首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Competing demands for water have resulted in many wetlands becoming either more permanently flooded or more permanently dry. It has been stated that such changes may lead to a loss of diversity in wetland communities; yet to date, this has not been tested experimentally. In this study, we experimentally test the hypothesis that increasing the hydrologic stability of wetlands results in reduced abundance, richness and diversity of aquatic biota emerging from wetland sediments. Sediment was collected from 19 wetlands that were divided into five groups (permanently flooded and wetlands that had been dry for 2, 7, 11 and 30 years). Aquatic plant communities germinating from the sediment of wetlands that had been permanently inundated and those that had been dry for 30 years had lower species richness and number of individuals than wetlands with intermediate flooding histories. For microfaunal communities, significantly less individuals but more taxa hatched from wetlands that had been permanently flooded or dry for 2 years than the other wetland groups. These results provide evidence of reduced biotic diversity as hydrological stability is increased under the common management scenarios of making wetlands more permanently wet or dry.  相似文献   

2.
1. In this study we compared the emergence of aquatic biota from sediments under 14‐day pulses of high (5000 mg L−1) and low (1000 mg L−1) salinity with emergence under freshwater and equivalent constant salinity levels. We tested the hypothesis that pulses of high salinity and short duration have no impact on the emergence of aquatic plants and zooplankton from wetland sediment. 2. The way salt is moved through the landscape may alter the response of biota to increases in salinity. Under natural hydrological regimes in rivers and floodplains salinity pulses occur often at concentrations that exceed predicted tolerance levels for aquatic biota. The impacts of natural pulses of high salinity followed by rapid return to fresh conditions may be used to inform management guidelines for the potential release of non‐natural saline water into river systems with minimal impact. 3. For both aquatic plants and zooplankton the abundance and richness of the emerging taxa decreased at higher salinities kept at constant levels. In contrast, pulses of salinity followed by return to freshwater conditions did not have a negative impact on the emergence of aquatic plants or zooplankton. For many taxa of zooplankton a positive impact was demonstrated with higher emergence following the salinity pulse. 4. The responses of aquatic plant and zooplankton taxa are grouped into five response types. Type 1: negatively impacted by all salt regimes. Type 2: preference for constant salinities. Type 3: no difference between fresh and either pulse regime. Type 4: preference for high concentration pulses. Type 5: emergence higher under a low concentration pulse. 5. Although previous studies indicate that constant high‐level salinity in rivers and wetlands can decrease the species richness of aquatic communities, this current study shows pulses may not have the same impact. Our results support the hypothesis that pulses of high salinity and short duration do not impact on the emergence of aquatic plants and zooplankton from wetland sediments. For zooplankton, pulses of salt may trigger emergence. 6. These trends may be used to explore the potential to use managed water releases to move salt through the landscape with minimal impact of salinity on aquatic biota. However, before such preliminary results are applied in management of saline water releases we need to determine the implications for interacting processes in natural ecosystems.  相似文献   

3.
1. The effect of increasing salinity on the emergence of zooplankton eggs and the germination of aquatic plant seeds from the sediment of two wetlands was examined. Salinity was found to cause reductions in species richness and abundance of aquatic plants and zooplankton at salinities between 1000 and 5000 mg L?1. Aquatic plants also had an associated decrease in above ground biomass. 2. Individual taxa showed different responses to salinity, and four response patterns were identified: (i) increased number of organisms emerging at 1000 mg L?1; (ii) decreased number of organisms emerging above 1000 mg L?1; (iii) decreased number of organisms emerging between 300 and 1000 mg L?1; (iv) no difference in number of organisms emerging across the range of salinities. Response patterns (iii) and (iv) were common to both plants and zooplankton, whereas response patterns (i) and (ii) were only identified for zooplankton. 3. Results indicate that there is potential for the increasing salinity in Australian rivers and wetlands to decrease the species richness of aquatic communities resulting in loss of wetland biodiversity.  相似文献   

