Central Alps in Austria. Autecological data are given for 46 common diatoms from 42 sites in the Central Eastern and Southern Central Alps and for 30 algae in addition to diatoms for 22 streams in the Central Eastern Alps. Since data on responses of benthic algae to the harsh conditions in high altitude Alpine streams are very scarce, results from literature and the author’s experiences from these and other mountain stream types are synthesized to formulate major objectives for future research in benthic high altitude Alpine stream ecology.  相似文献   

14.
1. The apparent absence of a specialist herbivorous grazer guild from many acid streams suggests that algae-grazer linkages in acid-stream food webs are weak or absent. It has been hypothesized that the absence of herbivores is a consequence of the low quality and/or quantity of biofilms in acid streams.
2. We compared the taxonomic composition, biomass and potential nutritional quality of epilithic biofilms from four acid and four circumneutral streams, and examined whether nymphs of a herbivore–detritivore, the stonefly Nemurella pictetii (Plecoptera: Nemouridae), could grow equally well when fed on eight biofilms from four acid and four circumneutral streams.
3. Biofilms from acid and circumneutral streams differed strongly in algal composition, the former having relatively more coccoid green algae but fewer diatoms and filamentous green algae. Diatom floras differed with stream water pH.
4. The quantity (i.e. area-specific chlorophyll content, algal numbers and AFDM) and quality (biomass-specific protein and soluble carbohydrate content) of biofilms differed significantly, both among sites of similar pH, and overall between the groups of acid and circumneutral streams.
5. Nymphs of N. pictetii grew successfully on biofilms for 8–10 weeks up to emergence. However, no systematic differences in growth rate were found between the two groups of acid and circumneutral streams. Differences in the digestibility of benthic algae from different sources, and the adjustment of nymphal feeding rates, are discussed in the light of a lack of a clear relationship between growth and food quality.  相似文献   

15.
16.
1. Anthropogenic activities in prairie streams are increasing nutrient inputs and altering stream communities. Understanding the role of large consumers such as fish in regulating periphyton structure and nutritional content is necessary to predict how changing diversity will interact with nutrient enrichment to regulate stream nutrient processing and retention. 2. We characterised the importance of grazing fish on stream nutrient storage and cycling following a simulated flood under different nutrient regimes by crossing six nutrient concentrations with six densities of a grazing minnow (southern redbelly dace, Phoxinus erythrogaster) in large outdoor mesocosms. We measured the biomass and stoichiometry of overstory and understory periphyton layers, the stoichiometry of fish tissue and excretion, and compared fish diet composition with available algal assemblages in pools and riffles to evaluate whether fish were selectively foraging within or among habitats. 3. Model selection indicated nutrient loading and fish density were important to algal composition and periphyton carbon (C): nitrogen (N). Nutrient loading increased algal biomass, favoured diatom growth over green algae and decreased periphyton C : N. Increasing grazer density did not affect biomass and reduced the C : N of overstory, but not understory periphyton. Algal composition of dace diet was correlated with available algae, but there were proportionately more diatoms present in dace guts. We found no correlation between fish egestion/excretion nutrient ratios and nutrient loading or fish density despite varying N content of periphyton. 4. Large grazers and nutrient availability can have a spatially distinct influence at a microhabitat scale on the nutrient status of primary producers in streams.  相似文献   

17.
Macro-invertebrate drift was measured entering and leaving two pools on the Middle Fork of the Cosumnes River, a third order California stream. Drift rates for Baetis spp., Chironomidae, Simulium spp., Capniidae and total drift were calculated. Significant differences in the numbers of organisms entering the two pools were found for Baetis, Chironomidae, and Capniidae. Comparisons of drift rates at the upstream and downstream ends of each pool showed that the abundance of Chironomidae, Simulium, Capniidae and total drift changed in different directions across the pools. The numbers of organisms leaving the two pools, however, were not significantly different for Baetis, Simulium, Capniidae and total drift. These findings lead us to hypothesize that long pools act as barriers, not filters, to stream macro-invertebrate drift. The composition of drift leaving the pools in this experiment appeared to be controlled by the composition of the benthic habitat at the tail of the pool and not by the composition of upstream drift entering the pools.  相似文献   

