首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  总被引:1,自引:0,他引:1  
We used LANDIS, a model of forest disturbance and succession, to simulate successional dynamics of forests in the southern Appalachian Mountains. The simulated environments are based on the Great Smoky Mountains landscapes studied by Whittaker. We focused on the consequences of two contrasting disturbance regimes—fire exclusion versus frequent burning—for the Yellow pine (Pinus L., subgenus Diploxylon Koehne) and oak (Quercus L.) forests that occupy dry mountain slopes and ridgetops. These ecosystems are a conservation priority, and declines in their abundance have stimulated considerable interest in the use of fire for ecosystem restoration. Under fire exclusion, the abundance of Yellow pines is projected to decrease, even on the driest sites (ridgetops, south‐ and west‐facing slopes). Hardwoods and White pine (P. strobus L.) replace the Yellow pines. In contrast, frequent burning promotes high levels of Table Mountain pine (P. pungens Lamb.) and Pitch pine (P. rigida Mill.) on the driest sites and reduces the abundance of less fire‐tolerant species. Our simulations also imply that fire maintains open woodland conditions, rather than closed‐canopy forest. For oaks, fire exclusion is beneficial on the driest sites because it permits oaks to replace the pines. On moister sites (north‐ and east‐facing slopes), however, fire exclusion leads to a diverse mix of oaks and other species, whereas frequent burning favors Chestnut oak (Q. montana Willd.) and White oak (Q. alba L.) dominance. Our results suggest that reintroducing fire may help restore decadent pine and oak stands in the southern Appalachian Mountains.  相似文献   

2.
    
Surface mining for coal represents one of the dominant forms of anthropogenic disturbance to forests of the eastern United States. Reclamation methods adopted under federal law in the 1970s have led to a state of arrested succession, failing to achieve pre‐disturbance conditions. New methods of reclamation have been proposed with the goal of returning mined land to its former forested state through the use of compaction reducing techniques that significantly increase fine‐scale heterogeneity. The Forestry Reclamation Approach creates topographic heterogeneity by loosely dumping overburden material into large piles to serve as a tree‐planting medium. We examined the effect of fine‐scale topographic relief, soil physical properties, and reclamation method on early plant community development on a mine site in eastern Ohio. We sampled plots at four microtopographic positions and three distances from the remaining forest edge in both experimentally and traditionally reclaimed areas of a surface mine. Multivariate analysis of variance (ANOVA) on distance matrices indicated significant differences in plant community composition among microtopographic positions and reclamation methods. Microtopographic positions also exhibited significant differences in measured soil properties significantly affecting plant community composition. Plots in the traditionally reclaimed areas had no woody plant colonization, indicating arrested succession common to sites reclaimed using traditional methods. Our results suggest that the creation of topographic heterogeneity at the time of reclamation markedly accelerates ecological succession and promotes enhanced plant community diversity. Expanded application of the methods used here could allow for a faster return to the former forested state of mined lands than traditional reclamation methods.  相似文献   

3.
  总被引:1,自引:0,他引:1  
1. Ecosystems have higher-order emerging properties that can affect the conservation of species. We identify some of these properties in order to facilitate a better understanding of them. 2. Nonlinear, indirect effects of food web interactions among species can produce counterintuitive changes in populations. 3. Species differ in their roles and linkages with other species in the system. These roles are a property of the system. Such differences in roles influence how we conserve individual species. 4. Ecosystems operate at a multitude of interacting spatial and temporal scales, which together structure the system and affect the dynamics of individual populations. 5. Disturbance also structures an ecosystem, producing both long-term slow changes and sudden shifts in ecosystem dynamics. 6. Ecosystems therefore can have multiple states, determined both by disturbance regimes and biotic interactions. Conservation should recognize a possible multiplicity of natural states while avoiding aberrant (human-induced) states. 7. Ecosystem processes are influenced by the composition of the biota they contain. Disturbances to the biota can distort processes and functions, which in turn can endanger individual species. 8. The goal of ecosystem conservation is the long-term persistence of the biota in the system. There are two paradigms: community-based conservation (CBC) and protected area conservation. Both have their advantages but neither is sufficient to protect the biota on its own. 9. CBC is required to conserve the majority of the world's biota not included in protected areas. However, current CBC methods favour a few idiosyncratic species, distort the species complex, and ignore the majority. More comprehensive methods are required for this approach to meet the goal of ecosystem conservation. 10. Protected areas are essential to conserve species unable to coexist with humans. They also function as ecological baselines to monitor the effects of humans on their own ecosystems. 11. However, protected areas suffer from loss of habitat through attrition of critical areas. Thus, renewal (addition) of habitat is required in order to achieve the long-term persistence of biota in functioning ecosystems. Identification of minimum habitat areas and restoration of ecosystems become two major priorities for future research.  相似文献   

4.
    