4.
1. The formation of sulfidic sediments in response to factors such as secondary salinisation and fertiliser usage is an emerging concern for the management of many freshwater wetlands. However, fundamental knowledge regarding the influence of sulfidic sediments on the aquatic biota is still lacking. 2. This study investigated the potential for biota to recolonise wetlands affected by sulfidic sediments, by assessing zooplankton hatching and aquatic plant germination following inundation with freshwater. Sediment samples were collected from 16 wetlands in the southern Murray‐Darling Basin, Australia, that ranged in condition from non‐impacted to possessing a known history of sulfidic sediments and/or acidification. 3. Principal Components Analysis indicated that the wetlands separated out into five different groups based on their sediment chemistry: non‐impacted, sulfidic, sulfidic and highly saline (sediment EC 46 800–209 000 μS cm?1), sulfidic and potentially acidic (sediment pH 5.81–6.45 and ANC 0.07–0.31% CaCO3), and sulfidic and acidic (sediment pH 4.37 and ANC 0.00% CaCO3). 4. A viable dormant propagule bank was present in all wetlands, but the taxon richness of zooplankton and aquatic plants was significantly lower in wetlands affected by sulfidic sediments compared with those that were non‐affected. 5. This suggests that zooplankton and aquatic plants will be capable of recolonising wetlands that have accumulated sulfidic sediments via their propagule banks if the appropriate remediation measures are undertaken, although the communities developing are likely to be less diverse compared with those in non‐affected wetlands.  相似文献   

5.
Three wetlands from the Upper South East of South Australia were chosen to investigate how a past history of drought (dry since 2002, 2004 and 2005) and salinity (2800 to >20,000 mg L−1) influenced the response of the seed bank to two water regimes (drained and flooded) and four salinities (500, 1000, 3000 and 5000 mg L−1). The maximum number of germinants (1270 ± 850 m−2) and species richness (7 ± 2.4) was greatest under the fresher drained treatment compared with the flooded more saline treatment under which there was no germination at one site. There were significant interactions between water regime and wetland previous history for two wetlands, but not the third which was the most saline and had experienced the longest drought. This indicated that the previous drought and salinity conditions experienced by a wetland affected seedling emergence but in the two less impacted wetlands the imposition of fresher drained conditions mitigated against these impacts. This suggests that if drought conditions continued with repeated exposure to elevated salinities the number of seeds and the species diversity of the seed banks would continue to decline.  相似文献   

6.
Wetlands are considered vulnerable ecosystems of both high species richness and socio-economic value. In semi-arid regions, these ecosystems often experience long drought periods that are usually aggravated by local water overexploitation. Drought leads to: (i) reduced flooding area, (ii) isolation of water bodies, (iii) increased areas of dry sediments and shoreline length, and (iv) increased ionic concentration. These processes affect aquatic populations in a species-specific way and can have antagonistic effects on taxon richness. Here, we highlight long-term (1997–2008) trade-off effects on plankton species richness linked to drought in a semi-arid wetland (Las Tablas de Daimiel National Park, central Spain). Annual average phytoplankton species richness increased from wet- (1997–1998) to dry years (2001–2002) and taxon richness diminished again when drought was more severe (2007–2008). Zooplankton changes were more complex depending on taxonomic groups and the body size of the organisms, total species loss being related to hydrological conditions. Half of the algal species recorded in 2007–2008 and one-tenth of total zooplankton taxa were new comers in the wetland, because salinization, eutrophication and submerged macrophytes occurring in different sites enhanced species turnover and mitigated homogenization of beta diversity. Maintenance of one water body with a constant water level and macrophytes was the key to preventing the collapse of plankton richness. Our study has demonstrated that plankton can be very useful for tracking environmental changes of wetlands, thus giving the environmental manager another tool to enhance the conservation of wetlands and their biota.  相似文献   

