首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropospheric ozone (O3) is a harmful air pollutant that can negatively impact plant growth and development. Current O3 concentrations ([O3]) decrease forest productivity and crop yields and future [O3] will likely increase if current emission rates continue. However, the specific effects of elevated [O3] on reproductive development, a critical stage in the plant's lifecycle, have not been quantitatively reviewed. Data from 128 peer‐reviewed articles published from 1968 to 2010 describing the effects of O3 on reproductive growth and development were analysed using meta‐analytic techniques. Studies were categorized based on experimental conditions, photosynthetic type, lifecycle, growth habit and flowering class. Current ambient [O3] significantly decreased seed number (?16%), fruit number (?9%) and fruit weight (?22%) compared to charcoal‐filtered air. In addition, pollen germination and tube growth were decreased by elevated [O3] compared to charcoal‐filtered air. Relative to ambient air, fumigation with [O3] between 70 and 100 ppb decreased yield by 27% and individual seed weight by 18%. Reproductive development of both C3 and C4 plants was sensitive to elevated [O3], and lifecycle, flowering class and reproductive growth habit did not significantly affect a plant's response to elevated [O3] for many components of reproductive development. However, elevated [O3] decreased fruit weight and fruit number significantly in indeterminate plants, and had no effect on these parameters in determinate plants. While gaps in knowledge remain about the effects of O3 on plants with different growth habits, reproductive strategies and photosynthetic types, the evidence strongly suggests that detrimental effects of O3 on reproductive growth and development are compromising current crop yields and the fitness of native plant species.  相似文献   

2.
The northern hemisphere temperate and boreal forests currently provide an important carbon sink; however, current tropospheric ozone concentrations ([O3]) and [O3] projected for later this century are damaging to trees and have the potential to reduce the carbon sink strength of these forests. This meta‐analysis estimated the magnitude of the impacts of current [O3] and future [O3] on the biomass, growth, physiology and biochemistry of trees representative of northern hemisphere forests. Current ambient [O3] (40 ppb on average) significantly reduced the total biomass of trees by 7% compared with trees grown in charcoal‐filtered (CF) controls, which approximate preindustrial [O3]. Above‐ and belowground productivity were equally affected by ambient [O3] in these studies. Elevated [O3] of 64 ppb reduced total biomass by 11% compared with trees grown at ambient [O3] while elevated [O3] of 97 ppb reduced total biomass of trees by 17% compared with CF controls. The root‐to‐shoot ratio was significantly reduced by elevated [O3] indicating greater sensitivity of root biomass to [O3]. At elevated [O3], trees had significant reductions in leaf area, Rubisco content and chlorophyll content which may underlie significant reductions in photosynthetic capacity. Trees also had lower transpiration rates, and were shorter in height and had reduced diameter when grown at elevated [O3]. Further, at elevated [O3], gymnosperms were significantly less sensitive than angiosperms. There were too few observations of the interaction of [O3] with elevated [CO2] and drought to conclusively project how these climate change factors will alter tree responses to [O3]. Taken together, these results demonstrate that the carbon‐sink strength of northern hemisphere forests is likely reduced by current [O3] and will be further reduced in future if [O3] rises. This implies that a key carbon sink currently offsetting a significant portion of global fossil fuel CO2 emissions could be diminished or lost in the future.  相似文献   

3.
Increased biomass and yield of plants grown under elevated [CO2] often corresponds to decreased grain N concentration ([N]), diminishing nutritional quality of crops. Legumes through their symbiotic N2 fixation may be better able to maintain biomass [N] and grain [N] under elevated [CO2], provided N2 fixation is stimulated by elevated [CO2] in line with growth and yield. In Mediterranean‐type agroecosystems, N2 fixation may be impaired by drought, and it is unclear whether elevated [CO2] stimulation of N2 fixation can overcome this impact in dry years. To address this question, we grew lentil under two [CO2] (ambient ~400 ppm and elevated ~550 ppm) levels in a free‐air CO2 enrichment facility over two growing seasons sharply contrasting in rainfall. Elevated [CO2] stimulated N2 fixation through greater nodule number (+27%), mass (+18%), and specific fixation activity (+17%), and this stimulation was greater in the high than in the low rainfall/dry season. Elevated [CO2] depressed grain [N] (?4%) in the dry season. In contrast, grain [N] increased (+3%) in the high rainfall season under elevated [CO2], as a consequence of greater post‐flowering N2 fixation. Our results suggest that the benefit for N2 fixation from elevated [CO2] is high as long as there is enough soil water to continue N2 fixation during grain filling.  相似文献   

