首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cognitive performance at night exhibits a substantial drop, typically before dawn. One of the means of dealing with this phenomenon, as well as with the accompanying sleepiness during sustained wakefulness, is the administration of stimulants. The most widely used and well‐documented stimulants are caffeine, amphetamines, and modafinil. Of these, amphetamines are the least recommended, as they may severely affect behavior. Caffeine and modafinil seem to produce relatively milder side effects and usually only at high doses. Previous comparison studies have revealed equal efficacy of both the stimulants in maintaining alertness and performance during sustained wakefulness. However, these studies used relatively high, and thus not completely safe, doses of these drugs (600 mg caffeine and 400 mg modafinil). Therefore, the aim of the present study was to assess the efficacy of a low and medically safe dose of caffeine (200 mg) and modafinil (200 mg) in maintaining cognitive performance during sustained wakefulness. A flight simulation task was chosen for the assessment of the stimulants in a counter‐balanced, within‐subject design under four different conditions: baseline (no drugs), placebo, caffeine (200 mg), and modafinil (200 mg). The equal effectiveness of both drugs in abolishing the nocturnal drop in cognitive performance, as well as of oral temperature and blood pressure, supported the use of low doses of caffeine and modafinil for the maintenance of alertness in healthy subjects during sustained wakefulness.  相似文献   

2.
Cognitive performance at night exhibits a substantial drop, typically before dawn. One of the means of dealing with this phenomenon, as well as with the accompanying sleepiness during sustained wakefulness, is the administration of stimulants. The most widely used and well-documented stimulants are caffeine, amphetamines, and modafinil. Of these, amphetamines are the least recommended, as they may severely affect behavior. Caffeine and modafinil seem to produce relatively milder side effects and usually only at high doses. Previous comparison studies have revealed equal efficacy of both the stimulants in maintaining alertness and performance during sustained wakefulness. However, these studies used relatively high, and thus not completely safe, doses of these drugs (600 mg caffeine and 400 mg modafinil). Therefore, the aim of the present study was to assess the efficacy of a low and medically safe dose of caffeine (200 mg) and modafinil (200 mg) in maintaining cognitive performance during sustained wakefulness. A flight simulation task was chosen for the assessment of the stimulants in a counter-balanced, within-subject design under four different conditions: baseline (no drugs), placebo, caffeine (200 mg), and modafinil (200 mg). The equal effectiveness of both drugs in abolishing the nocturnal drop in cognitive performance, as well as of oral temperature and blood pressure, supported the use of low doses of caffeine and modafinil for the maintenance of alertness in healthy subjects during sustained wakefulness.  相似文献   

3.
The aim of this study was to evaluate the effects of caffeine ingestion and partial sleep deprivation on mood and cognitive and physical performances. In randomised order, 12 healthy male physical education students completed four test sessions at 18:00 h after placebo or 5 mg/kg of caffeine ingestion during a baseline night (RN) (bed time: from 22:00 to 07:00 h), or during a night of partial (four hrs) sleep deprivation (PSD). During each test session, participants performed a reaction time test, a vigilance test, the 10 s Wingate cycling test during (measuring peak power (PP) and anaerobic capacity), and the 5 m multiple shuttle test (measuring peak distance (PD), total distance (TD), and fatigue index (FI)). Compared to RN, simple reaction time, vigilance, PP, PD, TD, and FI were altered by PSD the following day after placebo ingestion with increased reaction time and FI and reduced PP, PD, TD, and vigilance (p < 0.001). Moreover, during PSD condition, PP, PD, and TD were significantly higher after caffeine ingestion in comparison with placebo ingestion (p < 0.05). However, both simple reaction times and vigilance were significantly lower after caffeine ingestion in comparison with placebo during PSD (p < 0.05). Caffeine is an effective strategy to maintain physical and cognitive performances the day after PSD.  相似文献   

