首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
克隆表达沙眼衣原体(Ct)L2血清型的主要外膜蛋白(MOMP)基因,并鉴定重组MOMP(rMOMP)的抗原性,为进一步研究Ct感染的诊断和预防技术奠定基础。应用PCR技术对CtL2型标准株的MOMP基因进行特异性扩增,将扩增产物克隆入表达载体pET-32a(+),成功构建了rMOMP-pET-32a(+)表达质粒,转化大肠杆菌BL21(DE3)后摇菌进行rMOMP的诱导表达、鉴定和纯化,免疫印迹和ELISA法分析显示rMOMP可与兔源抗CtL2多克隆抗体发生特异性反应,表明rMOMP具有良好的抗原性。  相似文献   

2.
A species-specific monoclonal IgM antibody (mAb) 9BF8 directed against the major outer membrane protein (MOMP) of Chlamydia trachomatis neutralized several chlamydial serovars in a complement-independent manner. The presence of Mg2+ ions negated the neutralization in serovars F, L1 and L2, but not in serovars A, B, E, D and K. The ability of monovalent Fab-fragments of this mAb to neutralize chlamydial infectivity in a Mg-independent manner suggested that conformational alterations on the chlamydial surface induced by the cation hindered the IgM but allowed the smaller Fab fragment access to its epitope. In order to determine the chlamydial component that binds Mg, elementary bodies (EB) of serovars E and L1 were treated with EDTA at pHs 8 and 9. The infectivity of the treated EB and the amount of released LPS were determined. Only after EDTA treatment at pH 9, as the LPS release increased, did the binding of the mAb on the chlamydial surface become Mg-independent. The infectivity of the EB was almost completely lost after such a treatment. These results suggest that the chlamydial LPS has the potential to modulate the exposure of antigenic sites on the MOMP, when it is cross-linked by Mg2+. They further imply that serovars protected by Mg and those that are not differ in the surface topology of one particular MOMP epitope, but are antigenically very similar. This difference might be of considerable importance in vivo.  相似文献   

3.
The major outer membrane protein (MOMP) of Campylobacter jejuni is an abundant surface protein with a pore-forming function and may be a potential candidate for vaccine development. Despite the fact that MOMP is immunogenic and the recombinant MOMP (rMOMP) can be readily produced in Escherichia coli, the nature of the antibody response to MOMP during in vivo infection is not well understood. In this study, various methods involving detergent replacement and liposome reconstitution were used to refold rMOMP, and antibody responses to MOMP elicited in Campylobacter-colonized chickens were evaluated using sera from chickens either naturally or experimentally infected by C. jejuni. The results demonstrated that proteoliposomes restored the reactivity of rMOMP to rabbit antibodies elicited by native MOMP, indicating the recovery of native MOMP conformation by this refolding method. Importantly, sera from naturally or experimentally infected chickens reacted weakly with denatured rMOMP, but strongly with rMOMP reconstituted in proteoliposome, suggesting that the chicken antibody response to MOMP is predominantly directed against conformational epitopes. These observations provide direct evidence for conformation-dependent humoral responses to MOMP induced by Campylobacter infection, demonstrate that C. jejuni MOMP is immunogenic in its natural host and suggest that proteoliposomes may be potentially used for the evaluation of rMOMP-based vaccines.  相似文献   

4.
We used monoclonal antibodies (MAbs) to examine the antigenic specificity and biologic function of several Chlamydia trachomatis antigens. Thirteen distinct MAbs to eight C. trachomatis antigens were produced. Six MAbs reacted with unique epitopes on the major outer membrane protein (MOMP) and two of these had neutralizing activity. MAbs were produced to each of the chlamydial antigens with molecular masses of 10, 29, 32, 57, 60, 70, and 75 kilodaltons (kDa). These MAbs showed species and genus specificity in an immunoblot assay. None of the MAbs had neutralizing activity. The epitopes recognized on MOMP, 29-, and 10-kDa (presumably lipopolysaccharide) antigens were surface exposed. MAbs to the 75-kDa, 57-kDa, and MOMP antigens were used for immunoaffinity purification of these antigens to produce monospecific antisera in mice. With polyclonal sera, we found that the 75-kDa antigen was also immunoaccessible and that antibody to MOMP and 75-kDa antigens neutralized C. trachomatis infectivity. We conclude that, in addition to MOMP and lipopolysaccharide, antigens with molecular masses of 75 and 29 kDa are surface exposed. Antibodies to MOMP and 75-kDa antigens can neutralize the organism in vitro.  相似文献   