4.
Spring wheat (Triticum aestivum L. cv. Dragon) was exposed to elevated carbon dioxide (CO2), alone (1995) or in combination with two levels of increased ozone (O3) (1994) or increased irrigation (1996) during three successive growing seasons as part of the EU ESPACE‐wheat programme and conducted in open‐top chambers (OTCs) and ambient air (AA) plots at Östad, 50 km north‐east of Göteborg, Sweden. Doubling the CO2 concentration had a positive effect on grain yield in all 3 years (+21, +7 and +11%, respectively), although only statistically significant in 1994. That year was characterised by a warm and dry summer in comparison with 1995 and 1996, in which the summers were more humid and typical for south‐west Sweden. In 1994, the CO2‐induced increase in grain yield was associated with an increase in the duration of the green leaf area, a positive effect on straw yield and on the number of ears per square metre and a negative effect (?13%) on grain protein concentration. Harvest index was unaffected by the elevated CO2 concentration. The only statistically significant effect of elevated CO2 in 1995 was a decrease in the grain protein concentration (?11% in both CO2 concentrations), and in 1996 an increase (+21%) in the straw yield. In 1996 the soil water potential was less negative in elevated CO2, which is likely to reflect a lower water consumption of these plants. Addition of extra O3 significantly affected the grain yield (?6 and ?10%, respectively) and the 1 000‐grain weight negatively (?3 and ?6%). Statistically significant interactions between CO2 and O3 were obtained for the number of ears per unit area and for the 1 000‐grain weight. The 1 000‐grain weight was negatively affected by O3 in low CO2, but remained unaffected in the high CO2 treatment. There was a significant decrease (?6%) in the grain protein concentration induced by elevated irrigation. The chambers, compared with AA plots, had a positive effect on plant development and on grain yield in all 3 years.  相似文献   

5.
Tropospheric O3 reduces growth and yield of many crop species, whereas CO2 ameliorates the negative effects of O3. Thus, in a combined elevated CO2 and O3 atmosphere, seed yield is at least restored to that of charcoal‐filtered (CF) air at ambient CO2. The CO2‐induced yield increase in CF air is highly variable, suggesting other potential resource limitations. To understand such variability in response, we tested that (1) competition for resources precludes some of the CO2 enhancement on biomass and yield; and (2) O3 reduces competition in elevated CO2. We grew rice (Oryza sativa L.) at five densities in CF and O3‐fumigated (+O3) air at ambient (A) and elevated [CO2] (+CO2) in 1997 and 1998. O3 reduced biomass by 25% and seed yield by 13–20% in A, but had little effect in +CO2. A competition model of biomass and yield response to density based on resource availability without competition showed that fewer resources were used for biomass in +O3 than in CF (average 53% vs. 70%) in A, while in +CO2 85% of resources were used for biomass regardless of O3 suggesting greater depletion of resources. The enhanced biomass response to CO2 with O3 is consistent with a 22% greater CO2 enhancement ratio [mass in +CO2 air/mass in A air; enhancement ratio (ER)] in +O3 than in CF air. For seed yield, few resources were used (average 17% and 25% for CF in 1997 and 1998, respectively), and ER was 13% greater in +O3. With competition the rate of change of individual plant biomass to density was not affected by +CO2 in CF air in 1997 but was increased 19% with more nutrients in 1998, indicating resource limitations with +CO2. The rate of change of individual plant yield to density was reduced with CO2 in 1997 and unchanged in 1998 showing a different response to resource limitation for reproductive biomass. The resource use in +O3‐A suggested that increased density and soil fertility might compensate for pollutant damage. Although ambient [O3] can modulate the response to elevated CO2, resource limitation precludes the CO2 fertilization impact and both factors need consideration for better management and forecasts of future productivity.  相似文献   

