首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We examined long‐term responses of an Amazonian bird assemblage to wildfire disturbance, investigating how understory birds reacted to forest regeneration 1, 3, and 10 years after a widespread fire event. The bird community was sampled along the Arapiuns and Maró river catchments in central Brazilian Amazonia. Sampling took place in 1998, 2000, and 2008 using mist‐nets in eight plots (four burned, four unburned sites). Species richness did not change significantly in unburned sites. In burned sites, however, we found significantly lower richness in 1998, higher richness in 2000, and similar richness in 2008. Multi‐dimensional scaling ordination showed consistent differences in bird communities both within burned sites sampled in different sampling years, and between burned and unburned sites in all years. Of the 30 most abundant species, 12 had not recovered 10 years after the fires, including habitat specialists such as mixed flocks specialists and ant‐followers. Fire‐disturbance favored three species (two hummingbirds and a manakin) in the short term only. All other species were either favored throughout the study (seven species of omnivores and small insectivores) or did not show a clear response (eight species). In burned sites, we also found significantly lower abundance of species sensitive to disturbances and habitat specialists over the entire study period. Although the bird community seems to be recovering in terms of richness, the overall community composition and abundance of some species in post‐burned and unburned sites remain very different, and have not recovered after 10 years of forest regeneration.  相似文献   

2.
Abstract We have begun a long-term ecological research project to address questions about the impact of multiple disturbances on the species richness of communities and whether multiple disturbances are additive or interactive. A protected water catchment area was chosen, which is subjected to fires, sand mining and clearing, and for which detailed records are available. The study area, at Tomago (32°52′S, 151°45′E), has forest, woodland, shrubland and swamp on a sand substrate, with the vegetated dunes forming part of a coastal embayment. Forty-four sites were located in forested areas that had undergone disturbance by either fire, sand mining or clearing. Sites of each disturbance type were grouped into four age classes: less than 1 year since disturbance, nominally 1991; 5 years, nominally 1986; 11 years, nominally 1980; and 17 years, nominally 1974. A set of burned sites, with the time of the last fire matched to the times of the other disturbances, was used as the control response. In this paper we describe the study area and sites, then examine the effects of each single disturbance on vegetation structure. Canopy cover increased with time and type of disturbance, with 17 year old cleared or mined sites similar to the cover of 11 year old burned sites. In the first two years after disturbance, burned sites had significantly more understorey vegetation than cleared or mined sites, but by 5 years all three were similar. The data presented here show that regeneration of mined sites at Tomago is substantially slower than regeneration following disturbance by fire, with the regeneration of cleared sites intermediate but closer to mining than fire. After 17 years regeneration, cleared and sand mined sites had not returned to the vegetation structure of the pre-disturbance state. Understorey height and the amount of vegetation on cleared or mined sites have not achieved the levels in the original forest, although canopy cover did seem to have reached pre-disturbance levels. Current rehabilitation techniques are more sophisticated than those used 17 years ago and continued monitoring of sites currently being rehabilitated may show a faster return to pre-disturbance states. Having established the hierarchy and nature of the response to each single disturbance here, we are now in a position to investigate the impact of multiple disturbances.  相似文献   

3.
The lizard fauna of sand‐mined dunes of the central coast of New South Wales, Australia has been shown to be dominated by Ctenotus robustus and Ctenotus taeniolatus (Scincidae), with relative abundance changing with time since mining. However, there is little published information on how this lizard fauna compares to that of the undisturbed open forest that previously grew on these sites. Here, existing data are added to in order to produce a longer chronosequence of times since sand‐mining (4, 8, 14 and 20 years) than has been examined previously. The new data are compared to those from unmined forests. Ctenotus robustus and C. taeniolatus dominated lizard captures on mined areas, with peak abundances at 8 and 14 years, respectively. Lampropholis guichenoti (Scincidae) was at low abundance until 20 years post‐mining and L. delicata was present only at 20 years post‐mining. Unmined forest burned 4, 8 or 14 years ago had a significantly different lizard community from that of sand‐mined areas. Ctenotus robustus and C. taeniolatus were absent from unmined forest at all post‐fire periods. Lampropholis guichenoti and Lampropholis delicata were numerically dominant in forest, with increasing abundance of L. guichenoti with time since fire. Thus the composition of the lizard community on these coastal dunes is not solely determined by time since disturbance per se. Comparisons of sites on the basis of accumulated leaf litter showed a significant relationship between Lampropholis abundance and litter density. On sand‐mined sites and forested sites with similar leaf litter densities, the abundances of L. guichenoti were similar. As Ctenotus were absent from unmined forest, we could not compare their distribution in unmined and mined areas. However, negative correlations of Ctenotus abundance with canopy cover and understorey vegetation density offer a possible explanation for the absence of these species from forest.  相似文献   