7.
1. Salinisation has had a major effect on the diversity of biota associated with freshwater wetlands. However, there is no information available about whether elements of the biotic communities would be able to recover if the concentration of salts within secondarily salinised wetlands was lowered to levels more typical of freshwater wetlands. 2. We tested the hypothesis that dormant eggs of zooplankton are able to persist in wetlands with elevated salinities for extended periods of time by using zooplankton communities that had developed in mesocosms exposed to either salt concentrations of 13 500 mg L?1 or freshwater (<300 mg L?1) for a period of 22 months. We measured the response of the zooplankton community as concentration was reduced along a gradient of decreasing salinity from 13 500 mg L?1 to freshwater. 3. In the freshwater mesocosms, the zooplankton community was abundant and taxon rich. In comparison at the start of the experiment in the high salinity mesocosms, the zooplankton community had low abundances and very few taxa. Numbers remained low in these mesocosms until salinity was reduced to <2500 mg L?1. Below this, there was a rapid increase in the abundance, and richness of zooplankton and communities became similar to the communities in the freshwater mesocosms. 4. These results indicate that dormant eggs of zooplankton are able to persist in wetlands exposed to high salinity levels for up to 22 months and provide a means for zooplankton communities to rapidly respond once a wetland returns to freshwater. 5. It is likely that if the underlying causes of secondary salinisation in wetlands are addressed, it will be possible to undertake restoration activities that allow the rapid return of some components of their biotic communities.  相似文献   

8.
Changhao Jin 《Hydrobiologia》2008,598(1):257-270
Freshwater wetlands worldwide are under threat from secondary salinisation and climate change. Given that many freshwater wetlands naturally have highly variable hydrology, it is important to understand the combined effects of salinity and water regime on wetland biodiversity. Here a mathematical model has been developed to explore the biodiversity dynamics of freshwater wetland ecosystems affected by secondary salinisation and seasonal hydrology variation. The model shows that seasonal hydrological change can drive the wetland ecosystem into a stable oscillatory state of biodiversity, with the same period as the wetting and drying cycle. The initial condition of a wetland mediates the ecological response of the wetland ecosystem to salinity and seasonal variability. There are two manifestations of stability that occur in relation to wetland biodiversity: monostability and bistability. In model simulations, some wetland ecosystems may respond to the effects of seasonal change quickly, while others may do so more slowly. In ‘slow response’ wetlands, seasonal variability has a weak impact on the ecosystem properties of stability, resilience, sensitivity and the species richness–mean salinity relationship. In contrast, ‘fast response’ wetlands are seasonally controlled heavily. Seasonal variability can play a critical role in determining ecosystem properties. Changes in the strength of seasonality can induce the transition between monostability and bistability. Seasonal variability may also reduce wetland resilience, exacerbating the risk of secondary salinisation. On the other hand, seasonal variability may provide opportunities for the restoration of salinised wetlands by increasing their sensitivity to management actions and facilitating recovery processes. Model simulations show that the response of the stable biodiversity oscillation to changing mean salinity is dependent on seasonality strength (primarily for fast response wetlands) and other wetland conditions. Generally, there are two types of wetland responses to changes in mean salinity: type 1 wetlands exhibit a graded response of species richness (a surrogate for biodiversity), whereas a hysteretic response occurs in type 2 wetlands. Species diversity displays critical behaviour: regime shifts in diversity occur at the thresholds of mean salinity, strength of seasonality or initial species diversity. The predictions are consistent with previously-published field observations in salinised freshwater wetlands. Handling editor: D. Hamilton  相似文献   

9.
Biodiversity of constructed wetlands for wastewater treatment   总被引:3,自引:0,他引:3  
Constructed wetlands are often built for wastewater treatment to mitigate the adverse effects of organic pollution in streams and rivers caused by inputs of municipal wastewater. However, there has been little analysis of biodiversity and related factors influencing the ecosystem functioning of constructed wetlands. The purpose of this study was to evaluate the biodiversity of two free-water-surface integrated constructed wetlands in subtropical Taiwan by analyzing the water quality, habitat characteristics, and biotic communities of algae, macrophytes, birds, fish, and aquatic macroinvertebrates in the treatment cells. Our results indicated that the two integrated constructed wetlands (Hsin-Hai II and Daniaopi Constructed Wetlands) achieved good performance in reducing the concentrations of total nitrogen (TN) and total phosphorus (TP), and loadings of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) from municipal sewage. In total, 58 bird species, 7 fish species, and 34 aquatic macroinvertebrate taxa were recorded in the two wetlands. The results of stepwise multiple regressions showed that the richness, abundance, and diversity of birds increased with wetland area. Fish richness and abundance respectively increased with wetland area and dissolved oxygen, while the diversity decreased with increases in TP concentrations. The richness and density of aquatic macroinvertebrates increased with the cover of aquatic macrophytes, while the diversity increased with wetland area. Ordination analyses indicated that variations in the community structures of birds, fishes, and aquatic macroinvertebrates were respectively best explained by water temperature, wetland area, and species richness of fish. Our results suggest that wetland area, cover of aquatic macrophytes, and water quality were the most important factors governing the diversity in the constructed wetlands, and that the factors influencing community structures varied among different taxonomic groups. In addition to improving water quality, this study implied that the biodiversity of constructed wetlands for wastewater treatment can be enhanced through proper design and management.  相似文献   