6.
To investigate the effects of ozone on winter wheat and flixweed under competition, two species were exposed to ambient, elevated and high [O3] for 30 days, planted singly or in mixculture. Eco-physiological responses were examined at different [O3] and fumigating time. Ozone reduced the contents of chlorophyll, increased the accumulation of H2O2 and malondialdehyde in both wheat and flixweed. The effects of competition on chlorophyll content of wheat emerged at elevated and high [O3], while that of flixweed emerged only at high [O3]. The increase of H2O2 and malondialdehyde of flixweed was less than that of wheat under the same condition. Antioxidant enzyme activities of wheat and flixweed were seriously depressed by perennial and serious treatment using O3. However, short-term and moderate fumigation increased the activities of SOD and POD of wheat, and CAT of flixweed. The expression levels of antioxidant enzymes related genes provided explanation for these results. Furthermore, the increase of CAT expression of flixweed was much higher than that of SOD and POD expression of wheat. Ozone and competition resulted in significant reductions in biomass and grain yield in both winter wheat and flixweed. However, the negative effects on flixweed were less than wheat. Our results demonstrated that winter wheat is more sensitive to O3 and competition than flixweed, providing valuable data for further investigation on responses of winter wheat to ozone pollution, in particular combined with species competition.  相似文献   

7.

Purpose

This study investigated the residual contribution of legume and fertilizer nitrogen (N) to a subsequent crop under the effect of elevated carbon dioxide concentration ([CO2]).

Methods

Field pea (Pisum sativum L.) was labeled in situ with 15N (by absorption of a 15N-labeled urea solution through cut tendrils) under ambient and elevated (700 μmol mol–1) [CO2] in controlled environment glasshouse chambers. Barley (Hordeum vulgare L.) and its soil were also labeled under the same conditions by addition of 15N-enriched urea to the soil. Wheat (Triticum aestivum L.) was subsequently grown to physiological maturity on the soil containing either 15N-labeled field pea residues (including 15N-labeled rhizodeposits) or 15N-labeled barley plus fertilizer 15N residues.

Results

Elevated [CO2] increased the total biomass of field pea (21 %) and N-fertilized barley (23 %), but did not significantly affect the biomass of unfertilized barley. Elevated [CO2] increased the C:N ratio of residues of field pea (18 %) and N-fertilized barley (19 %), but had no significant effect on that of unfertilized barley. Elevated [CO2] increased total biomass (11 %) and grain yield (40 %) of subsequent wheat crop regardless of rotation type in the first phase. Irrespective of [CO2], the grain yield and total N uptake by wheat following field pea were 24 % and 11 %, respectively, higher than those of the wheat following N-fertilized barley. The residual N contribution from field pea to wheat was 20 % under ambient [CO2], but dropped to 11 % under elevated [CO2], while that from fertilizer did not differ significantly between ambient [CO2] (4 %) and elevated [CO2] (5 %).

Conclusions

The relative value of legume derived N to subsequent cereals may be reduced under elevated [CO2]. However, compared to N fertilizer application, legume incorporation will be more beneficial to grain yield and N supply to subsequent cereals under future (elevated [CO2]) climates.  相似文献   