5.
Recombinant fragments of the major outer-membrane protein (MOMP) of Chlamydia trachomatis, expressed at high levels in Escherichia coli, were isolated and purified. Antisera to the recombinant proteins reacted preferentially with overlapping synthetic peptides covering the immunoaccessible variable segments of MOMP. These sera also reacted in a species-specific manner with the surface of intact infectious elementary bodies, and in a Chlamydia genus-specific manner in assays using denatured or bound chlamydial antigens. The ability of recombinant MOMP preparations to elicit antibody to the surface of chlamydial elementary bodies raises the possibility that these proteins may be useful for chlamydial vaccine development.  相似文献   

6.
The major outer-membrane protein (MOMP) of Chlamydia trachomatis is the focus of attention for chlamydial vaccine design, particularly those serovar- and subspecies-specific epitopes which provoke neutralizing immune responses. Selected surface-exposed B-cell epitopes of MOMP, incorporating B-subspecies specificities, were expressed as fusions with LamB, an inducible outer-membrane transport protein of Escherichia coli. These recombinant chlamydial-LamB proteins were correctly transported to the outer membrane of both E. coli and an aro A mutant of Salmonella typhimurium. The immunogenicity of the constructs was investigated in a mouse model of chlamydial salpingitis. After oral immunization, recombinant S. typhimurium were recovered from the livers of mice for up to two weeks, and a serum IgG response was induced both to the Salmonella and to the inserted chlamydial epitopes. By contrast, intravenous inoculation was ineffective. Although these LamB fusions proved only weakly immunogenic, this approach should be useful for investigating the ability of attenuated S. typhimurium vaccines incorporating chlamydial epitopes to stimulate protective mucosal immunity in the mouse model of chlamydial salpingitis.  相似文献   

7.
An understanding of the molecular basis of the humoral immune response to chlamydial infections in man requires the identification of target antigens to which antibodies are directed. The antigenic specificity of antibody from patients with lymphogranuloma venereum (LGV) or trachoma was therefore assessed by Western blotting. Surface polypeptides were first identified using purified chlamydial outer membrane complex as antigen. Antibodies in sera from patients with LGV but not from control negative sera reacted with a wide range of chlamydial surface polypeptides with molecular masses of 19, 29, 41, 58, 63 and 65 kDa. The major component of the antibody response detected by both immunoblotting and immunoprecipitation assay was directed against the major outer membrane protein (MOMP). Antibody to MOMP was species-specific on Western blotting, whereas antibody to several other polypeptides recognized common immunodeterminants on polypeptides of C. psittaci Cal-10 of equivalent molecular mass. Immunologically C. psittaci Cal-10 was more closely related to LGV strains of C. trachomatis than a guinea pig inclusion conjunctivitis strain of C. psittaci. Trachoma sera collected from a village in southern Iran showed predominantly type-specific antibody on micro-immunofluorescence to serotype A or B trachoma agents. These sera showed a weak immune response to MOMP, a pronounced response to a polypeptide of 36 kDa and much less widespread reactivity with other chlamydial polypeptides. The lack of an immune response to SDS-stable immunodeterminants on MOMP might contribute to the susceptibility of trachoma patients to repeated cycles of ocular infection with chlamydiae.  相似文献   

8.
Diversity of Chlamydia trachomatis major outer membrane protein genes.   总被引:66,自引:3,他引:63       下载免费PDF全文
Genomic DNA libraries were constructed for Chlamydia trachomatis serovars B and C by using BamHI fragments, and recombinants that contained the major outer membrane protein (omp1) gene for each serovar were identified and sequenced. Comparisons between these gene sequences and the gene from serovar L2 demonstrated fewer base pair differences between serovars L2 and B than between L2 and C; this finding is consistent with the serologic and antigenic relationships among these serovars. The translated amino acid sequence for the major outer membrane proteins (MOMPs) contained the same number of amino acids for serovars L2 and B, whereas the serovar C MOMP contained three additional amino acids. The antigenic diversity of the chlamydial MOMP was reflected in four sequence-variable domains, and two of these domains were candidates for the putative type-specific antigenic determinant. The molecular basis of omp1 gene diversity among C. trachomatis serovars was observed to be clustered nucleotide substitutions for closely related serovars and insertions or deletions for distantly related serovars.  相似文献   