10.
1. Reinstating more natural water regimes is often a priority intervention to rehabilitate wetlands that have been degraded through anthropogenic changes to their natural wetting and drying cycles. Hydrological interventions are often made in chronically desiccated wetlands but less commonly in wetlands that have been permanently inundated and that require a drawdown phase for rehabilitation. Reports on the effectiveness of reinstating a drawdown phase in chronically inundated wetlands are particularly rare. 2. We undertook a landscape‐scale, experimental drawdown of water levels at Dowd Morass, a large, Ramsar‐listed, brackish‐water wetland in south‐eastern Australia that had been artificially flooded for 30+ years. During the hydrological manipulation, c. 500 ha of the wetland was drawn down and re‐flooded, and the remaining c. 1000 ha was used as a control site. Fringing areas with a fluctuating water regime were used as a reference site. Results were analysed in terms of gradient analysis, by classifying the different water regimes created by the hydrological interventions. The response of wetland vegetation was measured along replicated transects over a 4‐year period, before, during and after drawdown. Wetland plants were assigned to plant functional groups for analysis. Assembly theory and knowledge of life‐history traits were used to predict that drawdown would promote recruitment of plant species that required exposed sediment for germination and seedling establishment. 3. Within‐wetland microtopography interacted with the hydrological interventions to generate three distinct water regimes, which were differentiated by the spatial extent of exposed sediment and duration of the dry period. Drawdown promoted limited recruitment of some plant species, and the survival of cohorts then depended strongly on the extent and duration of the dry period. Species richness and vegetation cover (understorey and overstorey) continued to decline in constantly flooded areas of the wetland. Increased salinisation of sediments and surface waters reduced the effectiveness of the drawdown and dramatically affected species richness and cover of aquatic vegetation, which did not recover fully when fresher conditions returned. 4. The capacity of vegetation to respond to the reinstatement of a drawdown cycle following chronic inundation was constrained by abiotic (e.g. salinity) and biotic (e.g. depauperate seedbanks) factors. Reinstating a dry phase in chronically inundated, brackish‐water wetlands is complex and risky and may not effectively improve vegetation condition in the short term. In the case of Dowd Morass, rehabilitation was most successful in sites that had been shallowly flooded prior to drawdown and that remained dry for longest.  相似文献   