4.
Abstract The dry sclerophyll forest community of the Tomago Sandbeds, near Newcastle in New South Wales, has been subject to regular disturbances due to fire, clearing and strip mining for over 18 years. In this study we use chronosequence analysis to examine whether the structure of the ant community varies with the type of disturbance and the time since disturbance. We treat the recovery trajectory after fire as a control trajectory because fire is an endogenous disturbance. The main analyses were based on an ant fauna comprising 72 species sampled from 44 sites surveyed in December 1992. Comparison with samples taken in April and December 1991, and for cumulative records for all sites over this 20 month period, all show quantitatively similar responses. Results suggest that while fire has a minor effect on the composition of the ant community over time, the impact of clearing and mining is much more severe. Ant species richness at cleared and mined sites recovers rapidly, overshoots controls in mid-succession and returns to control levels by 18 years after disturbance. The cumulative number of species recorded over all sites (from the total recorded fauna of 82 species) for each different disturbance type were: burned, 61; cleared, 55; and mined 56. Species composition at cleared or mined sites, after 18 years, approaches but does not match controls. The recovery trend for mined sites lags slightly behind that for cleared sites, which have reached 49% similarity with the oldest burned sites, while mined sites have not exceeded 39% similarity of species composition. The main patterns in the ant community appear to be related to habitat variables. These results provide further evidence that the ant community may be used as a reliable bio-indicator for evaluating the extent of habitat damage and recovery after disturbance in these Australian forests.  相似文献   

5.
We investigated the effects of the abiotic environment, plant community composition and disturbance by fire on ant assemblages in two distinct habitat types in the Siskiyou Mountains in northern California and southern Oregon, USA. Sampling over 2 years in burned and unburned Darlingtonia fens and their adjacent upland forests, we found that the effects of disturbance by fire depended on habitat type. In forests, fire intensity predicted richness in ant assemblages in both years after the fire, and plant community composition predicted richness 2 years after the fire. No factors were associated with richness in the species‐poor fen ant assemblages. Species‐specific responses to both habitat type and disturbance by fire were idiosyncratic. Assemblage composition depended on habitat type, but not disturbance by fire, and the composition of each assemblage between years was more dissimilar in burned than unburned sites.  相似文献   

6.
Abstract: Fire‐affected forests are becoming an increasingly important component of tropical landscapes. The impact of wildfires on rainforest communities is, however, poorly understood. In this study the density, species richness and community composition of seedlings, saplings, trees and butterflies were assessed in unburned and burned forest following the 1997/98 El Niño Southern Oscillation burn event in East Kalimantan, Indonesia. More than half a year after the fires, sapling and tree densities in the burned forest were only 2.5% and 38.8%, respectively, of those in adjacent unburned forest. Rarefied species richness and Shannon's H’ were higher in unburned forest than burned forest for all groups but only significantly so for seedlings. There were no significant differences in evenness between unburned and burned forest. Matrix regression and Akaike's information criterion (AIC) revealed that the best explanatory models of similarity included both burning and the distance between sample plots indicating that both deterministic processes (related to burning) and dispersal driven stochastic processes structure post‐disturbance rainforest assemblages. Burning though explained substantially more variation in seedling assemblage structure whereas distance was a more important explanatory variable for trees and butterflies. The results indicate that butterfly assemblages in burned forest were primarily derived from adjacent unburned rainforest, exceptions being species of grass‐feeders such as Orsotriaena medus that are normally found in open, disturbed areas, whereas burned forest seedling assemblages were dominated by typical pioneer genera, such as various Macaranga species that were absent or rare in unburned forest. Tree assemblages in the burned forest were represented by a subset of fire‐resistant species, such as Eusideroxylon zwageri and remnant dominant species from the unburned forest.  相似文献   

