首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Aim To examine the extent to which succession from tropical savanna to rain forest in the long‐term absence of fire is matched by successional changes in ant communities. This is done by describing ant community responses to 23 years of fire exclusion in a northern Australian tropical savanna, with a particular focus on the extent of colonization by specialist rain forest taxa. Location Solar Village, near Darwin in Australia's Northern Territory. Methods Ants were sampled within 12 plots located inside (‘unburnt’– protected from fire for 23 years) and outside (burnt every 1–2 years) Solar Village in ridge and slope habitat dominated by Eucalyptus spp. The litter, ground‐foraging and arboreal faunas were sampled separately, using Berlese funnels, unbaited pitfall traps and baited pitfall traps attached to tree trunks, respectively. Each species was assigned a forest‐association score ranging from 0 (open savanna species) to 3 (specialist forest species) based on their known habitat preferences in the region. Results A total of 85 ant species from 35 genera were recorded, with multivariate analysis demonstrating distinct litter, ground and arboreal communities. Ant communities also varied substantially with topographic position, which interacted strongly with fire exclusion. A total of 72 species were recorded in burnt habitat, compared with only 45 in unburnt, and the number of ant species records was also about twice as high in burnt compared with unburnt habitat. Fire exclusion has resulted in a dramatic increase in forest‐associated taxa (those occurring in forest and denser, but rarely open, savanna), with such species representing 51% of species records in unburnt habitat compared with 19% in burnt. However, only five specialist forest species were recorded, representing < 1% of total ant records. Main conclusions Fire exclusion at Solar Village has markedly increased the prevalence of forest‐associated ant species, but has led to only very minor incursions by specialist rain forest ant taxa. These responses match very closely those of the vegetation.  相似文献   

2.
The fire resilience of ground‐dwelling ant assemblages in grassland subjected to annual fire management was investigated. Study sites consisted of three burnt sites and three unburnt sites in grasslands on the Hiraodai Karst Plateau in Fukuoka Prefecture, Japan. Ground‐dwelling ants were sampled by Winkler extraction and collected at 10 days and 1, 2, 3 and 6 months post‐fire. In total 33 ant species belonging to 25 genera in six subfamilies were collected from the burnt and unburnt sites. Eight of the 29 ant species collected at burnt sites were restricted to burnt sites, while four of the 25 ant species collected at unburnt sites were restricted to unburnt sites. Non‐metric multidimensional scaling and analysis of similarities revealed that the ant assemblages in the burnt sites at 10 days and 1 month post‐fire were clearly separated from the assemblages observed at 2, 3 and 6 months post‐fire. The results suggested that the ground‐dwelling ant fauna in the study area were highly resilient to fire at 2 months post‐fire and that the annual fire regime did not have a marked effect on species richness.  相似文献   

3.
Understanding mechanisms underlying fire regime effects on savanna fauna is difficult because of a wide range of possible trophic interactions and feedbacks. Yet, understanding mechanisms underlying fauna dynamics is crucial for conservation management of threatened species. Small savanna mammals in northern Australia are currently undergoing widespread declines and regional extinctions partly attributable to fire regimes. This study investigates mammal trophic and ecosystem responses to fire in order to identify possible mechanisms underlying these declines. Mammal trophic responses to fire were investigated by surveying mammal abundance, mammal diet, vegetation structure and non‐mammal fauna dynamics in savannas six times at eight sites over a period of 3 years. Known site‐specific fire history was used to test for trophic responses to post‐fire interval and fire frequency. Mammal and non‐mammal fauna showed only minor responses of post‐fire interval and no effect of fire frequency. Lack of fauna responses differed from large post‐fire vegetation responses. Dietary analysis showed that two mammal species, Dasyurus hallucatus and Isoodon auratus, increased their intake of large prey groups in recently burnt, compared to longer unburnt vegetation. This suggests a fire‐related change in trophic interactions among predators and their prey, after removal of ground‐layer vegetation. No evidence was found for other changes in food resource uptake by mammals after fire. These data provide support for a fire‐related top‐down ecosystem response among savanna mammals, rather than a bottom‐up resource limitation response. Future studies need to investigate fire responses among other predators, including introduced cats and dingoes, to determine their roles in fire‐related mammal declines in savannas of northern Australia.  相似文献   