11.
THE NORFOLK BROADLAND: EXPERIMENTS IN THE RESTORATION OF A COMPLEX WETLAND   总被引:8,自引:0,他引:8  
1. The Norfolk Broadland comprises wide river valleys, floored with deep deposits of peat and clay. Over forty mediaeval peat pits (the Broads) became flooded after the fourteenth century and were mostly connected with the rivers by navigation channels. Between about 1400 A.D. and 1800 A.D. the valleys supported a diverse wetland ecosystem, partly maintained by deliberate cropping of wetland plants. Some of the wetland was gravity-drained, but extensive aquatic habitats held diverse fens and submerged vegetation dominated by short-growing aquatic plants in very clear water. 2. The Enclosure Acts passed around 1800 encouraged more intensive agriculture in the catchments and this, coupled with pumped drainage, particularly of the wetlands in the lower valleys, caused them to sink and so they were embanked against the rivers. The drained land, intersected by channels (dykes), was grazed. 3. In the late nineteenth century, migration of human populations to the towns led to pressures for improved sewage disposal; consequently, increasing amounts of raw sewage, and later, treated effluent, both major sources of phosphorus, were discharged to the rivers and Broads, which were thus progressively eutrophicated. Agricultural changes led to an increased nitrogen supply. A tourist boating industry also began then. 4. Increasing eutrophication caused replacement of low-growing submerged aquatic plants together with ranker species, and then, particularly after the Second World War, submerged plants were lost from much of the waterway and replaced by phytoplankton-dominated communities. The mechanism by which this change took place concerns growth of epiphytic and filamentous algal communities and probably interactions with phytoplankton-grazing animals associated with the plants. The loss of submerged plants is linked with decreased invertebrate diversity, and changes in fish and water bird populations. Eutrophication is also associated with fish-kills caused by a toxic flagellate, Prymnesium parvum, oubreaks of avian botulism and decreased fen diversity through flooding with enriched water. Increased boat activity has led to severe bank erosion. Erosion is exacerbated by loss of bank protection, because of loss of submerged plants and of fringing reedswamp through damage by coypu, an exotic rodent. 5. Lack of labour-intensive management of the undrained fens has led to a decrease in their diversity, through natural succession to alder swamp. 6. Restoration of an aquatic-plant-dominated waterway is desirable and has been attempted through various means of reducing phosphorus input. Complete isolation of Broads or dykes has proved generally useful, but complications with release of phosphate from sediments, though such release eventually declines, are delaying success of an attempt to reduce phosphorus levels by precipitation of phosphorus from sewage effluent. Such a technique is the only one widely practicable in Broadland. 7. Simple nutrient reduction may not always be sufficient to cause a return from phytoplankton-dominated, turbid water to clear water with aquatic plants. It may be necessary to reinstate a higher intensity of zooplankton grazing than at present possible because of predation of grazers by fish in a habitat lacking refuges for the zooplankton from such predation. 8. The drained grazing marshes contain, in their dykes, a rich aquatic plant and invertebrate community, and provide nesting sites and grazing for birds. Changed political and economic factors may lead to future diminution of these communities through intensified drainage for arable cultivation.  相似文献   

12.
Many rivers and wetlands in south-western Australia are threatened by salinisation due to rising saline watertables, which have resulted from land clearing and the replacement of deep-rooted perennial species with shallow-rooted annual species. A four to six weekly sampling program of water quality, submerged macrophytes and macroinvertebrates was undertaken at six wetlands, from September 2002 to February 2004, to investigate seasonal variation in a range of primary and secondary saline systems. The wetlands dried and filled at different times in response to local rainfall patterns, and salinities varied accordingly with evapoconcentration and dilution. Two types of clear-water wetlands were recognised; those dominated by submerged aquatic macrophytes (Ruppia, Lepilaena and Lamprothamnium) and those dominated by benthic microbial communities. Two types of turbid wetlands were also recognised; those with high concentrations of phytoplankton and those with high concentrations of suspended sediments. A primary saline lake and two lakes that have only recently been affected by secondary salinisation persisted in a clear, macrophyte-dominated regime throughout most of the study period, except during drying and filling. Two lakes with a long history of secondary salinisation (70 years) moved between regimes over the study period. A clear, benthic microbial community – dominated regime only persisted at the wetland which contained permanent water throughout the study period. The turbid regimes were only present during drying and refilling phases. A richer and more abundant macroinvertebrate fauna was associated with the clear, macrophyte- dominated wetlands. Our results suggest that the development of management guidelines that recognise the presence of different ecological regimes and that consider the interactions between water regime, salinity, and primary and secondary production will be more useful in protecting biodiversity and ecological function in these systems than managing salinity as a single factor.  相似文献   