8.
The response of wheat to the variables of climate change includes elevated CO2, high temperature, and drought which vary according to the levels of each variable and genotype. Independently, elevated CO2, high temperature, and terminal drought affect wheat biomass and grain yield, but the interactive effects of these three variables are not well known. The aim of this study was to determine the effects of elevated CO2 when combined with high temperature and terminal drought on the high‐yielding traits of restricted‐tillering and vigorous growth. It was hypothesized that elevated CO2 alone, rather than combined with high temperature, ameliorates the effects of terminal drought on wheat biomass and grain yield. It was also hypothesized that wheat genotypes with more sink capacity (e.g. high‐tillering capacity and leaf area) have more grain yield under combined elevated CO2, high temperature, and terminal drought. Two pairs of sister lines with contrasting tillering and vigorous growth were grown in poly‐tunnels in a four‐factor completely randomized split‐plot design with elevated CO2 (700 µL L?1), high day time temperature (3 °C above ambient), and drought (induced from anthesis) in all combinations to test whether elevated CO2 ameliorates the effects of high temperature and terminal drought on biomass accumulation and grain yield. For biomass and grain yield, only main effects for climate change variables were significant. Elevated CO2 significantly increased grain yield by 24–35% in all four lines and terminal drought significantly reduced grain yield by 16–17% in all four lines, while high temperature (3 °C above the ambient) had no significant effect. A trade‐off between yield components limited grain yield in lines with greater sink capacity (free‐tillering lines). This response suggests that any positive response to predicted changes in climate will not overcome the limitations imposed by the trade‐off in yield components.  相似文献   

9.

Background and purpose

Rapid increases in atmospheric carbon dioxide concentration ([CO2]) may increase crop residue production and carbon: nitrogen (C:N) ratio. Whether the incorporation of residues produced under elevated [CO2] will limit soil N availability and fertilizer N recovery in the plant is unknown. This study investigated the interaction between crop residue incorporation and elevated [CO2] on the growth, grain yield and the recovery of 15N-labeled fertilizer by wheat (Triticum aestivum L. cv. Yitpi) under controlled environmental conditions.

Methods

Residue for ambient and elevated [CO2] treatments, obtained from wheat grown previously under ambient and elevated [CO2], respectively, was incorporated into two soils (from a cereal-legume rotation and a cereal-fallow rotation) 1 month before the sowing of wheat. At the early vegetative stage 15N-labeled granular urea (10.22 atom%) was applied at 50 kg?N ha?1 and the wheat grown to maturity.

Results

When residue was not incorporated into the soil, elevated [CO2] increased wheat shoot (16 %) and root biomass (41 %), grain yield (19 %), total N uptake (4 %) and grain N removal (8 %). However, the positive [CO2] fertilization effect on these parameters was absent in the soil amended with residue. In the absence of residue, elevated [CO2] increased fertilizer N recovery in the plant (7 %), but when residue was incorporated elevated [CO2] decreased fertilizer N recovery.

Conclusions

A higher fertilizer application rate will be required under future elevated [CO2] atmospheres to replenish the extra N removed in grains from cropping systems if no residue is incorporated, or to facilitate the [CO2] fertilization effect on grain yield by overcoming N immobilization resulting from residue amendment.  相似文献   

10.
Exposure to elevated tropospheric ozone concentration ([O3]) accelerates leaf senescence in many C3 crops. However, the effects of elevated [O3] on C4 crops including maize (Zea mays L.) are poorly understood in terms of physiological mechanism and genetic variation in sensitivity. Using free air gas concentration enrichment, we investigated the photosynthetic response of 18 diverse maize inbred and hybrid lines to season‐long exposure to elevated [O3] (~100 nl L?1) in the field. Gas exchange was measured on the leaf subtending the ear throughout the grain filling period. On average over the lifetime of the leaf, elevated [O3] led to reductions in photosynthetic CO2 assimilation of both inbred (?22%) and hybrid (?33%) genotypes. There was significant variation among both inbred and hybrid lines in the sensitivity of photosynthesis to elevated [O3], with some lines showing no change in photosynthesis at elevated [O3]. Based on analysis of inbred line B73, the reduced CO2 assimilation at elevated [O3] was associated with accelerated senescence decreasing photosynthetic capacity and not altered stomatal limitation. These findings across diverse maize genotypes could advance the development of more O3 tolerant maize and provide experimental data for parameterization and validation of studies modeling how O3 impacts crop performance.  相似文献   

