首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eotaxin-1/CCL11, eotaxin-2/CCL24, and eotaxin-3/CCL26 bind specifically and exclusively to CC chemokine receptor (CCR) 3, which is a potential therapeutic target in treating the peribronchial eosinophilia associated with allergic airway diseases. Bronchial epithelial cells represent an important source of chemokines, and thus we investigated in vitro and in vivo expression of eotaxin-2 and eotaxin-3 in bronchial epithelial cells in comparison with that of eotaxin-1. Immunohistochemistry showed increased expression of both eotaxin-2 and eotaxin-3 in addition to eotaxin-1 in asthmatics. Considerable amounts of eotaxins were secreted by bronchial epithelial lineage. As with eotaxin-1 production, generation of eotaxin-2 and eotaxin-3 by bronchial epithelial cells was up-regulated by IL-4 and IL-13, and attenuated by IFN-gamma and glucocorticoids. In addition to eotaxin-1 expression, but also eotaxin-2 and eotaxin-3 expression in the bronchial epithelium should be taken into consideration when developing the therapeutic strategies to treat eosinophilic airway diseases.  相似文献   

2.
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a clinical complication caused by primary or secondary lung injury, as well as by systemic inflammation. Researches regarding molecular pathophysiology of ALI/ARDS are immerging with an ultimate aim towards developing prognostic molecular biomarkers and molecule-based therapy. However, the molecular mechanisms concerning ALI/ARDS are still not completely understood. The purpose of the present study was to identify a crucial role of CCN1 in inflammatory microenvironment during ALI/ARDS and focus on a potential communication between CCN1 and interleukin-6 (IL-6) in the airway epithelial cells. Our data illustrated that the expression levels of CCN1 and IL-6 in bronchoalveolar lavage fluid (BALF) in a lipopolysaccharide (LPS)-induced ALI mouse model were significantly elevated and the pulmonary expression of CCN1 was restricted to bronchial epithelial cells. Interestingly, both endogenous and exogenous CCN1 stimulated IL-6 production in vitro. Furthermore, LPS-induced IL-6 production in a bronchial epithelial cell line was blocked by CCN siRNA whereas CCN1 induced by LPS was sensitive to PI3K inhibition. Together, our data indicate a linear signal pathway, LPS-CCN1-IL-6, existing in bronchial epithelial cells after LPS exposure. This finding may represent an additional mechanism and a novel target for development of therapy and biomarker on ALI/ARDS.  相似文献   

3.
The molecular mechanisms by which arsenic (As3+) causes human cancers remain to be fully elucidated. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb-repressive complexes 2 (PRC2) that promotes trimethylation of lysine 27 of histone H3, leading to altered expression of tumor suppressors or oncogenes. In the present study, we determined the effect of As3+ on EZH2 phosphorylation and the signaling pathways important for As3+-induced EZH2 phosphorylation in human bronchial epithelial cell line BEAS-2B. The involvement of kinases in As3+-induced EZH2 phosphorylation was validated by siRNA-based gene silencing. The data showed that As3+ can induce phosphorylation of EZH2 at serine 21 in human bronchial epithelial cells and that the phosphorylation of EZH2 requires an As3+-activated signaling cascade from JNK and STAT3 to Akt. Transfection of the cells with siRNA specific for JNK1 revealed that JNK silencing reduced serine727 phosphorylation of STAT3, Akt activation and EZH2 phosphorylation, suggesting that JNK is the upstream kinase involved in As3+-induced EZH2 phosphorylation. Because As3+ is capable of inducing miRNA-21 (miR-21), a STAT3-regulated miRNA that represses protein translation of PTEN or Spry2, we also tested the role of STAT3 and miR-21 in As3+-induced EZH2 phosphorylation. Ectopic overexpression of miR-21 promoted Akt activation and phosphorylation of EZH2, whereas inhibiting miR-21 by transfecting the cells with anti-miR-21 inhibited Akt activation and EZH2 phosphorylation. Taken together, these results demonstrate a contribution of the JNK, STAT3 and Akt signaling axis to As3+-induced EZH2 phosphorylation. Importantly, these findings may reveal new molecular mechanisms underlying As3+-induced carcinogenesis.  相似文献   

4.
5.
Human bronchial epithelial cells exposed to synthetic double-stranded RNA (poly I:C) exhibited increased IL-6 and RANTES secretion and TLR2 expression that was inhibited following TLR3 silencing. Increased NF-κB and Stat3 phosphorylation were detected after poly I:C exposure and pretreatment with neutralizing antibody targeting IL-6 receptor α (IL-6Rα -nAb) or blocking Jak2 and Stat3 activity inhibited Stat3 phosphorylation. TLR2 up-regulation by poly I:C was also reduced by IL-6Rα-nAb and inhibitors of Jak2, Stat3 and NF-κB phosphorylation, whereas RANTES secretion was unaffected, but abolished following NF-κB inhibition. Treatment with exogenous IL-6 failed to increase TLR2. These findings demonstrate that TLR3 activation differentially regulates TLR expression through autocrine signaling involving IL-6 secretion, IL-6Rα activation and subsequent phosphorylation of Stat3. The results also indicate that NF-κB and Stat3 are required for TLR3-dependent up-regulation of TLR2 and that its delayed expression was due to a requirement for IL-6-dependent Stat3 activation.  相似文献   