4.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

5.
Fire regimes are changing throughout the world. Changed fire patterns across northern Australian savannas have been proposed as a factor contributing to recent declines of small‐ and medium‐sized mammals. Despite this, few studies have examined the mechanisms that underpin how species use habitat in fire‐affected landscapes. We determined the habitats and resources important to the declining golden‐backed tree‐rat (Mesembriomys macrurus) in landscapes partially burnt by recent intense fire. We aimed to (i) compare the relative use of rainforest and savanna habitats; (ii) examine the effect of fire history on use of savanna habitats; and (iii) identify key foraging and denning resources. Habitat selection was examined by comparing the availability of eight habitat types around real (used) and generated (available) location points. Individuals used a range of habitats, but consistently selected long unburnt rainforest in preference to recently burnt savanna (1–12 months post‐fire); however, recently burnt savanna was used in preference to long unburnt savanna. Tree‐rats foraged in Terminalia hadleyana, Planchonia rupestris, Celtis philippensis and Owenia vernicosa, tree species that are found in a variety of habitat types. Individuals used a range of den sites, including cliffs, trees, logs, scree and stags found throughout the study area. Although multiple factors may have led to the decline of Mes. macrurus across its range, these results are consistent with the idea that changes in the savanna structure as a consequence of contemporary fire patterns could also have a role. The continued persistence of Mes. macrurus in the northwest Kimberley may be supported by land management strategies that conserve fruiting and hollow‐bearing trees, and maintain the availability of fire‐sensitive vegetation types.  相似文献   

6.
This paper examines the role of fire in mediating the relative abundance of two of the world's major ecologically dominant ant genera, Iridomyrmex and Oecophylla, where they coexist across the tropical savanna landscapes of northern Australia. These taxa have contrasting biogeographical histories, which are predicted to lead to contrasting responses to fire. Iridomyrmex is an autochthonous Australian genus that has radiated primarily in the arid zone; as such, its abundance is predicted to be promoted by frequent fire because this maintains an open habitat. In contrast, Oecophylla is a genus of leaf‐nesting ants occurring in the canopies of Old World tropical rainforest, and is a recent arrival to Australia in geological time; the abundance of these ants is predicted to decline under frequent fire. We test these predictions using results from a landscape‐scale fire experiment, where three experimental fire regimes (including no fire) were applied to replicated subcatchments over a 5‐year period. Using sweep nets, ants were sampled in the grass layer (the habitat layer of greatest overlap between Iridomyrmex and Oecophylla) in eucalypt woodland (canopy cover < 30%) and open eucalypt forest (canopy cover about 50%) habitats. A total of 27 species from 11 genera were collected during the study; eight were common enough for statistical analysis, and the abundances of four of these were significantly affected by fire treatment. As predicted, the abundance of Iridomyrmex was promoted by fire, whereas that of Oecophylla declined. These changes occurred only under late‐season (relatively high intensity) fires, and for Oecophylla occurred only in open forest (not woodland) habitat. This fire‐mediated relationship between Iridomyrmex and Oecophylla mirrors the much broader, ecosystem‐wide dynamic between eucalypt‐dominated savanna and rainforest in tropical Australia, with savannas dominated by fire‐resistant sclerophyll elements of Australian origin, and rainforest dominated by fire‐sensitive mesophyll elements of South‐East Asian origin.  相似文献   

7.
Fire is an important part of many Australian ecosystems, and determining how it affects different vegetation communities and associated fauna is of particular interest to land managers. Here, we report on a study that used sites established during a 39‐year fire experiment in coastal heathland in southeastern Queensland to compare arthropod abundance and vegetation in 1.5–2.6 ha sites that were (i) long unburnt, (ii) burnt every 5 years and (iii) burnt every 3 years. We found that the abundance of ants was more than four times higher in the frequently burnt sites compared to long unburnt sits. Moreover, long unburnt sites had greater dominance of Xanthorrhoea johnsonii and Caustis recurvata, whereas burnt sites had greater cover of Lomandra filiformis, Leucopogon margarodes and Leucopogon leptospermoides. Our findings show that frequent fire can alter vegetation structure and composition, and this is matched by an increase in the relative dominance of ants in the arthropod community.  相似文献   