9.
A predicted protein (CT713) with weak sequence similarity to the major outer membrane protein (20.4% identity) in Chlamydia trachomatis was identified by Chlamydia genome analysis. We show that this protein is expressed, surface accessible, localized to the chlamydial outer membrane complex and functions as a porin. This protein, PorB, was highly conserved among different serovars, with nearly identical sequences between serovars D, B, C and L2. Sequence comparison between C. trachomatis and Chlamydia pneumoniae showed less conservation between species with 59.3% identity. Immunofluorescence staining with monospecific antisera to purified PorB revealed antigen localized within chlamydial inclusions and found throughout the developmental cycle. Antibodies to PorB neutralized infectivity of C. trachomatis in an in vitro neutralization assay confirming that PorB is surface exposed. As PorB was found to be in the outer membrane, as well as having weak structural characteristics similar to major outer membrane protein (MOMP) and other porins, a liposome-swelling assay was used to determine whether this protein had pore-forming capabilities. PorB had pore-forming activity and was shown to be different from MOMP porin activity.  相似文献   

10.
G J Gray  R Kaul  K L Roy    W M Wenman 《Journal of bacteriology》1991,173(5):1663-1669
The cloning of a Chlamydia trachomatis eukaryotic cell-binding protein reported earlier from our laboratory (R. Kaul, K. L. Roy, and W. M. Wenman, J. Bacteriol. 169:5152-5156, 1987) represents an artifact generated by nonspecific recombination of chromosomal DNA fragments. However, the amino terminus of this plasmid-encoded fusion product demonstrated significant homology to Escherichia coli ribosomal protein L6. By using a 458-bp PstI-HindIII fragment of recombinant pCT161/18 (representing the 5' end of the cloned gene), we isolated and characterized a C. trachomatis homolog of the ribosomal protein L6 gene of E. coli. Sequence analysis of an 1,194-bp EcoRI-SacI fragment that encodes chlamydial L6 (designated CtaL6e) revealed a 552-bp open reading frame comprising 183 amino acids and encodes a protein with a molecular weight of 19,839. Interestingly, complete gene homology between C. trachomatis serovars L2 and J, each of which exists as a single copy per genome, was observed. Expression of a plasmid-encoded gene product is dependent on the lac promoter, since no product was obtained if the open reading frame was oriented in opposition to the lac promoter. Immunoblotting of purified ribosomes revealed functional, as well as antigenic, homology between the E. coli and C. trachomatis ribosomal L6 proteins.  相似文献   

11.
R Kaul  M J Duncan  J Guest  W M Wenman 《Gene》1990,87(1):97-103
The major outer membrane protein (MOMP)-encoding gene (omp1) of Chlamydia trachomatis has been cloned into Escherichia coli and partially sequenced. This recombinant gene expresses a full-length 40-kDa product, which is recognized by a monoclonal antibody directed against the species-specific epitope of MOMP. The recombinant omp1 is expressed in either insertion orientation, indicating that it utilizes its own promoter system. The endogenous omp1 promoter possesses a relatively low activity despite the high level of MOMP expression. Deletion of a 520-bp fragment at the 3' end encoding 39 amino acids (aa) at the C terminus and the remainder of the noncoding region leads to a significant decrease in mRNA stability and loss of protein synthesis. When the MOMP-encoding plasmid was introduced into E. coli minicells, it expressed 40- and 43-kDa proteins; however, inhibition of post-translational processing by ethanol revealed only a 43-kDa protein. These data indicate that the unprocessed omp1 gene product contains a 22-aa leader sequence which is cleaved during translocation to the outer membrane, to yield a processed 40-kDa protein. The recombinant MOMP was localized to the outer membrane E. coli fraction, comparable to the location of the native C. trachomatis protein.  相似文献   