7.
《Flora》2014,209(5-6):260-270
Fire disturbance alters the structural complexity of forests, above-ground biomass stocks and patterns of growth, recruitment and mortality that determine temporal dynamics of communities. These changes may also alter forest species composition, richness, and diversity. We compared changes in plant recruitment, mortality, and turnover time over three years between burned and unburned sites of two seasonally flooded natural forest patches in a predominantly savanna landscape (regionally called ‘impucas’) in order to determine how fire alters forest dynamics and species composition. Within each impuca, 50 permanent plots (20 m × 10 m) were established and all individuals ≥5 cm diameter at breast height (DBH) identified and measured in two censuses, the first in 2007 and the second in 2010. Unplanned fires burned 30 plots in impuca 1 and 35 in impuca 2 after the first census, which enabled thereafter the comparison between burned and unburned sites. The highest mortality (8.0 and 24.3% year−1 for impuca 1 and 2) and turnover time (69 and 121.5 years) were observed in the burned sites, compared to 3.7 and 5.2% year−1 (mortality), and 28.4 and 40.9 years (turnover), respectively, for the unburned sites. Although these seasonally flooded impuca forests are embedded in a fire-adapted savanna landscape, the impucas vegetation appears to be sensitive to fire, with burned areas having higher mortality and turnover than unburned areas. This indicates that these forest islands are potentially at risk if regional fire frequency increases.  相似文献   

8.
During the 1997/98 ENSO (El Niño Southern Oscillation) event more than 5 million ha of East Kalimantan, Indonesia burned. Here we quantify the initial stages of regeneration (19982001), both in forest that burned and in unburned controls. Sapling and seedling density and species richness remained significantly lower in burned than in unburned forest and community composition remained substantially different between both forest types throughout the sampling period. The only pronounced edge effect was a significantly higher density of seedlings in the interior of unburned forest. Sapling density increased and seedling density declined in both unburned and burned forest during the four-year study period. In the unburned forest, sapling and seedling species richness remained stable, but sapling species richness declined significantly with time in the burned forest. The pioneer community in the burned forest was, furthermore, characterised by higher growth and recruitment than in the unburned forest but mortality did not differ between both forest types. Differences in environment (burned versus unburned: 2965% of variation explained) and the distance between sample sites (1323% of variation explained) explained substantial amounts of variation in sapling and seedling community similarity. Similarity was, however, only marginally (< 1% explained) related to the edge position and temporal variation (difference among sample events). Our results, four years after the initial burn, indicate that burned forest still differed greatly from unburned forest in terms of density, species richness and community composition. There was also no clear trend of a return to pre-disturbance conditions, which indicates that the burned forest may remain in a severely degraded state for a prolonged period of time.  相似文献   

9.
Little is known about the diversity of tropical animal communities in recently fire‐affected environments. Here we assessed species richness, evenness, and community similarity of butterflies and odonates in landscapes located in unburned isolates and burned areas in a habitat mosaic that was severely affected by the 1997/98 ENSO (El Niño Southern Oscillation) event in east Kalimantan, Indonesian Borneo. In addition related community similarity to variation in geographic distance between sampling sites and the habitat/vegetation structure Species richness and evenness differed significantly among landscapes but there was no congruence between both taxa. The species richness of butterflies was, for example, highest in sites located in a very large unburned isolate whereas odonate species richness was highest in sites located in a small unburned isolate and once‐burned forest. We also found substantial variation in the habitat/vegetation structure among landscapes but this was mainly due to variation between unburned and burned landscapes and variation among burned landscapes. Both distance and environment (habitat/vegetation) contributed substantially to explaining variation in the community similarity (beta diversity) of both taxa. The contribution of the environment was, however, mainly due to variation between unburned and burned landscapes, which contained very different assemblages of both taxa. Sites located in the burned forest contained assemblages that were intermediate between assemblages from sites in unburned forest and sites from a highly degraded slash‐and‐burn area indicating that the burned forest was probably recolonised by species from these disparate environments. We, furthermore, note that in contrast to species richness (alpha diversity) the patterns of community similarity (beta diversity) were highly congruent between both taxa. These results indicate that community‐wide multivariate measures of beta diversity are more consistent among taxa and more reliable indicators of disturbance, such as ENSO‐induced burning, than univariate measures.  相似文献   