8.
Patches of fire‐sensitive vegetation often occur within fire‐prone tropical savannas, and are indicative of localized areas where fire regimes are less severe. These may act as important fire refugia for fire‐sensitive biota. The fire‐sensitive tree Callitris intratropica occurs in small patches throughout the fire‐prone northern Australian savannas, and is widely seen as an indicator of low‐severity fire regimes and of good ecosystem health. Here, we address the question: to what extent do Callitris patches act as refuges for other fire‐sensitive biota, and therefore play a broader conservation role? We contrast floral and faunal species composition between Callitris patches and surrounding eucalypt savanna, using three case studies. In the first case study, a floristic analysis of 47 Callitris patches across Western Australia's Kimberley region showed that woody species in these patches were overwhelmingly widespread, fire‐tolerant savanna taxa. No species of special conservation concern occurred disproportionately within Callitris patches. Similarly, there was no concentration of fire‐sensitive fauna or flora in five Callitris patches in the East Kimberley. Finally, there was no difference in ant species composition among 12 Callitris patches and surrounding eucalypt savannas in Kakadu National Park, Northern Territory, and there were no fire‐sensitive ant species in Callitris patches. Our three case studies from throughout the northwestern Australia provide no evidence that Callitris patches act as important refuges for fire‐sensitive flora or fauna within fire‐prone eucalypt savannas. This calls into question the notion that Callitris is a strong indicator of general ecosystem health.  相似文献   

9.
Abstract The savannas of South America support a relatively diverse ant fauna, but little is known about the factors that influence the structure and dynamics of these assemblages. In 1998 and 2002, we surveyed the ground‐dwelling ant fauna and the fauna associated with the woody vegetation (using baits and direct sampling) from an Amazonian savanna. The aim was to evaluate the influence of vegetation structure, disturbance by fire and dominant ants on patterns of ant species richness and composition. Variations in the incidence of fires among our 39 survey plots had no or only limited influence on these patterns. In contrast, spatial variations in tree cover and cover by tall grasses (mostly Trachypogon plumosus), significantly affected ant species composition. Part of the variation in species richness among the study plots correlated with variations in the incidence of a dominant species (Solenopsis substituta) at baits. Ant species richness and composition also varied through time, possibly as an indirect effect of changes in vegetation cover. In many plots, and independently of disturbance by fire, there was a major increase in cover by tall grasses, which occupied areas formerly devoid of vegetation. Temporal changes in vegetation did not directly explain the observed increase in the number of ant species per plot. However, the incidence of S. substituta at baits declined sharply in 2002, especially in plots where changes in vegetation cover were more dramatic, and that decline was correlated with an increase in the number of ground‐dwelling species, a greater turnover of bait‐recruiting species and the appearance of the little fire ant Wasmannia auropunctata. The extent to which these changes in fact resulted from the relaxation of dominance by S. substituta is not clear. However, our results strongly suggest that the ant fauna of Amazonian savannas is affected directly and indirectly by the structure of the vegetation.  相似文献   

10.
Unburnt patches within burnt landscapes are expected to provide an important resource for fauna, potentially acting as a refuge from direct effects of fire and allowing animals to persist in burnt landscapes. Nevertheless, there is little information about the way refugia are used by fauna and how populations may be affected by them. Planned burns are often patchy, with unburnt areas generally associated with gully systems providing a good opportunity to study faunal use of refugia. We used a before–after control‐impact design associated with a planned burn in south eastern Australia to investigate how two small mammal species, the bush rat Rattus fuscipes and agile antechinus Antechinus agilis, used unburnt gully systems within a larger burnt area. We tested three alternative hypotheses relating to post‐fire abundance: (i) active refugia – abundance would increase in unburnt patches because of a post‐fire shift of individuals from burnt to unburnt areas; (ii) passive refugia – abundance in unburnt patches would remain similar to pre‐fire levels; and (iii) limited or no refugia – abundance would reduce in unburnt patches related to the change induced by fire in the wider landscape. We found the two species responded differently to the presence of unburnt refugia in the landscape. Relative to controls, fire had little effect on bush rat abundance in gullies, supporting hypothesis 2. In contrast, agile antechinus abundance increased in gullies immediately post‐fire consistent with a shift of individuals from burnt parts of the landscape, supporting hypothesis 1. Differences in site fidelity, habitat use and intraspecific competition between these species are suggested as likely factors influencing responses to refugia. The way unburnt patches function as faunal refugia and the subsequent influence they have on post‐fire population dynamics, will to some extent depend on the life history attributes of individual species.  相似文献   