12.
13.
The cell surfaces of two Chlamydia trachomatis serovars were explored by immune electron microscopy with monoclonal antibodies that recognize a number of chlamydial outer-membrane components. Species, subspecies and serovar-reactive epitopes on the major outer-membrane protein (MOMP) of a lymphogranuloma venereum biovar strain, L2/434/Bu, and a trachoma biovar strain, F/UW-6/Cx, were exposed on the surfaces of both elementary bodies (EBs) and reticulate bodies (RBs). Three epitopes on MOMP were inaccessible on EBs and RBs of both strains. These included a genus-reactive, species-reactive, and a subspecies-reactive epitope. In contrast, genus-specific epitopes on lipopolysaccharide (LPS) were not detected on the EB surface, but were clearly expressed on RBs of both L2/434/Bu and F/UW-6/Cx chlamydiae. Antibodies specific for the 60 kDa and 12 kDa 'cysteine-rich' outer-membrane proteins did not react with surface epitopes on either EBs or RBs. These data provide evidence that MOMP is a major surface antigen of both morphological forms, whereas some portions of the LPS molecule are exposed on the RB surface but become inaccessible to antibody after conversion to the infectious EB form.  相似文献   

14.
HLA class I-restricted CD8+ CTLs specific for the major outer membrane protein (MOMP) of Chlamydia trachomatis are present in the peripheral blood of humans who acquired genital tract infections with the organism. Three HLA-A2-restricted epitopes and two HLA-B51-restricted epitopes were identified in serovar E-MOMP. One of the five epitopes spans a variable segment of MOMP and is likely a serovar E-specific epitope. The other four epitopes are localized in constant segments and are C. trachomatis species specific. CTL populations specific for one or more of the four constant segment epitopes were isolated from all 10 infected subjects tested, regardless of infecting serovars, but from only one of seven uninfected subjects tested. The CTLs failed to recognize corresponding peptides derived from Chlamydia pneumoniae MOMP, further suggesting that they indeed resulted from genital tract infections with C. trachomatis. Significantly, ME180 human cervical epithelial cells productively infected with C. trachomatis were killed by the MOMP peptide-specific CTLs. Further investigations of the ability of such CTLs to lyse normal infected epithelial cells and their presence at inflamed sites in the genital tract will help understand the protective or pathological role of CTLs in chlamydial infections. The MOMP CTL epitopes may be explored as potential components of a subunit vaccine against sexually transmitted diseases caused by C. trachomatis. Moreover, the knowledge provided here will facilitate studies of HLA class I pathways of chlamydial Ag processing and presentation in physiologically relevant human APCs.  相似文献   

15.
The gene encoding the 25 kDa major outer membrane protein (MOMP) of Legionella pneumophila was transformed into Escherichia coli JM 83 and the resultant E. coli LP 116 clone expressed the Legionella-MOMP. Compared with the parent E. coli strain, the clone showed a fivefold increase in opsonin-independent binding to U-937 cells. Furthermore, this gene was incorporated by electroporation into a low virulence derivative of Leg. pneumophila which showed reduced expression of the MOMP but enhanced expression of a 31 kDa protein in the OMP profile. After electroporation, the attenuated strain showed an increased expression of the MOMP while the 31 kDa protein was eliminated and virulence for the chick embryo was re-established. The use of a monoclonal antibody specific for the MOMP abolished virulence and adherence. These studies suggest that the 25 kDa MOMP of Leg. pneumophila serves as an adhesive molecule for host cells and that this protein plays a major role in the virulence of the organism for the chick embryo.  相似文献   

16.
The endotoxin of Chlamydia trachomatis L(2), the causative agent of lymphogranuloma venerum, has been described as an endotoxin with an atypical structure and weak stimulatory activity. It is, however, unclear whether chlamydial endotoxin plays a role in the stimulation of innate immune cells upon contact with the whole microorganism C. trachomatis L(2). We show here that chlamydial endotoxin and, as expected, Escherichia coli O55:B5 endotoxin depend on Toll-like receptor 4 without depending on Toll-like receptor 2 to stimulate bone marrow-derived dendritic cells to secrete tumor necrosis factor (TNF). In contrast, the whole microorganism C. trachomatis L(2) induces TNF secretion by innate immune cells independently of Toll-like receptor 4, while stimulation by E. coli O55:B5 depends on Toll-like receptor 4. Furthermore, although TNF secretion of the macrophage cell line RAW264.7 with chlamydial or E. coli O55:B5 endotoxin as well as with the bacterium E. coli O55:B5 is inhibited by the endotoxin-neutralizing compound polymyxin B, C. trachomatis L(2)-induced secretion of TNF cannot be reduced. In accordance with the literature, the potential of chlamydial endotoxin is more than 100-fold weaker than E. coli O55:B5 endotoxin on all cell types tested. We conclude that chlamydial endotoxin is unlikely to be involved in C. trachomatis L(2)-induced release of TNF by innate immune cells.  相似文献   