4.
Previous studies have shown increased sleepiness and mood changes in shiftworkers, which may be due to sleep deprivation or circadian disruption. Few studies, however, have compared responses of experienced shiftworkers and non-shiftworkers to sleep deprivation in an identical laboratory setting. The aim of this laboratory study, therefore, was to compare long-term shiftworkers and non-shiftworkers and to investigate the effects of one night of total sleep deprivation (30.5?h of continuous wakefulness) and recovery sleep on psychomotor vigilance, self-rated alertness, and mood. Eleven experienced male shiftworkers (shiftwork ≥5 yrs) were matched with 14 non-shiftworkers for age (mean?±?SD: 35.7?±?7.2 and 32.5?±?6.2 yrs, respectively) and body mass index (BMI) (28.7?±?3.8 and 26.6?±?3.4?kg/m2, respectively). After keeping a 7-d self-selected sleep/wake cycle (7.5/8?h nocturnal sleep), both groups entered a laboratory session consisting of a night of adaptation sleep and a baseline sleep (each 7.5/8?h), a sleep deprivation night, and recovery sleep (4-h nap plus 7.5/8?h nighttime sleep). Subjective alertness and mood were assessed with the Karolinska Sleepiness Scale (KSS) and 9-digit rating scales, and vigilance was measured by the visual psychomotor vigilance test (PVT). A mixed-model regression analysis was carried out on data collected every hour during the sleep deprivation night and on all days (except for the adaptation day), at .25, 4.25, 5.25, 11.5, 12.5, and 13.5?h after habitual wake-up time. Despite similar circadian phase (melatonin onset), demographics, food intake, body posture, and environmental light, shiftworkers felt significantly more alert, more cheerful, more elated, and calmer than non-shiftworkers throughout the laboratory study. In addition, shiftworkers showed a faster median reaction time (RT) compared to non-shiftworkers, although four other PVT parameters did not differ between the groups. As expected, both groups showed a decrease in subjective alertness and PVT performance during and following the sleep deprivation night. Subjective sleepiness and most aspects of PVT performance returned to baseline levels after a nap and recovery sleep. The mechanisms underlying the observed differences between shiftworkers and non-shiftworkers require further study, but may be related to the absence of shiftwork the week prior to and during the laboratory study as well as selection into and out of shiftwork. (Author correspondence: )  相似文献   

5.
Previous studies have shown increased sleepiness and mood changes in shiftworkers, which may be due to sleep deprivation or circadian disruption. Few studies, however, have compared responses of experienced shiftworkers and non-shiftworkers to sleep deprivation in an identical laboratory setting. The aim of this laboratory study, therefore, was to compare long-term shiftworkers and non-shiftworkers and to investigate the effects of one night of total sleep deprivation (30.5 h of continuous wakefulness) and recovery sleep on psychomotor vigilance, self-rated alertness, and mood. Eleven experienced male shiftworkers (shiftwork ≥5 yrs) were matched with 14 non-shiftworkers for age (mean ± SD: 35.7 ± 7.2 and 32.5 ± 6.2 yrs, respectively) and body mass index (BMI) (28.7 ± 3.8 and 26.6 ± 3.4 kg/m(2), respectively). After keeping a 7-d self-selected sleep/wake cycle (7.5/8 h nocturnal sleep), both groups entered a laboratory session consisting of a night of adaptation sleep and a baseline sleep (each 7.5/8 h), a sleep deprivation night, and recovery sleep (4-h nap plus 7.5/8 h nighttime sleep). Subjective alertness and mood were assessed with the Karolinska Sleepiness Scale (KSS) and 9-digit rating scales, and vigilance was measured by the visual psychomotor vigilance test (PVT). A mixed-model regression analysis was carried out on data collected every hour during the sleep deprivation night and on all days (except for the adaptation day), at .25, 4.25, 5.25, 11.5, 12.5, and 13.5 h after habitual wake-up time. Despite similar circadian phase (melatonin onset), demographics, food intake, body posture, and environmental light, shiftworkers felt significantly more alert, more cheerful, more elated, and calmer than non-shiftworkers throughout the laboratory study. In addition, shiftworkers showed a faster median reaction time (RT) compared to non-shiftworkers, although four other PVT parameters did not differ between the groups. As expected, both groups showed a decrease in subjective alertness and PVT performance during and following the sleep deprivation night. Subjective sleepiness and most aspects of PVT performance returned to baseline levels after a nap and recovery sleep. The mechanisms underlying the observed differences between shiftworkers and non-shiftworkers require further study, but may be related to the absence of shiftwork the week prior to and during the laboratory study as well as selection into and out of shiftwork.  相似文献   