11.
Abstract Every year large proportions of northern Australia's tropical savanna landscapes are burnt, resulting in high fire frequencies and short intervals between fires. The dominant fire management paradigm in these regions is the use of low‐intensity prescribed fire early in the dry season, to reduce the incidence of higher‐intensity, more extensive wildfire later in the year. This use of frequent prescribed fire to mitigate against high‐intensity wildfire has parallels with fire management in temperate forests of southern Australia. However, unlike in southern Australia, the ecological implications of high fire frequency have received little attention in the north. CSIRO and collaborators recently completed a landscape‐scale fire experiment at Kapalga in Kakadu National Park, Northern Territory, Australia, and here we provide a synthesis of the effects of experimental fire regimes on biodiversity, with particular consideration of fire frequency and, more specifically, time‐since‐fire. Two recurring themes emerged from Kapalga. First, much of the savanna biota is remarkably resilient to fire, even of high intensity. Over the 5‐year experimental period, the abundance of most invertebrate groups remained unaffected by fire treatment, as did the abundance of most vertebrate species, and we were unable to detect any effect of fire on floristic composition of the grass‐layer. Riparian vegetation and associated stream biota, as well as small mammals, were notable exceptions to this general resilience. Second, the occurrence of fire, independent of its intensity, was often the major factor influencing fire‐sensitive species. This was especially the case for extinction‐prone small mammals, which have suffered serious population declines across northern Australia in recent decades. Results from Kapalga indicate that key components of the savanna biota of northern Australia favour habitat that has remained unburnt for at least several years. This raises a serious conservation concern, given that very little relatively long unburnt habitat currently occurs in conservation reserves, with most sites being burnt at least once every 2 years. We propose a conservation objective of increasing the area that remains relatively long unburnt. This could be achieved either by reducing the proportion of the landscape burnt each year, or by setting prescribed fires more strategically. The provision of appropriately long unburnt habitat is a conservation challenge for Australia's tropical savanna landscapes, just as it is for its temperate forests.  相似文献   

12.
Optimal sexual reproduction in relation to fire effects varies in Fabaceae species. Calliandra species have a large investment in reproduction. We investigated the consequences of fire during the fruiting period of Calliandra parviflora Benth., by checking fruit exposure to fire, pre-dispersal seed predator infestation, and the effect of fruit burning on germination. We conducted this study in a floodable savanna in central Brazil, where we collected burnt and unburnt fruits. We measured the fruit and seed mass, and counted the number of damaged and undamaged seeds and live larvae per fruit. We analyzed the seed germination percentage from burnt and unburnt fruits. The burnt fruits presented greater mass than the unburnt fruits, despite their seed mass being similar. The number of damaged seeds per fruit was only slightly higher in burnt compared to unburnt fruits (p = 0.047). The number of larvae on pre-dispersal seeds per fruit varied from 0 to 4 and did not differ between burnt and unburnt fruits. The germination percentage of unburnt fruit seeds (mean = 22 ± 17%), was significantly higher than that of burnt fruit (mean = 3.0 ± 2.0%, p < 0.001). Fire during fruiting or pre-dispersion decreases seed germination from 22 to 3%, but it does not hurt vegetative regeneration or resprout capacity of C. parviflora, which is a facultative seeder. Hence, we suggest that C. parviflora has potential for post-fire restoration in floodable open grassy savannas, in the ecotone between Cerrado and Pantanal, because this species may sprout quickly after first post-fire rains.  相似文献   

13.

Aim

To evaluate the extent to which ant species richness in Neotropical savannas varies with macrogeographic variables, and to identify the potential climatic drivers of such variation.

Location

The Cerrado savanna biome of central Brazil, in a region spanning ca. 20° of latitude and 18°of longitude.