10.
Tropical montane cloud forests (TMCFs) harbour high levels of biodiversity and large carbon stocks. Their location at high elevations make them especially sensitive to climate change, because a warming climate is enhancing upslope species migration, but human disturbance (especially fire) may in many cases be pushing the treeline downslope. TMCFs are increasingly being affected by fire, and the long‐term effects of fire are still unknown. Here, we present a 28‐year chronosequence to assess the effects of fire and recovery pathways of burned TMCFs, with a detailed analysis of carbon stocks, forest structure and diversity. We assessed rates of change of carbon (C) stock pools, forest structure and tree‐size distribution pathways and tested several hypotheses regarding metabolic scaling theory (MST), C recovery and biodiversity. We found four different C stock recovery pathways depending on the selected C pool and time since last fire, with a recovery of total C stocks but not of aboveground C stocks. In terms of forest structure, there was an increase in the number of small stems in the burned forests up to 5–9 years after fire because of regeneration patterns, but no differences on larger trees between burned and unburned plots in the long term. In support of MST, after fire, forest structure appears to approximate steady‐state size distribution in less than 30 years. However, our results also provide new evidence that the species recovery of TMCF after fire is idiosyncratic and follows multiple pathways. While fire increased species richness, it also enhanced species dissimilarity with geographical distance. This is the first study to report a long‐term chronosequence of recovery pathways to fire suggesting faster recovery rates than previously reported, but at the expense of biodiversity and aboveground C stocks.  相似文献   

11.
Disturbance legacies structure communities and ecological memory, but due to increasing changes in disturbance regimes, it is becoming more difficult to characterize disturbance legacies or determine how long they persist. We sought to quantify the characteristics and persistence of material legacies (e.g., biotic residuals of disturbance) that arise from variation in fire severity in an eastern ponderosa pine forest in North America. We compared forest stand structure and understory woody plant and bird community composition and species richness across unburned, low‐, moderate‐, and high‐severity burn patches in a 27‐year‐old mixed‐severity wildfire that had received minimal post‐fire management. We identified distinct tree densities (high: 14.3 ± 7.4 trees per ha, moderate: 22.3 ± 12.6, low: 135.3 ± 57.1, unburned: 907.9 ± 246.2) and coarse woody debris cover (high: 8.5 ± 1.6% cover per 30 m transect, moderate: 4.3 ± 0.7, low: 2.3 ± 0.6, unburned: 1.0 ± 0.4) among burn severities. Understory woody plant communities differed between high‐severity patches, moderate‐ and low‐severity patches, and unburned patches (all p < 0.05). Bird communities differed between high‐ and moderate‐severity patches, low‐severity patches, and unburned patches (all p < 0.05). Bird species richness varied across burn severities: low‐severity patches had the highest (5.29 ± 1.44) and high‐severity patches had the lowest (2.87 ± 0.72). Understory woody plant richness was highest in unburned (5.93 ± 1.10) and high‐severity (5.07 ± 1.17) patches, and it was lower in moderate‐ (3.43 ± 1.17) and low‐severity (3.43 ± 1.06) patches. We show material fire legacies persisted decades after the mixed‐severity wildfire in eastern ponderosa forest, fostering distinct structures, communities, and species in burned versus unburned patches and across fire severities. At a patch scale, eastern and western ponderosa system responses to mixed‐severity fires were consistent.  相似文献   