11.
Few investigations have been made on the impact of elevated ozone (O3) concentration on methane (CH4) emission from rice paddies. Using open‐top chambers in situ with different O3 treatments, CH4 emissions were measured in a rice paddy in Yangtze River Delta, China in 2007 and 2008. There were four treatments applied: charcoal‐filtered air (CF), nonfiltered air (NF), and charcoal‐filtered air with different O3 additions (O3‐1 and O3‐2). The mean O3 concentrations during the O3 fumigation were 19.7, 22.6, 69.6 and 118.6 ppb in 2007 and 7.0, 17.4, 82.2 and 138.3 ppb in 2008 for treatments CF, NF, O3‐1 and O3‐2, respectively. The rice yields, as compared with CF, were reduced by 32.8% and 37.1%, 58.3% and 52.1% in treatments O3‐1 and O3‐2 in 2007 and 2008, respectively. The diurnal patterns of CH4 emission varied temporally with treatments and there was inconsistence in diurnal variations in CH4 emissions from the paddy field. The daily mean CH4 emissions were significantly lower in treatments O3‐1 and O3‐2 than those in treatments CF and NF. Compared with CF treatment, CH4 emissions from the paddy field were decreased to 46.5% and 38.3%, 50.6% and 46.8% under treatments O3‐1 and O3‐2 in the whole growing seasons of 2007 and 2008, respectively. The seasonal mean CH4 emissions were negatively related with AOT40 (accumulative O3 concentration above 40 ppb; P < 0.01 in both years), but positively related to the relative rice yield (reference to CF; P < 0.01 in 2007 and P < 0.001 in 2008), aboveground biomass (P < 0.01 in both years) and underground biomass (P < 0.01 in 2007 and P < 0.05 in 2008). The decreased CH4 emission from the rice paddy due to an increased O3 exposure might partially mitigate the global warming potential induced by soil carbon loss under elevated O3 concentrations.  相似文献   

12.
The objective of this study was to test whether elevated [CO2], [O3] and nitrogen (N) fertility altered leaf mass per area (LMPA), non‐structural carbohydrate (TNC), N, lignin (LTGA) and proanthocyanidin (PA) concentrations in cotton (Gossypium hirsutum L.) leaves and roots. Cotton was grown in 14 dm3 pots with either sufficient (0·8 g N dm ? 3) or deficient (0·4 and 0·2 g N dm ? 3) N fertilization, and treated in open‐top chambers with either ambient or elevated ( + 175 and + 350 μ mol mol ? 1) [CO2] in combination with either charcoal‐filtered air (CF) or non‐filtered air plus 1·5 times ambient [O3]. At about 50 d after planting, LMPA, starch and PA concentrations in canopy leaves were as much as 51–72% higher in plants treated with elevated [CO2] compared with plants treated with ambient [CO2], whereas leaf N concentration was 29% lower in elevated [CO2]‐treated plants compared with controls. None of the treatments had a major effect on LTGA concentrations on a TNC‐free mass basis. LMPA and starch levels were up to 48% lower in plants treated with elevated [O3] and ambient [CO2] compared with CF controls, although the elevated [O3] effect was diminished when plants were treated concurrently with elevated [CO2]. On a total mass basis, leaf N and PA concentrations were higher in samples treated with elevated [O3] in ambient [CO2], but the difference was much reduced by elevated [CO2]. On a TNC‐free basis, however, elevated [O3] had little effect on tissue N and PA concentrations. Fertilization treatments resulted in higher PA and lower N concentrations in tissues from the deficient N fertility treatments. The experiment showed that suppression by elevated [O3] of LMPA and starch was largely prevented by elevated [CO2], and that interpretation of [CO2] and [O3] effects should include comparisons on a TNC‐free basis. Overall, the experiment indicated that allocation to starch and PA may be related to how environmental factors affect source–sink relationships in plants, although the effects of elevated [O3] on secondary metabolites differed in this respect.  相似文献   