Methods

Standardized sampling of the arboreal and ground‐dwelling faunas was performed in 29 well‐preserved savanna sites using pitfall traps. Species were classified according to their habitat affinities: open‐savanna specialists, forest‐associated species or habitat generalists. We used generalized linear models to evaluate the importance of geographic (latitude, longitude and elevation) and climatic (mean temperature and three metrics of rainfall) variables as predictors of species richness.

Results

The total number of species recorded at each site varied more than twofold (from 59 to 144), and latitude was the best geographic correlate of overall species richness. However, contrary to the expected pattern, more species were found at higher than lower latitudes. This reversed latitudinal pattern of diversity occurred for both the arboreal and ground‐dwelling faunas, and for the habitat generalists and forest specialists. The savanna specialists showed a mid‐latitudinal peak in diversity. Overall, there was a significant positive association between rainfall and species richness, but the strength of this relationship varied with ant habitat affinity.

Main conclusions

The Cerrado ant fauna shows a reverse latitudinal gradient in species diversity, and this can be explained by increasing rainfall during the warmest months of the year (and therefore in plant productivity) with increasing latitude. The sensitivity of Cerrado ant diversity to declining rainfall contrasts with the high resilience to aridity of the Australian savanna ant fauna, and this reflects the contrasting evolutionary histories of these faunas. Our findings highlight the importance of historical processes as drivers of intercontinental contrasts in macroecological patterns.  相似文献   

14.
Abstract This opportunistic study compares the vegetation, fuel loads and vertebrate fauna of part of a 120‐ha block of tropical open forest protected from fire for 23 years, and an adjacent block burnt annually over this period. Total fuel loads did not differ significantly between the unburnt and annually burnt sites, but their composition was markedly different, with far less grassy fuel, but far more litter fuel, in the unburnt block. There were major differences between treatments in the composition of trees and shrubs, manifest particularly in the number of stems. There was no overall difference in plant species richness between the two treatments, but richness of woody species was far higher in the unburnt treatment, and of annual and perennial grasses, and perennial herbs in the annually burnt treatment. Change in plant species composition from annually burnt to unburnt treatment was directional, in that there was a far higher representation of rainforest‐associated species (with the percentage of woody stems attributable to ‘rainforest’ species increasing from 24% of all species in the annually burnt treatment to 43% in the unburnt treatment, that of basal area from 9% to 30%, that of species richness from 8% to 17%, and that of cover from 12 to 47%). The vertebrate species composition varied significantly between treatments, but there was relatively little difference in species richness (other than for a slightly richer reptile fauna in the unburnt treatment). Again, there was a tendency for species that were more common in the unburnt treatment to be rainforest‐associated species. The results from this study suggest that there is a sizeable and distinct set of species that are associated with relatively long‐unburnt environments, and hence that are strongly disadvantaged under contemporary fire regimes. We suggest that such species need to be better accommodated by fire management through strategic reductions in the frequency of burning.  相似文献   

15.
Fire frequency is a key land management issue, particularly in tropical savannas where fire is widely used and fire recurrence times are often short. We used an extended Before‐After‐Control‐Impact design to examine the impacts of repeated wet‐season burning for weed control on bird assemblages in a tropical savanna in north Queensland, Australia. Experimentally replicated fire treatments (unburnt, singularly bunt, twice burnt), in two habitats (riparian and adjacent open woodland), were surveyed over 3 years (1 year before the second burn, 1 year post the second burn, 2 years post the second burn) to examine responses of birds to a rapid recurrence of fire. Following the second burn, species richness and overall bird abundance were lower in the twice‐burnt sites than either the unburnt or singularly burnt sites. Feeding group composition varied across year of survey, but within each year, feeding guilds grouped according to fire treatment. In particular, abundance of frugivores and insectivores was lower in twice‐burnt sites, probably because of the decline of a native shrub that produces fleshy fruits, Carissa ovata. Although broader climatic variability may ultimately determine overall bird assemblages, our results show that a short fire‐return interval will substantially influence bird responses at a local scale. Considering that fire is frequently used as a land management tool, our results emphasize the importance of determining appropriate fire‐free intervals.  相似文献   