6.
7.
Abonyo BO  Lebby KD  Tonry JH  Ahmad M  Heiman AS 《Cytokine》2006,36(5-6):237-244
Airway epithelial inflammation associated with emphysema, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and asthma is regulated in part by alveolar type II cell chemokine signaling. Data suggest that resident lung cells use CCR3, CCR5 and CCR2 chemokine receptor/ligand systems to regulate the profile of leukocytes recruited in disease-associated inflammatory conditions. Thus studies were designed to test whether alveolar type II cells possess a Th1-activated CCR5-ligand system that modulates the Th2-activated CCR3/eotaxin-2 (CCL24), eotaxin-3 (CCL26) chemokine systems. The A549 alveolar type II epithelial-like cell culture model was used to demonstrate that alveolar type II cells constitutively express CCR5 which may be upregulated by MIP-1alpha (CCL3) whose expression was induced by the Th1 cytokines IL-1beta and IFN-gamma. Selective down-regulation of CCL26, but not CCL24, was observed in CCL3 and IL-4/CCL3 stimulated cells. Down-regulation was reversed by anti-CCR5 neutralizing antibody treatment. Thus, one mechanism through which Th1-activated CCCR5/ligand pathways modulate Th2-activated CCR3/ligand pathways is the differential down-regulation of CCL26 expression. Results suggest that the CCR3 and CCR5 receptor/ligand signaling pathways may be important targets for development of novel mechanism-based adjunctive therapies designed to abrogate the chronic inflammation associated with airway diseases.  相似文献   

8.
《Cytokine》2007,37(5-6):237-244
Airway epithelial inflammation associated with emphysema, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and asthma is regulated in part by alveolar type II cell chemokine signaling. Data suggest that resident lung cells use CCR3, CCR5 and CCR2 chemokine receptor/ligand systems to regulate the profile of leukocytes recruited in disease-associated inflammatory conditions. Thus studies were designed to test whether alveolar type II cells possess a Th1-activated CCR5-ligand system that modulates the Th2-activated CCR3/eotaxin-2 (CCL24), eotaxin-3 (CCL26) chemokine systems. The A549 alveolar type II epithelial-like cell culture model was used to demonstrate that alveolar type II cells constitutively express CCR5 which may be upregulated by MIP-1α (CCL3) whose expression was induced by the Th1 cytokines IL-1β and IFN-γ. Selective down-regulation of CCL26, but not CCL24, was observed in CCL3 and IL-4/CCL3 stimulated cells. Down-regulation was reversed by anti-CCR5 neutralizing antibody treatment. Thus, one mechanism through which Th1-activated CCCR5/ligand pathways modulate Th2-activated CCR3/ligand pathways is the differential down-regulation of CCL26 expression. Results suggest that the CCR3 and CCR5 receptor/ligand signaling pathways may be important targets for development of novel mechanism-based adjunctive therapies designed to abrogate the chronic inflammation associated with airway diseases.  相似文献   

9.
10.
11.
12.
13.
14.
Chronic bronchitis, a disease mainly of cigarette smokers, shares many clinical features with cystic fibrosis, a disease of altered ion transport, suggesting that the negative effects of cigarette smoke on mucociliary clearance may be mediated through alterations in ion transport. We tested the hypothesis that cigarette smoke extract would inhibit chloride secretion in human bronchial epithelial cells. In agreement with studies in canine trachea, cigarette smoke extract inhibited net chloride secretion without affecting sodium transport. We performed microelectrode impalements and impedance analysis studies to investigate the physiological mechanisms of this inhibition. These data demonstrated that cigarette smoke extract caused an acute increase in membrane resistances in conjunction with apical membrane hyperpolarization, an effect consistent with inhibition of an apical membrane anion conductance. After this acute phase, both membrane resistances decreased while membrane potentials continued to hyperpolarize, indicating that cigarette smoke extract also inhibited the basolateral entry of chloride into the cell. Furthermore, cigarette smoke extract caused an increase in mucin secretion. Therefore, the ion transport phenotype of human bronchial epithelial cells exposed to cigarette smoke extract is similar to that of cystic fibrosis epithelia in which there is sodium absorption out of proportion to chloride secretion in the setting of increased mucus secretion.  相似文献   