12.
Pocket gopher (Geomyidae) disturbances are created in spatiallypredictable patterns. This may influence resource heterogeneity and affectgrassland vegetation in a unique manner. We attempt to determine the extent towhich density and spatial pattern of soil disturbances influence tallgrassprairie plant community structure and determine how these disturbances interactwith fire. To investigate the effects of explicit disturbance patterns we createdsimulated pocket gopher burrows and mounds in various spatial patterns.Simulated burrows were drilled into the soil at different densities inreplicated plots of burned and unburned prairie. Separate plots of simulatedmounds were created in burned and unburned prairie at low, medium, or high mounddensities in clumped, uniform, or random spatial dispersions. In both burned and unburned plots, increased burrow density decreasedgraminoid biomass and increased forb biomass. Total-plant and graminoid biomasswere higher in burned than unburned plots while forb biomass was higher inunburned plots. Total-plant species richness was not significantly affected byburrow density or burning treatments, but graminoid species richness increasedin unburned plots and forb species richness increased in burned plots. Plant species richness was temporarily reduced directly on mounddisturbances compared to undisturbed prairie. Over time and at larger samplingscales, the interaction of fire and mound disturbance patterns significantlyaffected total-plant and graminoid species richness. The principal effect inburned and unburned prairie was decreased total-plant and graminoid speciesrichness with increased mound disturbance intensity. Although species richness at small patch scales was not increased by anyintensity of disturbance and species composition was not altered by theestablishment of a unique guild of disturbance colonizing plants, our studyrevealed that interactions between soil disturbances and fire alter the plantcommunity dominance structure of North American tallgrass prairie primarily viachanges to graminoids. Moreover, these effects become increasingly pronouncedover time and at larger spatial sampling scales.  相似文献   

13.
We used data from a 15-year experiment in a C4-dominated grassland to address the effects of community structure (i.e., plant species richness, dominance) and disturbance on invasibility, as measured by abundance and richness of exotic species. Our specific objectives were to assess the temporal and spatial patterns of exotic plant species in a native grassland in Kansas (USA) and to determine the factors that control exotic species abundance and richness (i.e., invasibility). Exotic species (90% C3 plants) comprised approximately 10% of the flora, and their turnover was relatively high (30%) over the 15-year period. We found that disturbances significantly affected the abundance and richness of exotic species. In particular, long-term annually burned watersheds had lower cover of exotic species than unburned watersheds, and fire reduced exotic species richness by 80–90%. Exotic and native species richness were positively correlated across sites subjected to different fire (r = 0.72) and grazing (r = 0.67) treatments, and the number of exotic species was lowest on sites with the highest productivity of C4 grasses (i.e., high dominance). These results provide strong evidence for the role of community structure, as affected by disturbance, in determining invasibility of this grassland. Moreover, a significant positive relationship between exotic and native species richness was observed within a disturbance regime (annually burned sites, r = 0.51; unburned sites, r = 0.59). Thus, invasibility of this C4-dominated grassland can also be directly related to community structure independent of disturbance. Received: 9 February 1999 / Accepted: 12 May 1999  相似文献   

14.

Questions

The degree to which renosterveld shrublands are fire‐dependent is currently unclear. To address this issue, the following questions were asked: (1) does smoke stimulate germination of soil‐stored seeds in renosterveld; (2) does recently‐burned renosterveld display changed composition and higher diversity than unburned vegetation; and (3) how do the species compositions of renosterveld soil seed banks and standing vegetation compare?

Location

Swartland, Cape Floristic Region, South Africa.

Methods

Soil seed bank samples from a north‐ and south‐facing slope were smoke‐treated and germinated to test for smoke‐stimulated germination. Burned standing vegetation was surveyed 16 months post‐fire, as was unburned vegetation on the same slopes. Seed bank species richness and density were compared between smoke‐treated and untreated samples within and between slopes. Burned and unburned standing vegetation were compared within and between slopes in terms of species richness, abundance and aerial cover. Compositional similarity of the seed banks and standing vegetation was assessed.