6.
The aim of the present study was to evaluate the effects of caffeine ingestion and partial sleep deprivation at the end of night on cognitive and physical performance. In randomised order, fourteen football players (age: 23.57 ± 1.98 years; body weight: 59.57 ± 4.29 kg; height: 174.35 ± 5.07 cm) completed four test sessions at 08:00 h: after placebo or 3 mg·kg?1 of caffeine ingestion during a reference night, RN (bed time: from 22:30 h to 07:00 h) or a night of partial sleep deprivation, PSD (bed time: from 22:30 h to 03:00 h). During each test session, participants assessed vigilance and reaction times and performed a series of tests: cancelation test, squat jumps (SJ), and the 30-s Wingate test (for the measurement of peak power, PP, and mean power, PM). During RN, results showed that PP, PM, SJ, and vigilance increased after caffeine ingestion in comparison with placebo (p < 0.001). Moreover, both simple and choice reactions were significantly better after caffeine ingestion in comparison with placebo ingestion (p < 0.05 and p < 0.001, respectively). Results showed that reaction time, vigilance, and SJ were affected by PSD, even though PP, PM, and SJ were not affected, the following day at 08:00 h. During the PSD condition, PP, PM, SJ, and vigilance were significantly higher after caffeine ingestion in comparison with placebo ingestion (p < 0.001). However, both simple and choice reaction times were significantly poorer during PSD in comparison with RN (p < 0.05 and p < 0.001, respectively). Therefore, ingesting caffeine is an effective strategy to maintain physical and cognitive performances after PSD.  相似文献   

7.
To date, studies investigating the consequences of shiftwork have predominantly focused on external (local) time. Here, we report the daily variation in cognitive performance in rotating shiftworkers under real-life conditions using the psychomotor vigilance test (PVT) and show that this function depends both on external and internal (biological) time. In addition to this high sensitivity of PVT performance to time-of-day, it has also been extensively applied in sleep deprivation protocols. We, therefore, also investigated the impact of shift-specific sleep duration and time awake on performance. In two separate field studies, 44 young workers (17 females, 27 males; age range 20-36 yrs) performed a PVT test every 2?h during each shift. We assessed chronotype by the MCTQ(Shift) (Munich ChronoType Questionnaire for shiftworkers). Daily sleep logs over the 4-wk study period allowed for the extraction of shift-specific sleep duration and time awake in a given shift, as well as average sleep duration ("sleep need"). Median reaction times (RTs) significantly varied across shifts, depending on both Local Time and Internal Time. Variability of reaction times around the 24?h mean (≈ ±5%) was best explained by a regression model comprising both factors, Local Time and Internal Time (p < .001). Short (15th percentile; RT(15%)) and long (85th percentile; RT(85%)) reaction times were differentially affected by Internal Time and Local Time. During night shifts, only median RT and RT(85%) were impaired by the duration of time workers had been awake (p?相似文献   

8.
目的:观察在睡眠剥夺条件下莫达非尼对工作记忆的改善作用,为此药在我军的应用策略提供实验依据。方法:18名健康男性志愿者,在两次睡眠剥夺实验中交叉服用莫达非尼和安慰剂,睡眠剥夺时间从第一天的07:00到第3d的07:00,并于第二天的0:00、12:00和第三天的0:00分别服用莫达非尼100mg或安慰剂。采用随机双盲设计给药,并在第一天的07:00、第二天的02:00和14:00以及第三天的02:00和07:00安排工作记忆测验。结果:工作记忆测验中,两组的反应时和正确率均有统计学差异(P<0.01),莫达非尼组的反应时要快于安慰剂组,正确率也要高于安慰剂组。莫达非尼对工作记忆的改善效果随着睡眠剥夺时间的延长而更趋明显。结论:莫达非尼对睡眠剥夺条件下个体的工作记忆有改善作用,是较为理想的睡眠剥夺对抗药物。  相似文献   