13.
Aquatic plant communities in arid zone wetlands underpin diverse fauna populations and ecosystem functions yet are relatively poorly known. Erratic flooding, drying, salinity and turbidity regimes contribute to habitat complexity, creating high spatial and temporal variability that supports high biodiversity. We compared seed bank density, species richness and community composition of aquatic plants (submergent, floating-leaved and emergent) among nine Australian arid zone wetlands. Germinable seed banks from wetlands within the Paroo and Bulloo River catchments were examined at nested scales (site, wetland, wetland type) using natural flooding and salinity regimes as factors with nondormant seed density and species richness as response variables. Salinity explained most of the variance in seed density (95%) and species richness (68%), with flooding accounting for 5% of variance in seed density and 32% in species richness. Salinity-flooding interactions were significant but explained only a trivial portion of the variance (<1%). Mean seed densities in wetlands ranged from 40 to 18,760 m−2 and were highest in wetlands with intermediate levels of salinity and flooding. Variability of densities was high (CVs 0.61–2.66), particularly in saline temporary and fresh permanent wetlands. Below salinities of c. 30 g l−1 TDS, seed density was negatively correlated to turbidity and connectivity. Total species richness of wetlands (6–27) was negatively correlated to salinity, pH and riverine connectivity. A total of 40 species germinated, comprising submergent (15 species), floating-leaved or amphibious (17 species), emergent (6 species) and terrestrial (6 species) groups. Charophytes were particularly important with 10 species (five Chara spp., four Nitella spp. and Lamprothamnium macropogon), accounting for 68% of total abundance. Saline temporary wetlands were dominated by Ruppia tuberosa, Lamprothamnium macropogon and Lepilaena preissii. Variable flooding and drying regimes profoundly altered water quality including salinity and turbidity, producing distinctive aquatic plant communities as reflected by their seed banks. This reinforces the importance of hydrology in shaping aquatic biological communities in arid systems.  相似文献   

14.
Summary Many floodplain wetlands in south‐eastern Australia have become isolated from the main river channel as a consequence of reduced high flows and associated flood events following river regulation. In the Central Murray region of south‐eastern Australia, many temporary wetlands would have received water once every five years or so, with large floods maintaining floodplain connectivity every decade, under natural conditions. Now, the River Murray is highly regulated and many of these wetland areas have not been flooded for periods of up to 30 years. Consequently, these wetlands are becoming degraded and the biodiversity of the area is in decline. From 2001–2003, 21 Black Box depression wetlands in the Central Murray region were each watered once. Plant communities in each wetland were monitored for changes in abundance (assessed as percentage cover) before and during the wetting and drying phases. Wetlands were watered during spring or early summer with the length of inundation ranging from 6 to 19 weeks. After watering, the percentage cover of native plant taxa and native plant functional groups in most wetlands increased. In general, there was a decrease in the percentage number of terrestrial plants present and an increase in the percentage cover of aquatic plants. Introduced species were a minor component. Although these wetlands are all located in the Central Murray region, individual wetlands developed plant communities that contained taxa specific to individual wetlands despite initial similarities. These results indicate that wetland plant biodiversity within the landscape can be promoted and maintained by ensuring there is a diversity of wetlands with varying flood regimes within the landscape.  相似文献   

15.
Secondary salinisation is recognised worldwide as a threat to aquatic biodiversity. Wetlands in the Wheatbelt Region of Western Australia are particularly affected as a result of clearing of deep-rooted native vegetation for agriculture. Between 1996 and 2001, the Western Australian government nominated six natural diversity recovery catchments (NDRCs), being catchments with high value and diverse wetlands in need of protection. One, the Buntine–Marchagee NDRC, supports approximately 1000 wetlands in varying states of salinisation. The challenge is to prioritise these wetlands for ongoing management. In this paper we propose an approach to prioritise representative wetlands using aquatic invertebrates. On the basis of hydrology, salinity and remnant vegetation, 20 wetlands covering a range of salinities were selected for sampling of water quality and aquatic invertebrates. Of the 202 taxa recorded, most endemic taxa occurred in fresh/brackish wetlands, while hypersaline wetlands supported predominantly cosmopolitan species. Taxa richness was greater in fresh/brackish than saline and hypersaline wetlands, with conductivity explaining 83 % of between-wetland variation in taxa richness. Classification using invertebrate assemblages separated fresh/brackish, saline and hypersaline wetlands, with greatest between-year variability within saline and hypersaline sites. Wetlands were ranked using taxa diversity, presence of conservation-significant taxa and temporal similarity. Mean rank across indices provided the final overall order of priority. Hypersaline wetlands were ordered separately to the fresher water wetlands (fresh/brackish and saline) so that priority for future management was detailed for both types of wetlands. The analysis indicated that although fresh/brackish sites support the highest biodiversity, naturally saline sites also supported wetland assemblages worthy of ongoing protection.  相似文献   