13.
Although it is established that there exist potential trade‐offs between grain yield and grain quality in wheat exposed to elevated carbon dioxide (CO2) and ozone (O3), their underlying causes remain poorly explored. To investigate the processes affecting grain quality under altered CO2 and O3, we analysed 57 experiments with CO2 or O3 exposure in different exposure systems. The study covered 24 cultivars studied in 112 experimental treatments from 11 countries. A significant growth dilution effect on grain protein was found: a change in grain yield of 10% by O3 was associated with a change in grain protein yield of 8.1% (R2 = 0.96), whereas a change in yield effect of 10% by CO2 was linked to a change in grain protein yield effect of 7.5% (R2 = 0.74). Superimposed on this effect, elevated CO2, but not O3, had a significant negative effect on grain protein yield also in the absence of effects on grain yield, indicating that there exists a process by which CO2 restricts grain protein accumulation, which is absent for O3. Grain mass, another quality trait, was more strongly affected by O3 than grain number, whereas the opposite was true for CO2. Harvest index was strongly and negatively influenced by O3, but was unaffected by CO2. We conclude that yield vs. protein trade‐offs for wheat in response to CO2 and O3 are constrained by close relationships between effects on grain biomass and less than proportional effects on grain protein. An important and novel finding was that elevated CO2 has a direct negative effect on grain protein accumulation independent of the yield effect, supporting recent evidence of CO2‐induced impairment of nitrate uptake/assimilation. Finally, our results demonstrated that processes underlying responses of grain yield vs. quality trade‐offs are very different in wheat exposed to elevated O3 compared with elevated CO2.  相似文献   

14.
Will elevated CO2 concentrations protect the yield of wheat from O3 damage?   总被引:4,自引:2,他引:2  
This study investigated the interacting effects of carbon dioxide and ozone concentrations on the growth and yield of spring whet (Triticum aestivum L. cv. Wembley). Plants were exposed from time of sowing to harvest to reciprocal combinations of two carbon dioxide and two ozone treatments: [CO2] at 350 or 700 μmol mol?1, and [O3] at < 5 or 60 nmol mol?1. Records of leaf emergence, leaf duration and tillering were taken throughout leaf development. At harvest, biomass, yield and partitioning were analysed. Our data showed that elevated [CO2] fully protected against the detrimental effect of elevated [O3] on biomass, but not yield.  相似文献   

15.
Ozone (O3) concentrations in periurban areas in East Asia are sufficiently high to decrease crop yield. However, little is known about the genotypic differences in O3 sensitivity in winter wheat in relation to year of cultivar release. This paper reports genotypic variations in O3 sensitivity in 20 winter wheat cultivars released over the past 60 years in China highlighting O3‐induced mechanisms. Wheat plants were exposed to elevated O3 (82 ppb O3, 7 h day?1) or charcoal‐filtered air (<5 ppb O3) for 21 days in open top chambers. Responses to O3 were assessed by the levels of antioxidative activities, protein alteration, membrane lipid peroxidation, gas exchange, leaf chlorophyll, dark respiration and growth. We found that O3 significantly reduced foliar ascorbate (?14%) and soluble protein (?22%), but increased peroxidase activity (+46%) and malondialdehyde (+38%). Elevated O3 depressed light saturated net photosynthetic rate (?24%), stomatal conductance (?8%) and total chlorophyll (?11%), while stimulated dark respiration (+28%) and intercellular CO2 concentration (+39%). O3 also reduced overall plant growth, but to a greater extent in root (?32%) than in shoot (?17%) biomass. There was significant genotypic variation in potential sensitivity to O3 that did not correlate to observed O3 tolerance. Sensitivity to O3 in cultivars of winter wheat progressed with year of release and correlated with stomatal conductance and dark respiration in O3‐exposed plants. O3‐induced loss in photosynthetic rate was attributed primarily to impaired activity of mesophyll cells and loss of integrity of cellular membrane as evidenced by increased intercellular CO2 concentration and lipid peroxidation. Our findings demonstrated that higher sensitivity to O3 in the more recently released cultivars was induced by higher stomatal conductance, larger reduction in antioxidative capacity and lower levels of dark respiration leading to higher oxidative damage to proteins and integrity of cellular membranes.  相似文献   