15.
16.
We have previously reported that cigarette smoke can induce DNA damage in human lung cells without leading to apoptosis or necrosis. In this study, we report that STAT3 is required for the survival of human bronchial epithelial cells (HBECs) following cigarette smoke-induced DNA damage. Cigarette smoke extract (CSE) exposure increases STAT3 phosphorylation (Tyr 705) and DNA binding activity in HBECs. CSE also stimulates IL-6 release and mRNA expression. Anti-IL-6 neutralizing antibody partially blocks STAT3 activation and renders the cells sensitive to CSE-induced DNA damage. Suppression of STAT3 by siRNA results in severe DNA damage and cell death in response to CSE exposure. These findings suggest that STAT3 mediates HBEC survival in response to CSE-induced DNA damage, at least in part, through the IL-6/STAT3 signaling pathway.  相似文献   

17.
Numerous reports suggest that IL-6 promotes survival and proliferation of multiple myeloma (MM) cells through the phosphorylation of a cell signaling protein, STAT3. Thus, agents that suppress STAT3 phosphorylation have potential for the treatment of MM. In the present report, we demonstrate that curcumin (diferuloylmethane), a pharmacologically safe agent in humans, inhibited IL-6-induced STAT3 phosphorylation and consequent STAT3 nuclear translocation. Curcumin had no effect on STAT5 phosphorylation, but inhibited the IFN-alpha-induced STAT1 phosphorylation. The constitutive phosphorylation of STAT3 found in certain MM cells was also abrogated by treatment with curcumin. Curcumin-induced inhibition of STAT3 phosphorylation was reversible. Compared with AG490, a well-characterized Janus kinase 2 inhibitor, curcumin was a more rapid (30 min vs 8 h) and more potent (10 micro M vs 100 micro M) inhibitor of STAT3 phosphorylation. In a similar manner, the dose of curcumin completely suppressed proliferation of MM cells; the same dose of AG490 had no effect. In contrast, a cell-permeable STAT3 inhibitor peptide that can inhibit the STAT3 phosphorylation mediated by Src blocked the constitutive phosphorylation of STAT3 and also suppressed the growth of myeloma cells. TNF-alpha and lymphotoxin also induced the proliferation of MM cells, but through a mechanism independent of STAT3 phosphorylation. In addition, dexamethasone-resistant MM cells were found to be sensitive to curcumin. Overall, our results demonstrated that curcumin was a potent inhibitor of STAT3 phosphorylation, and this plays a role in the suppression of MM proliferation.  相似文献   

18.
19.
Studies of regulated mucin secretion from goblet cells in primary cultures of human bronchial epithelial (HBE) cells have suffered, generally, from poor signal-to-noise ratios, with reported secretory responses of <100% (less than onefold) relative to baseline. Using, instead, HBE cells grown as xenografts in the backs of nude mice, we found that UTP (100 micro M) stimulated strong mucin secretory responses from isolated, luminally perfused preparations. The peak response (10 min) for 11 control experiments (37 xenografts) was 3.3 +/- 0.05-fold relative to baseline, and the time-integrated response (60 min) was 23.4 +/- 0.5-fold. Because responses to ATP and UTP were approximately equal, an apical membrane P2Y(2)-receptor (R) is suggested. Additionally, ADP activated mucin release from HBE xenografts, whereas UDP and 2-methlythio-ADP did not, a pattern of response inconsistent with known purinoceptors. Hence, either a novel receptor to ADP is suggested or there is significant conversion of ADP to ATP by ecto-adenylate kinase activity. Adenosine and a nitric oxide donor were without effect. Consistent with P2Y(2)-R coupling to phospholipase C, HBE xenografts responded to ionomycin and PMA; however, they were recalcitrant to forskolin and chlorophenylthio-cAMP, and to 8-bromo-cGMP. Hence, human airway goblet cells, like those of other species, appear to be regulated primarily via phospholipase C pathways, activated particularly by apical membrane P2Y(2)-R agonists.  相似文献   

20.
Met receptor tyrosine kinase mediates pleiotropic cellular responses following its activation by hepatocyte growth factor or scatter factor (HGF/SF). STAT3 was reported to be one of direct downstream molecules in HGF/SF-Met signaling. In the present study, however, we observed that Tyr705 of STAT3 was phosphorylated from 2 h or 6 h in NIH3T3 and Chang liver cells, respectively, after HGF/SF treatment. Blocking of the phosphorylation by cycloheximide or actinomycin D and the rapid STAT3 phosphorylation with the conditioned medium from HGF/SF-treated NIH3T3 cells suggested that a newly synthesized secretory protein was responsible for the delayed STAT3 phosphorylation. Among the known mediators to induce STAT3 phosphorylation, interleukin-6 (IL-6) mRNA and protein were induced by HGF/SF, and the released IL-6 was accumulated in the conditioned medium after HGF/SF treatment. Furthermore, the neutralizing IL-6 antibody abolished the STAT3 phosphorylation. Treatment with LY294002, a PI3 kinase inhibitor, but not with other signal inhibitors, resulted in the loss of delayed STAT3 phosphorylation by HGF/SF, showing the involvement of PI3 kinase pathway. Collectively, these results demonstrate that HGF/SF-Met signal cascade stimulates IL-6 production via PI3 kinase pathway, leading to STAT3 phosphorylation as a secondary effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号