16.
Ecosystems managed with contrasting fire regimes provide insight into the responses of vegetation and soil. Heathland, woodland and forest ecosystems along a gradient of resource availability were burnt over four decades in approximately 3- or 5-year intervals or were unburnt for 45–47 years (heathland, woodland), or experienced infrequent wildfires (forest: 14 years since the last fire). We hypothesized that, relative to unburnt or infrequent fires, frequent burning would favour herbaceous species over woody species and resprouting over obligate seeder species, and reduce understorey vegetation height, and topsoil carbon and nitrogen content. Our hypothesis was partially supported in that herbaceous plant density was higher in frequently burnt vegetation; however, woody plant density was also higher in frequently burnt areas relative to unburnt/infrequently burnt areas, across all ecosystems. In heathland, omission of frequent fire resulted in the dominance of fern Gleichenia dicarpa and subsequent competitive exclusion of understorey species and lower species diversity. As hypothesized, frequent burning in woodland and forest increased the density of facultative resprouters and significantly reduced soil organic carbon levels relative to unburnt sites. Our findings confirm that regular burning conserves understorey diversity and maintains an understorey of lower statured herbaceous plants, although demonstrates the potential trade-off of frequent burning with lower topsoil carbon levels in the woodland and forest. Some ecosystem specific responses to varied fire frequencies were observed, reflecting differences in species composition and fire response traits between ecosystems. Overall, unburnt vegetation resulted in the dominance of some species over others and the different vegetation types were able to withstand relatively high-frequency fire without the loss of biodiversity, mainly due to high environmental productivity and short juvenile periods.  相似文献   

17.
Myrmecochory (seed dispersal by ants) is a common seed dispersal strategy of plants in fire‐prone sclerophyll vegetation of Australia, yet there is little understanding of how fire history may influence this seed dispersal mutualism. We investigated the initial fate of seeds of two myrmecochorous plant species, the small‐seeded Pultenaea daphnoides J.C. Wendl. and the large‐seeded Acacia pycnantha Benth., in replicated burnt (3.25 years since fire) and unburnt (53 years since fire) forest plots in the Mount Lofty Ranges, South Australia. Specifically we measured (i) seed removal rates; (ii) the frequency of three ant–seed interactions (seed removal, elaiosome robbery and seed ignoring); (iii) the relative contribution of different ant species to ant–seed interactions; and (iv) the abundance of common interacting ant species. Rates of seed removal from depots and the proportion of seeds removed were higher in recently burnt vegetation and the magnitude of these effects was greater for the smaller‐seeded P. daphnoides. The overall proportion of elaiosomes robbed was higher in unburnt vegetation; however, the decrease in elaiosome robbery in burnt vegetation was greater for P. daphnoides than for A. pycnantha. Ants ignored seeds more frequently in burnt vegetation and at similar rates for both seed species. In total, 20 ant species were observed interacting with seeds; however, three common ant species accounted for 66.3% of ant–seed interactions. Monomorium sydneyense almost exclusively robbed elaiosomes, Rhytidoponera metallica typically removed seeds and Anonychomyrma nr. nitidiceps showed a mix of the three behaviours towards seeds. Differences in the proportions of seeds removed, elaiosomes robbed and seeds ignored appeared to be largely driven by an increase in abundance of A. nr. nitidiceps and a decrease in abundance of M. sydneyense in burnt vegetation. Understanding how these fire‐driven changes in the initial fate of myrmecochorous seeds affect plant fitness requires further investigation.  相似文献   

18.
Fire is both inevitable and necessary for maintaining the structure and functioning of mesic savannas. Without disturbances such as fire and herbivory, tree cover can increase at the expense of grass cover and over time dominate mesic savannas. Consequently, repeated burning is widely used to suppress tree recruitment and control bush encroachment. However, the effect of regular burning on invasion by alien plant species is little understood. Here, vegetation data from a long-term fire experiment, which began in 1953 in a mesic Zimbabwean savanna, were used to test whether the frequency of burning promoted alien plant invasion. The fire treatments consisted of late season fires, lit at 1-, 2-, 3-, and 4-year intervals, and these regularly burnt plots were compared with unburnt plots. Results show that over half a century of frequent burning promoted the invasion by alien plants relative to areas where fire was excluded. More alien plant species became established in plots that had a higher frequency of burning. The proportion of alien species in the species assemblage was highest in the annually burnt plots followed by plots burnt biennially. Alien plant invasion was lowest in plots protected from fire but did not differ significantly between plots burnt triennially and quadrennially. Further, the abundance of five alien forbs increased significantly as the interval (in years) between fires became shorter. On average, the density of these alien forbs in annually burnt plots was at least ten times as high as the density of unburnt plots. Plant diversity was also altered by long-term burning. Total plant species richness was significantly lower in the unburnt plots compared to regularly burnt plots. These findings suggest that frequent burning of mesic savannas enhances invasion by alien plants, with short intervals between fires favouring alien forbs. Therefore, reducing the frequency of burning may be a key to minimising the risk of alien plant spread into mesic savannas, which is important because invasive plants pose a threat to native biodiversity and may alter savanna functioning.  相似文献   