9.
The aim of this study was to determine the role played by vigilance on the anaerobic performance recorded during a Wingate test performed at the bathyphase (nadir) of the circadian rhythmicity. Twenty active male participants performed a 60-s Wingate test at 6 a.m. during 3 test sessions in counter-balanced order the day after either (i) a normal reference night, (ii) a total sleep deprivation night, or (iii) a total sleep deprivation night associated with an extended simulated driving task from 9 p.m. to 5 a.m. During this task, the number of inappropriate line crossings (ILCs) was used to control and quantify the effective decrease in the level of vigilance. The main findings show that (i) vigilance of each participant was significantly altered (i.e., a drastic and progressive increase in ILCs is shown during the 7.5 hours of driving) by the sleep deprivation night associated with an extended driving task; (ii) the subjective evaluation of vigilance performed by self-rated scale revealed an increased impairment of the vigilance level between the normal reference night, the total sleep deprivation night and the total sleep deprivation night associated with an extended driving task; and (iii) the morning following this last condition, during the Wingate test, the recorded cycling biomechanical parameters (peak power, mean power and fatigue index values, power decrease, and cycling kinetic and kinematic patterns) were not significantly different from the two other conditions. Consequently, these results show that anaerobic performances recorded during a Wingate test performed at the bathyphase of the circadian rhythmicity are not altered by a drastic impairment in vigilance. These findings seem to indicate that vigilance is probably not a factor that contributes to circadian variations in anaerobic performance.  相似文献   

10.
The alerting effects of both caffeine and short wavelength (blue) light have been consistently reported. The ability of blue light to enhance alertness and cognitive function via non-image forming neuropathways have been suggested as a non-pharmacological countermeasure for drowsiness across a range of occupational settings. Here we compare and contrast the alerting and psychomotor effects of 240 mg of caffeine and a 1-h dose of ~40 lx blue light in a non-athletic population. Twenty-one healthy subjects performed a computer-based psychomotor vigilance test before and after each of four randomly assigned trial conditions performed on different days: white light/placebo; white light/240 mg caffeine; blue light/placebo; blue light/240 mg caffeine. The Karolinska Sleepiness Scale was used to assess subjective measures of alertness. Both the caffeine only and blue light only conditions enhanced accuracy in a visual reaction test requiring a decision and an additive effect was observed with respect to the fastest reaction times. However, in a test of executive function, where a distraction was included, caffeine exerted a negative effect on accuracy. Furthermore, the blue light only condition consistently outperformed caffeine when both congruent and incongruent distractions were presented. The visual reactions in the absence of a decision or distraction were also enhanced in the blue light only condition and this effect was most prominent in the blue-eyed participants. Overall, blue light and caffeine demonstrated distinct effects on aspects of psychomotor function and have the potential to positively influence a range of settings where cognitive function and alertness are important. Specifically, despite the widespread use of caffeine in competitive sporting environments, the possible impact of blue light has received no research attention.  相似文献   

11.
DesignA strictly controlled randomized crossover study with continuous polysomnography monitoring was performed.SettingLaboratory-based study.Participants11 healthy male volunteers.InterventionsVolunteers attended two three-day sessions: “sleep restriction” alone and “sleep restriction and nap”. Each session involved a baseline night of normal sleep, a night of sleep deprivation and a night of free recovery sleep. Participants were allowed to sleep only from 02:00 to 04:00 during the sleep deprivation night. During the “sleep restriction and nap” session, volunteers took two 30-minute naps, one in the morning and one in the afternoon.ConclusionsSleep restriction induces different types of hypersensitivity to pain stimuli in different body areas, consistent with multilevel mechanisms, these changes being reversed by napping. The napping restorative effect on pain thresholds result principally from effects on pain mechanisms, since it was independent of vigilance status.  相似文献   