We compared the bird and woody plant communities of 2 to 24‐year‐old rehabilitation areas at Gove bauxite mine (20 km2) in the seasonal tropics of northern Australia, where Alcan has maintained a consistent rehabilitation program since it began operation in 1974. Birds were censused every second month over 2 years in 30 widely separated 0.25‐ha plots, representing five chronosequence stages. These were also compared with six (“off‐mine”) plots adjacent to the mine, which represented the annually burnt open forest typical of the region. Short‐lived Acacias dominated the early chronosequence stages, whereas eucalypts dominated in later stages. Mean avian species richness and abundance increased significantly along the chronosequence, with values for the oldest rehabilitation plots being very similar to those for the off‐mine plots. However, analyses of similarity revealed that the bird communities of the oldest rehabilitation plots were distinct from those of the off‐mine plots, indicating that succession in rehabilitation areas is not following a direct trajectory toward the native open forest surrounding the mine. Several hollow‐nesting bird species were scarce or absent in the rehabilitation areas, probably reflecting the absence of older hollow‐bearing trees. Many differences between the rehabilitation and the off‐mine areas in vegetation structure, woody flora, and avifauna appear to be related to the exclusion of fire from the minesite. We recommend the initiation of experiments designed to assess the effects of fire on the biota but caution against the use of fires for the majority of rehabilitation areas.  相似文献   

5.
    
This work explores factors supporting people perception about mine site restoration and phytoremediation. Phytoremediation is one of the most eco-friendly restoration strategy emerged since the last two decades but studies on local people perception on this restoration strategy are scarce. To fill in this gap, data were collected from mining stakeholders using a structured questionnaire administered through snowball sampling method. We used Multiple Correspondence Analysis as implemented in the software XLSTAT to visualize relationship between participants’ characteristics, their view on mine site restoration and phytoremediation. Results clearly show out that people perception on mine site restoration is influenced by mining activities effects on health and region attractiveness. Phytoremediation (65.21%) was rated positively with regard to its environment potential, aesthetic and consideration for future generation followed by fillings and excavating. Restoration strategy costs have no effect on people choice and participants prefer use of shrubs as vegetation component of phytoremediation to reach their restoration objective.  相似文献   

6.
    
Disturbance seasonality and return interval can create complex interactions of direct and indirect effects on species and ecosystems. Fire is a key grassland disturbance, yet long-term research examining seasonality and return intervals is limited. A 15-year experiment testing combinations of fire seasonality (summer, fall, spring) and return interval (2, 3, 6-year) plus non-burned controls was conducted in northern mixed prairie to evaluate effects on the plant community. Hesperostipa comata is a native C3 bunchgrass and dominant species in northern mixed prairie and previously observed to be fire-sensitive. Current-year aboveground biomass results were generally counter to expectations based on short-term research. Fire increased H. comata biomass with a strong, rhythmic response pattern to a specific fire seasonality-return-interval combination (fall fire at 3-year return intervals) that periodically increased biomass to more than three times that with no fire. Through the first four post-fire growing seasons, biomass with summer, fall and spring fire across return intervals was 41, 89 and 93% of that with no fire. Afterward, no fire combination produced less biomass than no fire and recurring patterns emerged with large increases in biomass, particularly with fall fire at 3-year intervals. Peak biomass years were regularly two growing seasons after 3-year fall fire and occurred across wet, near-average and dry conditions. We hypothesize that productivity responses were driven by the combination of demographic processes of seedling recruitment and synchronization of multiple tiller age classes. Because short-term negative effects were reversed and regular patterns only emerged 5 years after study initiation, more long-term research evaluating fire regimes is recommended to expand upon tests of individual factors over short periods. This suggestion is based on fire research, but likely applies to multiple forms of disturbance and demonstrates how demographic processes can inform responses for individual species and larger ecosystem functions, such as productivity.  相似文献   

7.
    
Vegetation, soil, and hydrology in drylands often collectively exhibit strong ecohydrological interrelationships in which vegetation both influences and is influenced by runoff, particularly on sites with more gradual slopes. These two‐way relationships have important implications for ecological restoration of disturbed sites, such as those being reclaimed following mining, yet studies from both ecological and hydrological perspectives specifically evaluating how the strength of ecohydrological interrelationships varies for a range of natural and restored conditions are still missing. We assessed two‐way relationships between vegetation and soil hydrological properties by evaluating patterns of both plant community structure and soil hydrological characteristics related to runoff for natural sites and restored sites following mining. At the plot scale, we identified eight ecohydrological units based on interrelationships between vegetation communities and hydrological properties associated with runoff along a progression from source to sink patch types. Similarly, at the hillslope scale, which included patches of different types, we found a correspondence between the proportions of source and sink patches and both vegetation community and hydrological properties. The relative strength of ecohydrological interrelationships in hillslope mosaics decreased with decreasing disturbance except for rilled hillslopes, likely because parts of the hillslope become isolated from the others. Our results highlight, in general, how ecohydrological interrelationships are related with degree of disturbance, and in particular, how rilling alters ecohydrological interrelationships, thereby precluding effective restoration.  相似文献   

8.
    