16.
Crops losses to tropospheric ozone (O3) in the United States are estimated to cost $1–3 billion annually. This challenge is expected to increase as O3 concentrations ([O3]) rise over the next half century. This study tested the hypothesis that there is cultivar variation in the antioxidant, photosynthetic and yield response of soybean to growth at elevated [O3]. Ten cultivars of soybean were grown at elevated [O3] from germination through maturity at the Soybean Free Air Concentration Enrichment facility in 2007 and six were grown in 2008. Photosynthetic gas exchange, leaf area index, chlorophyll content, fluorescence and antioxidant capacity were monitored during the growing seasons in order to determine if changes in these parameters could be used to predict the sensitivity of seed yield to elevated [O3]. Doubling background [O3] decreased soybean yields by 17%, but the variation in response among cultivars and years ranged from 8 to 37%. Chlorophyll content and photosynthetic parameters were positively correlated with seed yield, while antioxidant capacity was negatively correlated with photosynthesis and seed yield, suggesting a trade‐off between antioxidant metabolism and carbon gain. Exposure response curves indicate that there has not been a significant improvement in soybean tolerance to [O3] in the past 30 years.  相似文献   

17.
Rising air temperatures are projected to reduce rice yield and quality, whereas increasing atmospheric CO2 concentrations ([CO2]) can increase grain yield. For irrigated rice, ponded water is an important temperature environment, but few open‐field evaluations are available on the combined effects of temperature and [CO2], which limits our ability to predict future rice production. We conducted free‐air CO2 enrichment and soil and water warming experiments, for three growing seasons to determine the yield and quality response to elevated [CO2] (+200 μmol mol?1, E‐[CO2]) and soil and water temperatures (+2 °C, E‐T). E‐[CO2] significantly increased biomass and grain yield by approximately 14% averaged over 3 years, mainly because of increased panicle and spikelet density. E‐T significantly increased biomass but had no significant effect on the grain yield. E‐T decreased days from transplanting to heading by approximately 1%, but days to the maximum tiller number (MTN) stage were reduced by approximately 8%, which limited the panicle density and therefore sink capacity. On the other hand, E‐[CO2] increased days to the MTN stage by approximately 4%, leading to a greater number of tillers. Grain appearance quality was decreased by both treatments, but E‐[CO2] showed a much larger effect than did E‐T. The significant decrease in undamaged grains (UDG) by E‐[CO2] was mainly the result of an increased percentage of white‐base grains (WBSG), which were negatively correlated with grain protein content. A significant decrease in grain protein content by E‐[CO2] accounted in part for the increased WBSG. The dependence of WBSG on grain protein content, however, was different among years; the slope and intercept of the relationship were positively correlated with a heat dose above 26 °C. Year‐to‐year variation in the response of grain appearance quality demonstrated that E‐[CO2] and rising air temperatures synergistically reduce grain appearance quality of rice.  相似文献   