12.
Nathaniel Kleitman was the first to observe that sleep deprivation in humans did not eliminate the ability to perform neurobehavioral functions, but it did make it difficult to maintain stable performance for more than a few minutes. To investigate variability in performance as a function of sleep deprivation, n = 13 subjects were tested every 2 hours on a 10-minute, sustained-attention, psychomotor vigilance task (PVT) throughout 88 hours of total sleep deprivation (TSD condition), and compared to a control group of n = 15 subjects who were permitted a 2-hour nap every 12 hours (NAP condition) throughout the 88-hour period. PVT reaction time means and standard deviations increased markedly among subjects and within each individual subject in the TSD condition relative to the NAP condition. TSD subjects also had increasingly greater performance variability as a function of time on task after 18 hours of wakefulness. During sleep deprivation, variability in PVT performance reflected a combination of normal timely responses, errors of omission (i.e., lapses), and errors of commission (i.e., responding when no stimulus was present). Errors of omission and errors of commission were highly intercorrelated across deprivation in the TSD condition (r = 0.85, p = 0.0001), suggesting that performance instability is more likely to include compensatory effort than a lack of motivation. The marked increases in PVT performance variability as sleep loss continued supports the "state instability" hypothesis, which posits that performance during sleep deprivation is increasingly variable due to the influence of sleep initiating mechanisms on the endogenous capacity to maintain attention and alertness, thereby creating an unstable state that fluctuates within seconds and that cannot be characterized as either fully awake or asleep.  相似文献   

13.
《Chronobiology international》2013,30(8):1127-1138
To date, studies investigating the consequences of shiftwork have predominantly focused on external (local) time. Here, we report the daily variation in cognitive performance in rotating shiftworkers under real-life conditions using the psychomotor vigilance test (PVT) and show that this function depends both on external and internal (biological) time. In addition to this high sensitivity of PVT performance to time-of-day, it has also been extensively applied in sleep deprivation protocols. We, therefore, also investigated the impact of shift-specific sleep duration and time awake on performance. In two separate field studies, 44 young workers (17 females, 27 males; age range 20–36 yrs) performed a PVT test every 2?h during each shift. We assessed chronotype by the MCTQShift (Munich ChronoType Questionnaire for shiftworkers). Daily sleep logs over the 4-wk study period allowed for the extraction of shift-specific sleep duration and time awake in a given shift, as well as average sleep duration (“sleep need”). Median reaction times (RTs) significantly varied across shifts, depending on both Local Time and Internal Time. Variability of reaction times around the 24 h mean (≈ ±5%) was best explained by a regression model comprising both factors, Local Time and Internal Time (p < .001). Short (15th percentile; RT15%) and long (85th percentile; RT85%) reaction times were differentially affected by Internal Time and Local Time. During night shifts, only median RT and RT85% were impaired by the duration of time workers had been awake (p?<?.01, consistent with the highest sleep pressure), but not RT15%. Proportion of sleep before a test day (relative to sleep need) significantly affected median RT and RT85% during morning shifts (p?<?.01). RT15% was worst in the beginning of the morning shift, but improved to levels above average with increasing time awake (p < .05), whereas RT85% became worse (p < .05). Hierarchical mixed models confirmed the importance of chronotype and sleep duration on cognitive performance in shiftworkers, whereas the effect of time awake requires further research. Our finding that both Local Time and Internal Time, in conjunction with shift-specific sleep behavior, strongly influence performance extends predictions derived from laboratory studies. (Author correspondence: )  相似文献   