18.
19.
How protective are refuges? Quantifying algal protection in rock crevices   总被引:3,自引:0,他引:3  
1. Refuges can be functionally important if they harbour sufficient organisms during disturbance to augment population recovery. I quantified the protection of stream algae in crevice refuges using the applied, severe disturbance of scrubbing. Scrubbing effectively removed visible surface algae, and algae remaining on stones were considered protected. 2. In a field experiment, substrata with different quantities of crevice (glass bottles; greywacke; schist; pumice) were incubated in a channelised stream. The possible influence of growth conditions was investigated concurrently; half of the substrata were suspended in the water column, the rest were placed on the bottom (providing differential access to grazers and exposing them to different flow conditions). 3. Rougher substrata had greater total algal biomass than smoother substrata; this pattern resulted from more algal biomass in crevices of the rougher substrata. Protection from scrubbing ranged from about 5% of total algal biomass on glass and greywacke to 80% on pumice. In contrast, algal biomass removed by scrubbing was similar among the experimental substrata. Suspended substrata had more chironomid grazers than those on the bottom, and also greater algal biomass, possibly because of high algal concentrations in the chironomid retreats. 4. A survey of stones from three rivers supported the experimental results; namely, rough pumice protected more algae from scrubbing than did smoother greywacke. 5. In a separate experimental assay, there was no difference in algal growth on agar plates with and without added powdered rock substrata, suggesting that crevice characteristics and not substratum chemistry produced the differences in algal assemblages between rough and smooth surfaces. 6. Results indicate that rough stream stones may protect sufficient algae to augment their recovery in streams following disturbance.  相似文献   

20.
1. Manipulative experiments were carried out in four Hong Kong streams (two shaded, two unshaded) to investigate the impact of grazing by an algivorous fish, Pseudogastromyzon myersi, on benthic algal biomass and assemblage composition. Experiments were conducted and repeated during both the dry and wet seasons to determine whether spate‐induced disturbance modified any grazing effect. Treatments comprised fish exclusion and inclusion via closed and open cages, with a no‐cage treatment used as a control for the cage effect. Treatments were maintained for 4 weeks in each experimental run. 2. Grazing by P. myersi reduced benthic algal biomass and the organic matter content of periphyton in open cages and the no‐cage treatment relative to closed cages. The similarity between open‐cage and no‐cage treatments was evidence that the overall difference among treatments was caused by limiting fish access to closed cages and not merely an artifact of caging. Grazing effects were broadly similar in all streams, but there was a significant statistical interaction between treatments and seasons. 3. Analysis of dry‐season data matched the overall trend in inter‐treatment differences, confirming the effects of grazing by P. myersi on algal biomass and periphyton organic matter. Significant differences in algal assemblage composition between closed‐cage and no‐cage treatments during the dry season reflected reductions in the abundance of erect, stalked diatoms (Gomphonema) and filamentous cyanobacteria (Homeothrix). Removal of these vulnerable overstorey algae by P. myersi resulted in greater abundance of understorey diatoms (Achnanthes and Cocconeis) in the no‐cage treatment in all streams during the dry season. The composition of algal assemblages in open cages was intermediate between the other two treatments. 4. Although fish densities were greater in all streams during the wet season, spate‐induced disturbance obscured grazing effects and there were no significant differences among treatments attributable to fish grazing. Seasonal variation in impacts of P. myersi grazing provides support for the harsh‐benign hypothesis, and confirms that biotic factors are less important controls of stream algal biomass and assemblage structure during periods (i.e. the wet season in Hong Kong) when abiotic disturbances are frequent or intense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号