首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have been interested in how Rous sarcoma virus (RSV) influences transformed cell morphology and compared the molecular properties of chicken embryo cells (CEC) infected with mutants of RSV that induce the fusiform transformed cell morphology with those of CEC infected by wild-type RSV, which induces the more normal round transformed cell morphology. We looked for properties shared by all fusiform mutant-infected cells, because these may be responsible for maintaining the fusiform morphology. Five different fusiform mutants, two wild-type RSVs, and one wild-type back revertant of a fusiform mutant were studied. In the fusiform mutant-infected cells, the localization and myristylation of pp60src were determined and the extent of expression of the extracellular matrix protein fibronectin was examined at both the mRNA and protein levels. The phosphorylation of vinculin on tyrosine also was examined in the same CEC. Within all fusiform mutant-transformed CEC, pp60src was dramatically absent from the adhesion plaque sites normally seen in cells transformed with wild-type RSV, and these transformed CEC all expressed more fibronectin mRNA and protein in the extracellular matrix than did the wild-type RSV-transformed CEC. The absence of pp60src from the adhesion plaques was not due to lack of myristylation of the src protein, and tyrosine phosphorylation of vinculin was not related to fibronectin expression. These results suggest that the inverse relationship between pp60src in the adhesion plaques and fibronectin expression in the extracellular matrix may be interconnected phenomena and could be related to the maintenance of the fusiform transformed morphology.  相似文献   

2.
The mechanism by which Rous sarcoma virus (RSV) induces a reorganization of actin and its associated proteins and a reduction in microfilament bundles is at present poorly understood. To examine the relationship between the organization of the microfilament system and the polymerization state of actin after transformation, we have investigated these changes in a Rat-1 cell line transformed by LA29, a temperature-sensitive (ts) mutant of RSV. Parallel immunofluorescence and biochemical analysis demonstrated that LA29 pp60v-src was ts for tyrosine kinase activity and cytoskeletal association. Changes in the distribution and organization of actin, alpha-actinin and vinculin were dependent on the association of a kinase-active pp60v-src molecule with the detergent-insoluble cytoskeleton. Whilst there was a transformation-dependent loss of microfilament bundles, biochemical quantitation demonstrated that the polymerization state of the actin in both detergent-soluble and insoluble fractions of these cells grown at temperatures either permissive or restrictive for transformation was quantitatively unchanged. These results indicate that the loss of microfilament bundles after transformation is not due to a net depolymerization of filamentous actin but rather to a reorganization of polymeric actin from microfilament bundles and stress fibers to other polymeric forms within the cell. The polymeric nature of the actin in these cells was confirmed by electron microscopy of cytoskeletons and substrate-adherent membranes.  相似文献   

3.
Rous sarcoma virus (RSV)-induced transformation is mediated by the action of the viral src gene product pp60src. This transforming protein is found at several cytoplasmic locations, including the adhesion plaques of RSV-transformed cells. In these studies, we have focused on the adhesion plaque location of pp60src and determined whether any of the induced transformation parameters correlate with the presence of pp60src in the adhesion plaques. A series of partial transformation mutants of RSV that induce distinct transformation phenotypes were used, and infected chicken embryo cells were examined for (i) intracellular pp60src location, (ii) vinculin localization, (iii) abundance of phosphotyrosine on vinculin, (iv) integrity of stress fibers, and (v) expression of cell surface fibronectin. The results indicate that, among the limited number of mutants studied here, the presence of pp60src in adhesion plaques is independent of growth in soft agar and the increased phosphorylation of vinculin on tyrosine, but it does correlate with the loss of cell surface fibronectin. An elevated abundance of phosphotyrosine on vinculin is insufficient to cause stress fiber dissolution and is independent of the loss of fibronectin from the extracellular matrix. However, the increased relative amount of phosphotyrosine on vinculin is related to the ability of the cells to grow in soft agar. The adhesion plaque binding and tyrosine-specific kinase activities seem to represent two independent functions of pp60src.  相似文献   