14.
《Chronobiology international》2013,30(7):1493-1508
Aviation, military, police, and health care personnel have been particularly interested in the operational impact of sleep restriction and work schedules given the potential severe consequences of making fatigue-related errors. Most studies examining the impact of sleep loss or circadian manipulations have been conducted in controlled laboratory settings using small sample sizes. This study examined whether the relationship between prior night sleep duration and performance on the psychomotor vigilance task could be reliably detected in a field study of healthy police academy recruits. Subjects (N?=?189) were medically and psychiatrically healthy. Sleep-wake activity was assessed with wrist actigraphy for 7 days. Subjects performed the psychomotor vigilance task (PVT) for 5?min on a personal digital assistant (PDA) device before and after their police academy workday and on comparable times during their days off. Mixed-effects logistic regression was used to estimate the probability of having ≥1 lapse on the PVT as a function of the previous night sleep duration during the 7 days of field testing. Valid estimates of sleep duration were obtained for 1082 nights of sleep. The probability of a lapse decreased by 3.5%/h sleep the night prior to testing. The overall probability of having a lapse decreased by 0.9%/h since awakening, holding hours of sleep constant. Perceived stress was not associated with sleep duration or probability of performance lapse. These findings demonstrate the feasibility of detecting sleep and circadian effects on cognitive performance in large field studies. These findings have implications regarding the daytime functioning of police officers. (Author correspondence: )  相似文献   

15.
It is unknown whether and how sleep deprivation influences craniofacial muscle sensitivity in healthy humans. We investigated whether total sleep deprivation (TSD) and one night of recovery sleep (RS) can alter mechanical pain sensitivity in temporal and masseter muscles. Fifteen healthy volunteers participated in three consecutive sessions. Pressure pain thresholds were measured on the temporal and masseter muscles. Both temporal and masseter muscles became sensitized after 24?h of TSD. RS reversed the muscle sensitization.  相似文献   

16.
The two-process model of sleep regulation makes accurate predictions of sleep timing and duration for a variety of experimental sleep deprivation and nap sleep scenarios. Upon extending its application to waking neurobehavioral performance, however, the model fails to predict the effects of chronic sleep restriction. Here we show that the two-process model belongs to a broader class of models formulated in terms of coupled non-homogeneous first-order ordinary differential equations, which have a dynamic repertoire capturing waking neurobehavioral functions across a wide range of wake/sleep schedules. We examine a specific case of this new model class, and demonstrate the existence of a bifurcation: for daily amounts of wakefulness less than a critical threshold, neurobehavioral performance is predicted to converge to an asymptotically stable state of equilibrium; whereas for daily wakefulness extended beyond the critical threshold, neurobehavioral performance is predicted to diverge from an unstable state of equilibrium. Comparison of model simulations to laboratory observations of lapses of attention on a psychomotor vigilance test (PVT), in experiments on the effects of chronic sleep restriction and acute total sleep deprivation, suggests that this bifurcation is an essential feature of performance impairment due to sleep loss. We present three new predictions that may be experimentally verified to validate the model. These predictions, if confirmed, challenge conventional notions about the effects of sleep and sleep loss on neurobehavioral performance. The new model class implicates a biological system analogous to two connected compartments containing interacting compounds with time-varying concentrations as being a key mechanism for the regulation of psychomotor vigilance as a function of sleep loss. We suggest that the adenosinergic neuromodulator/receptor system may provide the underlying neurobiology.  相似文献   

17.
Leon Tetreault 《CMAJ》1964,91(2):61-66
The subjective effects of dextroamphetamine, methylphenidate and placebo were evaluated in 16 medical students during the period just prior to their final oral examinations. The subjects served as their own controls. The order of administration of the three medications for each student was randomized, and a double-blind technique was used throughout. A questionnaire method was employed for the collection of results, which proved to be a useful and effective means. It demonstrated that dextroamphetamine, methylphenidate and placebo were statistically different from one another with regard to their effect on efficiency of studying, fatigue, duration of sleep and appetite. There were also significant differences in the number of side effects caused by the three medications. The stimulants, however, did not increase the number of study hours, nor was their use recommended by the students when preparing for important examinations.  相似文献   