18.
Effects of elevated carbon dioxide (CO2) and ozone (O3) on wood properties of two initially 7‐year‐old silver birch (Betula pendula Roth) clones were studied after a fumigation during three growing seasons. Forty trees, representing two fast‐growing clones (4 and 80), were exposed in open‐top chambers to the following treatments: outside control, chamber control, 2 × ambient [CO2], 2 × ambient [O3] and 2 × ambient [CO2]+2 × ambient [O3]. After the 3‐year exposure, the trees were felled and wood properties were analyzed. The treatments affected both stem wood structure and chemistry. Elevated [CO2] increased annual ring width, and concentrations of extractives and starch, and decreased concentrations of cellulose and gravimetric lignin. Elevated O3 decreased vessel percentage and increased cell wall percentage in clone 80. In vessel percentage, elevated CO2 ameliorated the O3‐induced decrease. In clone 4, elevated O3 decreased nitrogen concentration of wood. The two clones had different wood properties. In clone 4, the concentrations of extractives, starch, soluble sugars and nitrogen were greater than in clone 80, while in clone 80 the concentrations of cellulose and acid‐soluble lignin were higher. Clone 4 also had slightly longer fibres, greater vessel lumen diameter and vessel percentage than clone 80, while in clone 80 cell wall percentage was greater. Our results show that wood properties of young silver birch trees were altered under elevated CO2 in both clones, whereas the effects of O3 depended on clone.  相似文献   

19.
为揭示高浓度O3对冬小麦籽粒发育和干物质累积的影响,通过OTC设置了活性碳过滤空气(CF,4—28 n L/L)、不通风(5H,15—68 n L/L)、环境空气(NF,7—78 n L/L)、100n L/L O3(CF100,96—108 n L/L)和150n L/L O3(CF150,145—160n L/L)等5种O3熏蒸处理,测量了籽粒干物质累积、光合色素含量及果皮的叶绿素荧光特性(IMAGING-PAM)。结果显示,CF100和CF150处理显著降低了冬小麦籽粒的长度、最大宽度、最大厚度、10粒体积、穗粒数、灌浆持续时间和灌浆高峰结束前的平均灌浆速率,其千粒重在整个灌浆过程中均显著低于NF,收获时分别下降了10.7%和17.8%;CF100和CF150的光合色素含量在扬花后8—16d内显著高于其余3组(伴随着较强的光合能力),扬花16d后迅速下降18d后差异达到显著水平。穗粒重下降的主要原因是籽粒体积缩小、灌浆持续时间缩短和穗粒数下降;高浓度O3在灌浆前期延缓了冬小麦的生育进度,在灌浆后期使得植株迅速衰老,灌浆持续时间大幅缩短;籽粒果皮的最大光合能力在灌浆初期受到一定抑制,在灌浆中期表现出较好的适应性,在中后期由于籽粒衰老提前而迅速下降。高浓度O3条件下,果皮绿色层在籽粒干物质累积和营养物合成过程中发挥着更加重要的作用。  相似文献   

20.
The Intergovernmental Panel on Climate Change projects that atmospheric [CO2] will reach 550 ppm by 2050. Numerous assessments of plant response to elevated [CO2] have been conducted in chambers and enclosures, with only a few studies reporting responses in fully open‐air, field conditions. Reported yields for the world's two major grain crops, wheat and rice, are substantially lower in free‐air CO2 enrichment (FACE) than predicted from similar elevated [CO2] experiments within chambers. This discrepancy has major implications for forecasting future global food supply. Globally, the leguminous‐crop soybean (Glycine max (L.) Merr.) is planted on more land than any other dicotyledonous crop. Previous studies have shown that total dry mass production increased on average 37% in response to increasing [CO2] to approximately 700 ppm, but harvestable yield will increase only 24%. Is this representative of soybean responses under open‐air field conditions? The effects of elevation of [CO2] to 550 ppm on total production, partitioning and yield of soybean over 3 years are reported. This is the first FACE study of soybean ( http://www.soyface.uiuc.edu ) and the first on crops in the Midwest of North America, one of the major food production regions of the globe. Although increases in both aboveground net primary production (17–18%) and yield (15%) were consistent across three growing seasons and two cultivars, the relative stimulation was less than projected from previous chamber experiments. As in previous studies, partitioning to seed dry mass decreased; however, net production during vegetative growth did not increase and crop maturation was delayed, not accelerated as previously reported. These results suggest that chamber studies may have over‐estimated the stimulatory effect of rising [CO2], with important implications on global food supply forecasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号