4.
5.
Phosphotyrosine antibodies were used to identify tyrosine-phosphorylated proteins in Rous sarcoma virus (RSV)-transformed chicken embryo fibroblasts. A large number of tyrosine phosphoproteins were detected. A similar set of proteins was observed in RSV-transformed murine cells. An 85,000-dalton protein, however, was present in transformed avian cells but missing in transformed murine cells. Neither the 85,000-dalton protein nor any of the other tyrosine phosphoproteins appeared to be viral structural proteins. Use of RSV mutants encoding partially deleted src gene products enabled us to identify a 60,000-dalton cellular tyrosine phosphoprotein that comigrated with wild-type pp60v-src. With the exception of calpactin I, the major tyrosine phosphoproteins detected in immunoblots appeared to be different from several previously characterized substrates of pp60v-src with similar molecular masses (ezrin, vinculin, and the fibronectin receptor).  相似文献   

6.
7.
Phosphorylation on tyrosine residues mediated by pp60src appears to be a primary biochemical event leading to the establishment of the transformed phenotype in Rous sarcoma virus (RSV)-infected cells. To identify the cellular proteins that undergo tyrosine phosphorylation during transformation, a 32P-labeled RSV-transformed chicken embryo cell extract was analyzed by electrophoresis on a polyacrylamide gel. After slicing the gel into approximately 60 slices, phosphoamino acid analyses were carried out on the protein recovered from each gel slice. Phosphotyrosine was found in every gel slice, with two major peaks of this phosphoamino acid around M(r)'s of 59 and 36 kilodaltons. When the same analysis was performed with cells infected with a transformation-defective src deletion mutant of RSV (tdNY101), significant and reproducible peaks of phosphotyrosine were found in only 2 of 60 gel slices. These gel slices corresponded to M(r)'s of 42 and 40 kilodaltons. Identical results were obtained with normal uninfected chicken embryo fibroblasts. We conclude from these observations that pp60src or the combined action of pp60src and pp60src-activated cellular protein kinases cause the tyrosine-specific phosphorylation of a very large number of cellular polypeptides in RSV-transformed cells. In addition, untransformed cells appear to possess one or more active tyrosine-specific protein kinases which are responsible for the phosphorylation of a limited number of proteins. These proteins are different from the major phosphotyrosine-containing proteins of the transformed cells.  相似文献   

8.
Phosphatidylinositol kinase (E.C. 2.7.1.67) activity of rat fibroblasts transformed by Rous sarcoma virus (RSV) was measured and compared with immunoprecipitated protein tyrosine kinase activity associated with pp60v-src. Both enzyme activities were elevated in the particulate fractions from wild-type RSV-transformed cells and cells transformed by a temperature-sensitive mutant of RSV when grown at the permissive temperature. The presence of the non-ionic detergent Nonidet P-40 in the phosphatidylinositol kinase assays stimulated the soluble and particulate forms of the enzyme to different degrees but did not affect the relative differences between transformed and untransformed cells. Our results indicate that phosphatidylinositol kinase activity is a good correlate of RSV transformation and suggest a functional relationship between pp60v-src and phosphatidylinositol kinase.  相似文献   

9.
Vinculin: a cytoskeletal target of the transforming protein of Rous sarcoma virus   总被引:138,自引:0,他引:138  
B M Sefton  T Hunter  E H Ball  S J Singer 《Cell》1981,24(1):165-174
Vinculin, a protein associated with the cytoplasmic face of the focal adhesion plaques which anchor actin-containing microfilaments to the plasma membrane and attach a cell to the substratum, contains 8-fold more phosphotyrosine in cells transformed by Rous sarcoma virus than in uninfected cells. Because the transforming protein of RSV, p60src, is a protein kinase that modifies cellular proteins through the phosphorylation of tyrosine and because phosphotyrosine is a very rare modified amino acid, this result is a very rare modified amino acid, this result suggests that vinculin is a primary substrate of p60src. Only trace amounts of phosphotyrosine were detected in myosin heavy chains, alpha-actinin, filamin, and the intermediate filament protein vimentin. The modification of vinculin by p60src may be responsible in part for the disruption of the microfilament organization and for the changes in cell shape and adhesiveness which accompany transformation by Rous sarcoma virus.  相似文献   