Results

Seed banks were dominated by annuals and graminoids. Smoke treatment had no effect, except for driving significantly higher species richness and seedling density in south‐facing slope perennial shrubs. Species richness and seedling density were significantly higher in seed banks on the south‐facing slope compared to the north‐facing slope. Burned standing vegetation exhibited significantly higher diversity than unburned vegetation. Annuals and graminoids displayed significantly higher species richness and aerial cover in burned renosterveld. The north‐facing slope contained less than half the number of species/m2 compared to the south‐facing slope. The seed banks and standing vegetation showed low to intermediate similarity (Sørensen = 31%–53%), but grouped close together on an NMDS plot, suggesting intermediate similarity overall.

Conclusions

Elevated germination of perennial shrubs in smoke‐treated seed bank samples and increased diversity of post‐fire standing vegetation suggest the renosterveld in this study shows elements of a fire‐driven system. Certain species only recruited in burned sites, suggesting fire‐stimulated germination. Aspect had a major influence on plant community composition, with the mesic south‐facing slope being more diverse than the xeric north‐facing slope. The similarity between the seed banks and standing vegetation was higher than previously shown for renosterveld, and appears to be higher than for fynbos.  相似文献   

15.
The effects of atmospheric fluoride pollution on the lizard fauna of the open forest of coastal dunes in New South Wales, Australia were examined. Lizards were pitfall-trapped at sites with background fluoride levels (< 0.25 μmol F.g–1), or subject to low (1.85–3.4 μmol F.g–1) or high (8.00–13.2 μmol F.g–1) levels of fluoride pollution. Sites had been disturbed by fire or mineral sand-mining 4 or 8 years prior to the study. Fluoride pollution resulted in significant changes to canopy cover, understorey vegetation density and ground cover. Where fluoride levels were low in unmined forest, there was significantly higher species richness, total lizard abundance and abundance of the most common species, Lampropholis guichenoti and Lampropholis delicata (Scincidae), compared with areas of high or background fluoride levels. Both the present and previous studies show that fluoride pollution is significantly correlated with increased abundance of the most common lizard species in sand-mined areas, Ctenotus robustus, Ctenotus taeniolatus (Scincidae) and Amphibolurus muricatus (Agamidae). A discriminant function model of background-fluoride mined sites was used to predict lizard abundances based on vegetation density, leaf litter density and soil hardness. The model was verified by using it to predict similarities between background-fluoride sites and fluoride-affected sites. The sites within each predicted group were more similar in lizard species composition than when grouping of sites was done by time since mining or fire. With this analysis, a close relationship between vegetation variables and the lizard fauna, irrespective of the type of disturbance or time since disturbance, is demonstrated. Discriminant function analysis suggested that Ctenotus would be unlikely to use unmined forest sites that had been burned within 12 months previously. Thus it seems unlikely that the original open forest of these coastal dunes would have supported populations of either C. robustus or C. taeniolatus. In conclusion, the original source of Ctenotus that colonized sand-mined areas is more likely to have been the relatively small areas of heath vegetation in the area. Therefore, sand-mining and atmospheric fluoride pollution result in landscape-scale changes to the relative abundance of lizard species, with forest species becoming less common and lizard species from open areas becoming more common.  相似文献   

16.
Abstract The floristic composition of the vegetation of mined and unmined sand dunes at Bridge Hill, in Myall Lakes National Park, was studied from 1982–90 inclusive. Data from mined sites ranging in age from 2–15 years post mining, with replication of time since mining in both time and space, were incorporated in the study. The mined part of the Bridge Hill dune is very different in plant species composition compared with either the dune prior to mining or to the adjacent unmined dunes. The mined dune also displays a temporal development of species composition over the period 2–15 years post mining, the dominant trend being a reduction in similarity to that of the dune prior to mining. Mining resulted in significant increases in the abundance of six introduced species, and in significant differences in the abundance of 49% of the native species. Species richness and diversity increased during the period 2–15 years post mining, and a significant component of this could be attributed to the presence of the introduced species.  相似文献   