Open‐cut mining severely disrupts landforms and soils, preventing or impeding the restoration of preexisting or functional ecosystems because essential properties of the original soils cannot immediately or easily be reinstated. We examined the soil physicochemical and bacterial characteristics of 21 coal‐mined sites in subtropical Queensland, Australia, 3–23 years after establishment of native plant species relative to nonmined analogue sites. Soil disturbance significantly decreased total nitrogen, nitrate nitrogen, and especially total carbon (TC). The TC is projected to take 36 years to recover. Bacterial communities assessed by 16S ribosomal RNA sequencing showed greater species richness and evenness in rehabilitated as compared with nonmined soils, regardless of rehabilitation age. However, bacterial species composition was associated significantly with soil electrical conductivity, the plant density, and total stem cross‐sectional area of woody vegetation. The bacterial communities on rehabilitated sites became progressively more similar to those of nonmined analogue sites over time. This work demonstrates that if topsoils are conserved carefully during mining and supplemented by inorganic fertilizer addition, vigorous plant growth and changes in bacterial community composition can occur soon after plant establishment. This will mitigate the effects of soil disturbance and accelerate the return to the chemical and biological attributes of nonmined analogue soils.  相似文献   

9.
  总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
不同植被类型森林火灾及雷击火自组织临界性   总被引:4,自引:0,他引:4       下载免费PDF全文
利用黑龙江省大兴安岭林区呼中区 196 5~ 2 0 0 2年的雷击火数据、黑龙江省 1981~ 2 0 0 0年森林火灾数据及森林资源数据 ,对雷击造成的森林火灾的自组织临界性及不同植被类型条件下的自组织临界性作了研究 ,比较了在不同尺度和植被类型条件下火干扰的自组织临界性、自相似性 ,并与传统的森林火灾元胞自动机模型模拟的结果进行比较。结果表明 :中国黑龙江省不同森林类型的火干扰具有自组织临界行为 ,森林可燃物已经达到临界状态 ,其临界值在 1.8~ 2 .86之间 ,具有自相似性 ;当森林的面积过小时 ,森林火灾的“面积 -频率”分布曲线上会出现频率峰 ,表现出“有限面积效应”现象。  相似文献   

12.
  1. Despite once being described as common, digging mammal species have been lost from the Australian landscape over the last 200 years. Around half of digging mammal species are now extinct or under conservation threat, and the majority of extant species have undergone marked range contractions.
  2. Our aim is to identify the role of digging mammals in ecosystem processes throughout Australia. We highlight how the actions of digging mammals are vital for maintaining ecosystem functioning and how their extirpation has led to loss of ecosystem functions.
  3. A review of the literature indicates that many aspects of the influence of bioturbation on ecosystem functioning have been studied. The role of digging mammals in arid and semi‐arid zones has been previously established. We collate and review a broader scope of studies, including those carried out in the mesic woodlands and forests of Australia. We identify roles of digging mammals in the context of ecosystem functioning and conservation management.
  4. Bioturbation significantly alters soil processes, increasing soil turnover and altering the chemical and structural properties of soil. Greater water infiltration and decreased surface run‐off and erosion alter soil hydrophobicity and increase soil moisture. Diggings capture organic matter, provide habitat for a diversity of microscopic and macroscopic organisms, and increase nutrient cycling. Mycophagous mammals disperse fungi (e.g. mycorrhizae), while all diggings can create suitable sites for fungal growth. Diggings also capture plant seeds, increasing seedling germination, recruitment and plant growth. The overall effect of mammal diggings is therefore increased plant vigour and resilience, increased biodiversity and consequently improved ecosystem functioning.
  5. We propose that the loss of digging mammals has contributed to the deterioration of ecosystems in Australia. Recognising the roles of digging mammals will inform potential management options such as species translocations or reintroductions.
  相似文献   

13.
大兴安岭北部地区原始林火干扰历史的研究   总被引:35,自引:5,他引:35       下载免费PDF全文
徐化成  李湛东  邱扬 《生态学报》1997,17(4):337-343
在大兴安岭阿龙山林业局的一个集水区,通过样地法(96个样地),调查了大量的火疤木,研究了景观水平上的火状况。结果表明,由1825至1993年间样区共发生14次火灾,火烧种类主要是地表火,但也有少量树冠火;火烧强度主要为弱度火;火场面积通常很大;火烧平均间隔期为37a,火烧轮回期的约30a。这些指标对大于大兴安岭北部林区有一定的代表意义。大兴安岭北部林区的火状况主要决定于兴安落叶松的抗火特性和森林群  相似文献   