10.
Transformation of cultured chick lens epithelial cells with a temperature-sensitive mutant of Rous sarcoma virus (tsRSV) leads to radical changes in cell shape and interactions. When cultured at the restrictive temperature (42 degrees C), the transformed cells largely retained epithelial morphology and intercellular adherens junctions (AJ), whereas on switch to the permissive temperature (37 degrees C) they rapidly became fibroblastoid, their AJ deteriorated, and cell adhesion molecules (A-CAM) (N-cadherin) largely disappeared from intercellular contact sites. The microfilament system that was primarily associated with these junctions was markedly rearranged on shift to 37 degrees C and remained associated mainly with cell-substrate focal contacts. These apparent changes in intercellular AJ were not accompanied by significant alterations in the cellular content of several junction-associated molecules, including A-CAM, vinculin, and talin. Immunolabeling with phosphotyrosine-specific antibodies indicated that both cell-substrate and intercellular AJ were the major cellular targets for the pp60v-src tyrosine-specific protein kinase. It was further shown that intercellular AJ components serve as substrates to tyrosine kinases also in nontransformed lens cells, because the addition of a combination of vanadate and H2O2--which are potent inhibitors of protein tyrosine phosphatases--leads to a remarkable accumulation of immunoreactive phosphotyrosine-containing proteins in these junctions. This finding suggests that intercellular junctions are major sites of action of protein tyrosine kinases and that protein tyrosine phosphatases play a major role in the regulation of phosphotyrosine levels in AJ of both normal and RSV-transformed cells.  相似文献   

11.
Cells transformed with the middle tumor antigen (mT) of polyomavirus were treated with sodium orthovanadate (Na3VO4), an inhibitor of phosphotyrosine phosphatases, to enhance for the detection of cellular proteins which are phosphorylated on tyrosine. Na3VO4 treatment of mT-transformed rat F1-11 cells resulted in a 16-fold elevation in the level of phosphotyrosine associated with total cellular proteins. Parental F1-11 cells displayed only a twofold increase in phosphotyrosine following Na3VO4 treatment. The abundance of phosphotyrosine in Na3VO4-treated mT-transformed F1-11 cells was twofold higher than in untreated Rous sarcoma virus (RSV)-transformed F1-11 cells and 3.5-fold lower than in Na3VO4-treated RSV-transformed F1-11 cells. Tyrosine phosphorylation of many cellular proteins, including p36, the major substrate of the RSV pp60v-src protein, was detected in Na3VO4-treated mT-transformed F1-11 cells at levels comparable to those observed in RSV-transformed cells. Some of the major protein species recognized by antiphosphotyrosine antibodies in Na3VO4-treated mT-transformed cells displayed electrophoretic mobilities similar to those detected in RSV-transformed F1-11 cells. Tyrosine phosphorylation of p36 was also detected in fibroblasts infected with polyomavirus. There was no detectable difference in the kinase activity of pp60c-src:mT extracted from untreated and Na3VO4-treated mT-transformed cells; however, Na3VO4 treatment of F1-11 and mT-transformed F1-11 cells was shown to inhibit the activity of phosphotyrosine phosphatases in a crude assay of total cellular activity with pp60v-src as the substrate. Thus, Na3VO4 treatment may allow the detection of phosphotyrosine-containing proteins in mT-transformed cells by preventing the turnover of phosphate on substrates phosphorylated by activated cellular protein-tyrosine kinases associated with mT. These results suggest that tyrosine phosphorylation of cellular proteins may be involved in the events that are responsible for mT-induced cellular transformation.  相似文献   

12.
Immunoferritin labelling methods have been employed to examine the distribution of the Rous Sarcoma virus (RSV)-transforming protein pp60src in the detergent-resistant cytoskeleton of transformed cells. pp60src was found to be localized on actin microfilaments present in adhesion plaques, at adherens junctions between cells and also in microfilament bundles. This localization is consistent with the hypothesis that some of the morphological effects of transformation result from the interaction in situ of pp60src with microfilament-bound target proteins.  相似文献   