16.
Proper management techniques on moist-soil wetlands provide methods for enhancement of established wetlands, restoration of former wetlands, and creation of new wetland habitat. These techniques also create suitable wetland habitat for non-breeding waterfowl and other wetland dependent species during winter. To understand moist-soil managed wetland vegetative patterns, aspects such as plant species distribution, reproductive strategy, seed bank composition and viability should be thoroughly characterized. We investigated soil seed bank potential of moist-soil managed wetlands on Richland Creek Wildlife Management Area, Texas to determine which treatment (i.e., drawdown or flooded) produced the most desirable moist-soil plants. A total of 27 species germinated, producing 3,731 and 3,031 seedlings in drawdown and flooded treatments, respectively. There were also differences in stem densities between treatments of desirable and non-desirable species. Drawdown treatments had more seedlings germinate than flooded treatments, validating the notion that drawdown treatments provide favorable conditions for seed germination. Drawdown and flooding techniques, when properly timed, will allow managers to drive and directly influence managed wetland plant communities based on seed bank composition and response to presence or absence of water during the germination period.  相似文献   

17.
Great Lakes coastal wetlands are widely recognized as areas of concentrated biodiversity and productivity, but the factors that influence diversity and productivity within these systems are largely unknown. Several recent studies have suggested that the abundance and diversity of flora and fauna in coastal wetlands may be related to distance from the open water/macrophyte edge. We examined this possibility for three faunal groups inhabiting a coastal wetland in Saginaw Bay, Lake Huron. We sampled crustacean zooplankton and benthic macro-invertebrates at five distances from open water in the summer 1994, and fish at three distances from open water in 1994 and 1995. We found significant spatial trends in the total abundance and diversity of zooplankton and fish, as well as the diversity of benthic macro-invertebrates. Zooplankton abundance and taxa richness were highest at intermediate distances from open water in a transition zone between the well-mixed bayward portion of the wetland, and the non-circulating nearshore area. Benthic macro-invertebrate taxa richness increased linearly with distance from open water. In contrast, fish abundance and species richness declined linearly and substantially (abundance by 78%, species richness by 40%) with distance from open water. Of the 40 taxa examined in this study, 21 had significant horizontal trends in abundance. This led to notable differences in community composition throughout the wetland. Our results suggest that distance from open water may be a primary determinant of the spatial distributions of numerous organismal groups inhabiting this coastal wetland. Several possible reasons for these distributions are discussed.  相似文献   

18.
1. A long‐lived bank of propagules consisting of eggs, seeds and spores is one mechanism that allows aquatic communities to survive drought. A drying (drought) event is, for aquatic organisms in a temporary wetland, a phase from which communities must recover. Such a dry phase is often considered a disturbance but should not be considered adverse or catastrophic for the organisms that have evolved to live in temporarily wet habitats. 2. This paper explores the parallels between the egg bank of zooplankton and the seed bank of aquatic plants as means of survival in temporary wetlands. The resilience of communities in temporary wetland ecosystems is assessed by examining dormancy, hatching, germination, establishment and reproduction of animals and plants from the egg and seed banks of wetlands with a range of wetting and drying regimes. 3. Both the zooplankton and aquatic plants of the temporary wetlands studied rely on their egg and seed banks as a means for surviving drying. These communities recover after the disturbance of drying by means of specific patterns of dormancy, dormancy breakage, hatching, germination, establishment and reproduction. Spatial and temporal patterns of species richness allow resilience through dormancy, as not all species are present at all sites and not all species hatch and germinate at the same time. Multiple generations in the egg and seed bank and complexity of environmental cues for dormancy breakage also contribute to the ecosystem's ability to recover after a drying event. A persistent egg and seed bank allows species‐rich communities to hatch, germinate and develop rapidly once dormancy is broken. Rapid establishment of species‐rich communities that reproduce rapidly and leave many propagules in the egg and seed bank also facilitates community recovery on flooding of a temporary wetland after a drying event. 4. To maintain the diversity of temporary wetland communities through droughts and floods we need to manage the dry and wet phases of wetlands. To conserve a wide range of wetland types, we need to maintain a variety of hydrological patterns across the landscape.  相似文献   