17.
The major outer membrane protein (MOMP) of Chlamydia trachomatis carries serovar-, subspecies-, species- and genus immunodomains, antibodies to which may be protective. We have compared the inferred amino acid sequences for MOMP from different serovars of C. trachomatis and from Chlamydia psittaci to identify the likely locations of these sero-taxonomic epitopes. Overlapping peptides corresponding to each of these regions were synthesized on a solid phase and probed with monoclonal antibodies (MAbs) of appropriate specificities. We describe the primary structures of the binding sites of MAb to each of these four epitopes on C. trachomatis serovar L1 MOMP.  相似文献   

18.
Fragments of the gene encoding the major outer membrane porin protein (MOMP) of Chlamydia trachomatis serovar L1 were ligated into the pUC plasmid vectors to give a series of overlapping recombinants expressing MOMP from the lac promoter. Induction of this promoter with IPTG leads to high-level expression of the recombinant porin protein. Electron microscopy shows the presence of insoluble inclusions within the Escherichia coli host cells. Probing the expressed MOMP fragments with a set of monoclonal antibodies permitted localization of the four binding sites (epitopes) of primary-sequence-dependent monoclonal antibodies that exhibit genus-, species-, subspecies- and type (serovar)-specific reactivities.  相似文献   

19.
Chlamydia trachomatis is one of the most prevalent sexually transmitted pathogens. Chlamydial major outer membrane protein (MOMP) can induce strong cellular and humoral immune responses in murine models and has been regarded as a potential vaccine candidate. In this report, the amino acid sequence of MOMP was analyzed using computer-assisted techniques to scan B-cell epitopes, and three possible linear B-cell epitopes peptides (VLKTDVNKE, TKDASIDYHE, TRLIDERAAH) with high predicted antigenicity and high conservation were investigated. The DNA coding region for each potential epitope was cloned into pET32a(+) and expressed as Trx-His-tag fusion proteins in Escherichia coli. The fusion proteins were purified by Ni-NTA agarose beads and followed by SDS-PAGE and western blot analysis. We immunized mice with these three fusion proteins. The sera containing anti-epitope antibodies from the immunized mice could recognize C. trachomatis serovars D and E in ELISA. Antisera of these fusion proteins displayed an inhibitory effect on invasion of serovar E by in vitro neutralization assays. In addition, serum samples from convalescent C. trachomatis-infected patients were reactive with the epitope fusion proteins by western blot assay. Our results showed that the epitope sequences selected by bioinformatic analysis are highly conserved C. trachomatis MOMP B-cell epitopes, and could be good candidates for the development of subunit vaccines, which can be used in clinical diagnosis.  相似文献   

20.
The major outer-membrane protein (MOMP) of Chlamydia trachomatis is a promising candidate antigen for chlamydial vaccine development. We have sequenced the MOMP genes for a serovar A and a serovar B isolate and have compared these new sequences with those already reported. Intra-serovar changes in the inferred amino acid sequences of the surface-exposed variable segments known to be responsible for binding of neutralizing antibody were observed. Nevertheless, epitope mapping with solid-phase peptides showed that these intra-serovar changes did not affect the binding of serovar- and subspecies-specific, potentially protective antibodies. Variable segment 1 of C. trachomatis serovar A contained two adjacent antibody-binding sites, one of which was C-subspecies specific while the other was serovar A specific. Therefore the subspecies binding site for C-complex organisms is in variable segment 1, whilst that for B-complex organisms is in variable segment 4. This work shows that MOMP sequences are relatively stable within the serovar categorization for isolates taken decades apart from different continents. Within a given serovar, however, limited interchange of functionally related amino acids may occur without impairing the binding of serovar-specific antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号