18.
Nurses working 12-h shifts complain of fatigue and insufficient/poor-quality sleep. Objectively measured sleep times have not been often reported. This study describes sleep, sleepiness, fatigue, and neurobehavioral performance over three consecutive 12-h (day and night) shifts for hospital registered nurses. Sleep (actigraphy), sleepiness (Karolinska Sleepiness Scale [KSS]), and vigilance (Performance Vigilance Task [PVT]), were measured serially in 80 registered nurses (RNs). Occupational fatigue (Occupational Fatigue Exhaustion Recovery Scale [OFER]) was assessed at baseline. Sleep was short (mean 5.5?h) between shifts, with little difference between day shift (5.7?h) and night shift (5.4?h). Sleepiness scores were low overall (3 on a 1-9 scale, with higher score indicating greater sleepiness), with 45% of nurses having high level of sleepiness (score >?7) on at least one shift. Nurses were progressively sleepier each shift, and night nurses were sleepier toward the end of the shift compared to the beginning. There was extensive caffeine use, presumably to preserve or improve alertness. Fatigue was high in one-third of nurses, with intershift fatigue (not feeling recovered from previous shift at the start of the next shift) being most prominent. There were no statistically significant differences in mean reaction time between day/night shift, consecutive work shift, and time into shift. Lapsing was traitlike, with rare (39% of sample), moderate (53%), and frequent (8%) lapsers. Nurses accrue a considerable sleep debt while working successive 12-h shifts with accompanying fatigue and sleepiness. Certain nurses appear more vulnerable to sleep loss than others, as measured by attention lapses.  相似文献   

19.
People sometimes claim with high confidence to remember events that in fact never happened, typically due to strong semantic associations with actually encoded events. Sleep is known to provide optimal neurobiological conditions for consolidation of memories for long-term storage, whereas sleep deprivation acutely impairs retrieval of stored memories. Here, focusing on the role of sleep-related memory processes, we tested whether false memories can be created (a) as enduring memory representations due to a consolidation-associated reorganization of new memory representations during post-learning sleep and/or (b) as an acute retrieval-related phenomenon induced by sleep deprivation at memory testing. According to the Deese, Roediger, McDermott (DRM) false memory paradigm, subjects learned lists of semantically associated words (e.g., "night", "dark", "coal",...), lacking the strongest common associate or theme word (here: "black"). Subjects either slept or stayed awake immediately after learning, and they were either sleep deprived or not at recognition testing 9, 33, or 44 hours after learning. Sleep deprivation at retrieval, but not sleep following learning, critically enhanced false memories of theme words. This effect was abolished by caffeine administration prior to retrieval, indicating that adenosinergic mechanisms can contribute to the generation of false memories associated with sleep loss.  相似文献   

20.
Sixty subjects were tested five times per waking day on two occasions for accuracy and reliability in throwing 20 darts at a target. Two experimental conditions were investigated: following a normal nocturnal sleep (7–8 h sleep, normal) and after having retired to bed 4 h later than normal the previous night but rising at the normal time (3–4 h sleep, sleep deprivation). Sublingual (core) temperature and subjective estimates of alertness and fatigue were measured in all sessions. Performance at throwing darts was assessed by three methods: mean distance of the dart from the bulls-eye; number of times the target was missed; and variability of the scores from the darts thrown. There was no evidence that performance was affected by physical fatigue arising during the course of throwing the 20 darts. All variables showed significant diurnal rhythms, those of alertness and performance being phased over 1 h earlier than core temperature, and that of fatigue over 1 h earlier than the inverse of temperature. Core temperature was not affected by sleep deprivation, but all other variables showed significant changes, indicative of mood and performance decrement. Increasing time awake was associated with decreased alertness and increased fatigue, as well as slight negative effects upon performance. We conclude that the simple task of throwing darts at a target provides information about chronobiological changes in circumstances where time awake and sleep loss might affect psychomotor performance. (Author correspondence: )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号