19.

Fire is a key factor triggering ecological processes in old-growth grasslands and savannas and could have strong implications for reproduction via seeds for the herbaceous layer. In the Neotropical savannas, grasses show strong synchronous post-fire flowering, and their reproduction is often considered fire-dependent, with their massive post-fire seed production being suggested as a source of population maintenance. However, literature lacks studies to provide evidence of fire-dependent flowering and no study has assessed the quality of the post-fire seed production. Therefore, we aimed to describe a phenological pattern across early-flowering Neotropical savanna grasses in both recently burnt and unburnt cerrado communities addressing three questions: (1) Do the early-flowering species rely on fire for reproduction via seeds? (2) If no, what are the effects of fire on their reproductive phenology? (3) Does the massive seed production in post-fire cerrado communities lead to high-quality seeds? We recorded the reproductive phenology of nine early-flowering grasses for 17 weeks in unburnt and recently burnt cerrado communities. We collected the seeds, estimated the production of fertile seeds, and tested germination. No species showed a pattern of fire-dependent reproduction. Fire stimulated earlier flowering while reproduction in the unburnt community was related to continuous rainfall. Seed production following fire was of low quality, and no species produced?>?7% fertile seeds. Seed germination remained below 50% for most species. Post-fire seed production of early-flowering species led to poor seed quality, suggesting a constraint to the recruitment of new individuals of early-flowering Neotropical savanna grasses in recently burnt cerrados.

  相似文献   

20.
Aim Fire is a key agent in savanna systems, yet the capacity to predict fine‐grained population phenomena under variable fire regime conditions at landscape scales is a daunting challenge. Given mounting evidence for significant impacts of fire on vulnerable biodiversity elements in north Australian savannas over recent decades, we assess: (1) the trajectory of fire‐sensitive vegetation elements within a particularly biodiverse savanna mosaic based on long‐term monitoring and spatial modelling; (2) the broader implications for northern Australia; and (3) the applicability of the methodological approach to other fire‐prone settings. Location Arnhem Plateau, northern Australia. Methods We apply data from long‐term vegetation monitoring plots included within Kakadu National Park to derive statistical models describing the responses of structure and floristic attributes to 15 years of ambient (non‐experimental) fire regime treatments. For a broader 28,000 km2 region, we apply significant models to spatial assessment of the effects of modern fire regimes (1995–2009) on diagnostic closed forest, savanna and shrubland heath attributes. Results Significant models included the effects of severe fires on large stems of the closed forest dominant Allosyncarpia ternata, stem densities of the widespread savanna coniferous obligate seeder Callitris intratropica, and fire frequency and related fire interval parameters on numbers of obligate seeder taxa characteristic of shrubland heaths. No significant relationships were observed between fire regime and eucalypt and non‐eucalypt adult tree components of savanna. Spatial application of significant models illustrates that more than half of the regional closed forest perimeters, savanna and shrubland habitats experienced deleterious fire regimes over the study period, except in very dissected terrain. Main conclusions While north Australia’s relatively unmodified mesic savannas may appear structurally intact and healthy, this study provides compelling evidence that fire‐sensitive vegetation elements embedded within the savanna mosaic are in decline under present‐day fire regimes. These observations have broader implications for analogous savanna mosaics across northern Australia, and support complementary findings of the contributory role of fire regimes in the demise of small mammal fauna. The methodological approach has application in other fire‐prone settings, but is reliant on significant long‐term infrastructure resourcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号