14.
Fire Severity in Conifer Forests of the Sierra Nevada, California   总被引:1,自引:2,他引:1  
Natural disturbances are an important source of environmental heterogeneity that have been linked to species diversity in ecosystems. However, spatial and temporal patterns of disturbances are often evaluated separately. Consequently, rates and scales of existing disturbance processes and their effects on biodiversity are often uncertain. We have studied both spatial and temporal patterns of contemporary fires in the Sierra Nevada Mountains, California, USA. Patterns of fire severity were analyzed for conifer forests in the three largest fires since 1999. These fires account for most cumulative area that has burned in recent years. They burned relatively remote areas where there was little timber management. To better characterize high-severity fire, we analyzed its effect on the survival of pines. We evaluated temporal patterns of fire since 1950 in the larger landscapes in which the three fires occurred. Finally, we evaluated the utility of a metric for the effects of fire suppression. Known as Condition Class it is now being used throughout the United States to predict where fire will be uncharacteristically severe. Contrary to the assumptions of fire management, we found that high-severity fire was uncommon. Moreover, pines were remarkably tolerant of it. The wildfires helped to restore landscape structure and heterogeneity, as well as producing fire effects associated with natural diversity. However, even with large recent fires, rates of burning are relatively low due to modern fire management. Condition Class was not able to predict patterns of high-severity fire. Our findings underscore the need to conduct more comprehensive assessments of existing disturbance regimes and to determine whether natural disturbances are occurring at rates and scales compatible with the maintenance of biodiversity.  相似文献   

15.
    
  1. Southern pine beetle, Dendroctonus frontalis, has expanded its range further into the northeastern United States. This expansion threatens rare and ecologically valuable interior and coastal pitch pine barrens.
  2. Pitch pine barrens restoration and southern pine beetle infestation suppression often involve leaving downed dead wood that saproxylic insects can exploit.
  3. Semiochemical-baited traps were used to investigate the response of bark beetles and woodborers to restoration treatments at Rocky Point State Forest and the Albany Pine Bush Preserve, examples of coastal and interior pitch pine forests, respectively.
  4. A total of 29,598 saproxylic insects from 116 species of bark beetles and woodborers were captured at Rocky Point State Forest, while 23,117 individuals from 67 species were captured at Albany Pine Bush Preserve.
  5. Ips spp. were abundant at both sites with 28%–47% and 42%–74% of total collections at Rocky Point State Forest and Albany Pine Bush Preserve, respectively.
  6. Ips grandicollis did not respond to treatments at either site. However, Ips pini was found in higher numbers in thinned blocks in Rocky Point State Forest.
  相似文献   

16.
17.
气候变化、火干扰与生态系统生产力   总被引:11,自引:3,他引:8       下载免费PDF全文
 综述了气候变化、火干扰与生态系统生产力之间的相互作用关系以及目前相关的研究进展。侧重介绍了气候变化与火干扰之间的相互作用关系以及火干扰对生态系统生产力的影响。气候变化通过作用于可燃物质数量、湿度和火灾天气来影响火干扰的发生频率和强度,而火干扰过程释放大量温室气体和烟尘物质反过来也会对气候变化产生影响。另外,火干扰过程改变了火烧迹地的土壤生物地球化学性质、养分循环和分配以及大气组成,进而对生态系统对CO2的吸收能力产生影响。正确理解三者之间的逻辑关系,对于我们有效地利用火管理提高区域生态系统碳吸收,减少碳排放,减缓全球变化速率,都具有重要的指导意义 。  相似文献   

18.
19.
    
Periodicity of fire disturbance is a known driver of ecosystem function and is reported as important in both promoting and maintaining viable breeding habitat for the endangered Cape Sable Seaside Sparrow (Ammospiza maritima mirabilis; CSSS). In south Florida, the CSSS serves as a fine-scale indicator of the marl and mixed-marl prairie communities of the Florida Everglades. The CSSS distribution is affected by numerous well-documented physical drivers, including water depth and fire regime. Here, we fit zero-inflated negative binomial generalized linear mixed models and used model selection to determine the relationship between CSSS bird count observations from 1992 to 2014 and the spatially-specific fire return interval on the landscape. CSSS bird count was highest at a 5–8-year fire return interval and increased linearly with the percent of cell burned (400 × 400 m cells). The results of this study can inform management plans designed to maintain existing, and promote new, marl prairie habitat for conservation of the CSSS.  相似文献   

20.
森林植被的自然火干扰   总被引:18,自引:1,他引:18  
邱扬 《生态学杂志》1998,17(1):54-60
森林植被的自然火干扰邱扬(山西大学黄土高原研究所,太原030006)NaturalFireDisturbanceofForestVegetation.QiuYang(InstituteofLoesPlateau,ShanxiUniversity,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号