17.
Fires change the diversity and composition of insects in forest ecosystems. In the present study, we examined the change of butterfly communities after a fire including the increase of butterfly richness, grassland species, and generalist species, and more changed communities. Butterflies were surveyed for 5 years after the big Uljin fire in 2007. During each year, butterflies were counted monthly by the line transect method from April to October at two sites (burned vs. unburned, ~ 1.5 km routes). Specialist grassland species decreased in the year of the fire but generalist species did not increase significantly. Butterfly richness did not change but butterfly diversity decreased due to a sudden increase of a species, Polygonia c-aureum. The butterfly community in the year of the fire was different from those in later years, showing temporary change of community in the year of the fire. Species composition was significantly different between burned and unburned sites, but this phenomenon cannot be interpreted as an influence of fire due to highly variable species composition of local butterfly assemblages and the non-repetitive sampling site of the present study.  相似文献   

18.
The effects of fire on forest structure and composition were studied in a severely fire-impacted landscape in the eastern Amazon. Extensive sampling of area forests was used to compare structure and compositional differences between burned and unburned forest stands. Burned forests were extremely heterogeneous, with substantial variation in forest structure and fire damage recorded over distances of <50 m. Unburned forest patches occurred within burned areas, but accounted for only six percent of the sample area. Canopy cover, living biomass, and living adult stem densities decreased with increasing fire inrensiry / frequency, and were as low as 10–30 percent of unburned forest values. Even light burns removed >70 percent of the sapling and vine populations. Pioneer abundance increased dramatically with burn intensity, with pioneers dominating the understory in severely damaged areas. Species richness was inversely related to burn severity, but no clear pattern of species selection was observed. Fire appears to be a cyclical event in the study region: <30 percent of the burned forest sample had been subjected to only one burn. Based on estimated solar radiation intensities, burning substantially increases fire susceptibility of forests. At least 50 percent of the total area of all burned forests is predicted to become flammable within 16 rainless days, as opposed to only 4 percent of the unburned forest. In heavily burned forest subjected to recurrent fires, 95 percent of the area is predicted to become flammable in <9 rain-free days. As a recurrent disturbance phenomenon, fire shows unparalleled potential to impoverish and alter the forests of the eastern Amazon.  相似文献   

19.
Abstract. Changes in disturbance due to fire regime in southwestern Pinus ponderosa forests over the last century have led to dense forests that are threatened by widespread fire. It has been shown in other studies that a pulse of native, early‐seral opportunistic species typically follow such disturbance events. With the growing importance of exotic plants in local flora, however, these exotics often fill this opportunistic role in recovery. We report the effects of fire severity on exotic plant species following three widespread fires of 1996 in northern Arizona P. ponderosa forests. Species richness and abundance of all vascular plant species, including exotics, were higher in burned than nearby unburned areas. Exotic species were far more important, in terms of cover, where fire severity was highest. Species present after wildfires include those of the pre‐disturbed forest and new species that could not be predicted from above‐ground flora of nearby unburned forests.  相似文献   

20.
Infestations of the exotic perennial Spotted knapweed (Centaurea maculosa Lam.) hinder the restoration and management of native ecosystems on droughty, infertile sites throughout the Midwestern United States. We studied the effects of annual burning on knapweed persistence on degraded, knapweed‐infested gravel mine spoils in western Michigan. Our experiment included 48, 4‐m2 plots seeded to native warm‐season grasses in 1999 using a factorial arrangement of initial herbicide and fertility treatments. Beginning in 2003, we incorporated fire as an additional factor and burned half of the plots in late April or May for 3 years (2003–2005). Burning increased the dominance of warm‐season grasses and decreased both biomass and dominance of knapweed in most years. Burning reduced adult knapweed densities in all 3 years of the study, reduced seedling densities in the first 2 years, and reduced juvenile densities in the last 2 years. Knapweed density and biomass also declined on the unburned plots through time, suggesting that warm‐season grasses may effectively compete with knapweed even in the absence of fire. By the end of the study, mean adult knapweed densities on both burned (0.4‐m2) and unburned (1.3‐m2) plots were reduced to levels where the seeded grasses should persist with normal management, including the use of prescribed fire. These results support the use of carefully timed burning to help establish and maintain fire‐adapted native plant communities on knapweed‐infested sites in the Midwest by substantially reducing knapweed density, biomass, and seedling recruitment and by further shifting the competitive balance toward native warm‐season grasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号