13.
The localization of talin and vinculin in chicken embryo fibroblasts (CEF) during transformation was studied by immunoelectron microscopy. CEF cells were infected with a temperature-sensitive mutant of Rous sarcoma virus. After 16 h at 42 degrees C, transformation was induced by incubation at 37 degrees C for different intervals up to 3 h. Cells were cleaved by "wet cleaving" as reported previously by us (R. Brands and C.A. Feltkamp, 1988, Exp. Cell Res. 176, 309) and labeled with affinity-purified polyclonal antibodies to talin or vinculin, or monoclonal anti-vinculin. We observed a rapid reduction of vinculin in adhesion plaques within 15 min and a much slower dissociation of talin. This was found using single-labeling procedures and also within the same cell using double labeling. Seemingly intact microfilament bundles were observed associated with adhesion plaques that contained relatively little vinculin. These observations show that an early event in src-induced transformation is the release of vinculin from adhesion plaques. Furthermore, since adhesion plaques with attached filament bundles can exist at least transiently with very little or no vinculin present, it seems likely that vinculin is not, or not the only protein, linking actin filaments to adhesion plaques.  相似文献   

14.
The incubation of intact uninfected and Rous sarcoma virus (RSV)-transformed chicken cells (SR-RSV-A) with micromolar amounts of [gamma-32P]ATP under physiological conditions resulted in the radioactive phosphorylation of a variety of proteins. According to the experimental protocol the detectable phosphorylation was restricted to ATP utilization at the cell surface and was catalyzed by surface located protein kinase (PK). Serine- and to a lesser extent, threonine residues were phosphorylated. With respect to this enzyme the cells under investigation showed upon incubation with phosvitin the release of surface (phosvitin) kinase into the incubation medium. Based on immunochemical analysis and PK-assays using antisera from RSV-tumor bearing rabbits (TBR-serum) the pp60v-src with its associated tyrosine kinase activity was likewise detected in appreciable amounts at the outside of RSV-transformed chicken and mammalian cells. There was no cross reactivity of TBR-serum with phosvitin kinase. Phosvitin was not phosphorylated by the immunoprecipitated pp60v-src. Whereas phosphorylation catalyzed by pp60v-src was blocked with 10 to 20 microM diadenosine 5',5'-P1P4 tetraphosphate (Ap4A) the phosvitin phosphorylation was far less sensitive towards inhibition by Ap4A, similar to the cellular pp60c-src kinase activity in uninfected cells. The functional significance of the PK activities in uninfected and RSV-transformed cells observed at their surface or in cell-free form as well as the nature of their substrates remain to be established.  相似文献   

15.
The cytoskeletal protein vinculin is acylated by myristic acid   总被引:4,自引:0,他引:4  
In non-muscle cells the mechanism by which microfilament bundles interact with the plasma membrane is unclear. Vinculin, a 130 kDa protein found in adhesion plaques, has been postulated to have a role as a membrane anchor for microfilaments and we have investigated the biochemistry of this molecule in more detail. We report that a fraction of vinculin in chick embryo fibroblasts is acylated by myristic acid. This modification was present in both membrane-bound, cytoskeletal and cytosolic vinculin and thus did not determine preferential subcellular localisation. Myristic acid was also present in vinculin from cells transformed by Rous sarcoma virus.  相似文献   

16.
With fluorescence and interference reflection microscopy (IRM), we compared the regional distribution of calspectin, its interacting proteins (nonerythroid protein 4.1 and calpactin), alpha-actinin, and vinculin in NRK cells and their avian sarcoma virus (ASV)- or temperature-sensitive (ts) Rous sarcoma virus (RSV)-transformed cells. The localization of these cytoskeletal proteins was determined with the specific antibodies. In NRK cells, alpha-actinin and vinculin were concentrated at adhesion plaques. By contrast, calspectin was distributed throughout the cytoplasm, but not concentrated at adhesion plaques. In ASV- and ts RSV-transformed cells, all three cytoskeletal proteins were concentrated at dot structures representing cellular feet. Nonerythroid protein 4.1 and calpactin were diffusely distributed throughout the cytoplasm of NRK cells and their transformed counterparts. In the case of calpactin, a part of this protein was excluded near regions of the terminal ends of stress fibers. These two proteins did not show the restricted location at the dot structures of transformed cells. From these findings, it is apparent that the accumulation of calspectin into dot structures is a specific event for cell transformation induced by the src protein.  相似文献   