19.
The objective of this study was to characterize the zooplankton and phytoplankton assemblages of four different types of wetlands and to evaluate their use as environmental indicators. Total abundances, community composition, and species diversity were evaluated for zooplankton and phytoplankton assemblages from 24 wetlands and related to water quality variables. During August 1995, six representative sites were sampled from four types of wetlands designated as constructed, impacted, non-impacted, or temporary. The plankton assemblages of all wetlands were dominated by cosmopolitan crustacean, rotifer, and phytoplankton taxa typical of lake plankton communities. Species diversity, richness, and evenness of zooplankton and phytoplankton assemblages did not differ significantly among the wetland types. Total zooplankton abundance was significantly (p < 0.01) related to chlorophyll a and total phosphorus concentrations over the range of trophic conditions. Mean zooplankton densities and phytoplankton biovolumes were similar among the wetlands, however, the relative abundances of major zooplankton groups differed among the wetland types. Cyanophytes, primarily Oscillatoria spp., were a major component of the phytoplankton across all four wetland types, and were significantly more abundant within the constructed and temporary sites. On average, rotifers accounted for 79% of total zooplankton abundance within the constructed wetlands and were much less dominant in the non-impacted and temporary wetlands. Cladoceran, copepodite, and adult copepod concentrations were low in the constructed and impacted wetlands and increased in the non-impacted and temporary wetlands in conjunction with increased chlorophytes and cryptophytes. Our preliminary survey suggests that abiotic factors which are known to directly affect phytoplankton may indirectly affect zooplankton composition in such a way as to use zooplankton assemblages as indicators of water quality. However, further study incorporating seasonal dynamics and the influence of predators on zooplankton assemblages is needed to fully assess the use of zooplankton community composition as an environmental indicator for wetland systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
R.J. Flower 《Aquatic Ecology》2001,35(3-4):261-280
The CASSARINA Project is a co-ordinated joint study of recent environmental change in North African wetland lakes. Nine primary sites were selected for detailed study comprising three sites in each of Morocco, Tunisia and Egypt. Multi-disciplinary studies were undertaken by scientists from each of these countries working in co-operation with colleagues in the UK and Norway. The detailed results are presented in a consecutive suite of papers that describe both modern ecosystem attributes and the recent environmental histories of each site. This paper presents an overview of the aims, structure and initial results of the project.Modern site attributes measured were water quality and phytoplankton (Fathi et al., 2001), zooplankton (Ramdani et al., 2001b), fish (Kraïem et al., 2001) and littoral vegetation (Ramdani et al., 2001a). Baseline water quality data showed that one site (Megene Chitane) was acid with low salinity but the others had high alkalinities with varying degrees of brackishness. All the sites tended to be eutrophic and the phytoplankton was mainly dominated by green or blue-green algae. Where fish were present, growth rates were high with marginally highest rates in the Egyptian Delta lakes (Kraïem et al., 2001). Marginal vegetation surveys showed that emergent macrophytes were still extensive only in the Delta lakes (Ramdani et al., 2001a) where they form important refuges and restrict water pollution. In 1998, one Moroccan wetland lake (Merja Bokka) was drained completely for cultivation.Site specific environmental change records for the 20th century period were obtained using palaeolimnological techniques. Sediment core chronologies (Appleby et al., 2001) were based mainly on radio-isotopes (210Pb and 137Cs). Sedimentary remains of aquatic biota, diatoms, zooplankton, higher plants and benthic animals (Flower et al., 2001; Ramdani et al., 2001c; Birks et al., 2001a) and pollen (Peglar et al., 2001) were investigated (Birks et al., 2001b). Major differences in past species abundances were found and were interpreted in terms relevant to biodiversity and water quality/availability change. Metals and pesticide residues in sediment cores indicated that lake contamination was generally lower than in some European sites but some DDE profiles showed a close correspondence with known usage histories (Peters et al., 2001).Hydrological changes affecting water quality and availability mainly arose from land-use intensification during the 20th century and are shown to be the main driver of biodiversity disturbance at all nine CASSARINA sites. Summarizing floristic and faunistic changes using species richness values indicated that freshening of the Delta lakes during this century generally increased aquatic diversity. Species richness also increased during the final drainage of Bokka but tended to decline in acid Chitane. Modern sampling showed that phytoplankton and epiphytic diatom diversity was higher in the Delta lakes but this was not so for zooplankton. Each biological group reacted differently to environmental disturbance and this lack of concordance makes overall diversity changes difficult to predict.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号