17.
Chicken embryo cells (CECs) contain pyruvate kinase (PK) type M2 (M2-PK). Transformation of CECs by Rous sarcoma virus (RSV) leads to a reduction in the affinity of PK for the substrate phosphoenolpyruvate. In vitro, M2-PK can be phosphorylated at tyrosine residues by pp60v-src, the transforming protein of RSV. To study tyrosine phosphorylation of M2-PK in intact RSV-transformed cells, the protein was immunoprecipitated from 32P-labeled normal and RSV-SR-A-transformed CECs. Phosphoamino acid analysis of immunoprecipitated M2-PK revealed that M2-PK of both normal and transformed CECs contained phosphoserine and small amounts of phosphothreonine. Only M2-PK of transformed CECs contained phosphotyrosine in addition. For enzyme kinetic studies M2-PK was partially purified by chromatography upon DEAE-Sephacel and hydroxyapatite. A decreased affinity for phosphoenolpyruvate was observed 3 h after the onset of transformation using the temperature-sensitive mutant of RSV, ts-NY 68. The kinetic changes were correlated with tyrosine phosphorylation of M2-PK, but there is no direct evidence that they are caused by post-translational modification of the enzyme.  相似文献   

18.
We have derived a line of A431 human tumor cells infected with Rous sarcoma virus (RSV). The infected cells contain the RSV-transforming protein, pp60src, which has characteristic tyrosine specific protein kinase activity. As in other RSV-transformed cells, a 36,000-dalton protein is phosphorylated in RSV-infected A431 cells. Addition of epidermal growth factor (EGF) to the cells induces further phosphorylation of this protein. In contrast, this phosphoprotein is not detected in uninfected A431 cells, except when treated with EGF. Increased phosphorylation of the EGF receptor protein and of an 81,000- dalton cellular protein is dependent upon addition of EGF to the culture fluids, in both control and RSV-infected A431 cells. The results are discussed with reference to the similarities and differences between the tyrosine-specific protein kinases induced by RSV and activated by EGF.  相似文献   

19.
The localization of pp60src within adhesion structures of epithelioid rat kidney cells transformed by the Schmidt-Ruppin strain of Rous sarcoma virus was compared to the organization of actin, alpha-actinin, vinculin (a 130,000-dalton protein), tubulin, and the 58,000-dalton intermediate filament protein. The adhesion structures included both adhesion plaques and previously uncharacterized adhesive regions formed at cell-cell junctions. We have termed these latter structures "adhesion junctions." Both adhesion plaques and adhesion junctions were identified by interference-reflection microscopy and compared to the location of pp60src and the various cytoskeletal proteins by double fluorescence. The results demonstrated that the src gene product was found within both adhesion plaques and the adhesion junctions. In addition, actin, alpha-actinin, and vinculin were also localized within the same pp60src-containing adhesion structures. In contrast, tubulin and the 58,000-dalton intermediate filament protein were not associated with either adhesion plaques or adhesion junctions. Both adhesion plaques and adhesion junctions were isolated as substratum-bound structures and characterized by scanning electron microscopy. Immunofluorescence revealed that pp60src, actin, alpha-actinin, and vinculin were organized within specific regions of the adhesion junctions. Heavy accumulations of actin and alpha-actinin were found on both sides of the junctions with a narrow gap of unstained material at the midline, whereas pp60src stain was more intense in this central region. Antibody to vinculin stained double narrow lines defining the periphery of the junctional complexes but was excluded from the intervening region. In addition, the distribution of vinculin relative to pp60src within adhesion plaques suggested an inverse relationship between the presence of these two proteins. Overall, these results establish a close link between the src gene product and components of the cytoskeleton and implicate the adhesion plaques and adhesion junctions in the mechanism of Rous sarcoma virus-induced transformation.  相似文献   

20.
Immunoferritin labelling methods have been employed to examine the distribution of the Rous Sarcoma virus (RSV)-transforming protein pp60src in the detergent-resistant cytoskeleton of transformed cells. pp60src was found to be localized on actin microfilaments present in adhesion plaques, at adherens junctions between cells and also in microfilament bundles. This localization is consistent with the hypothesis that some of the morphological effects of transformation result from the interaction in situ of pp60src with microfilament-bound target proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号