首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aim Australia lost a diverse assemblage of large marsupial herbivores in the late Pleistocene, with suggestions that the extinctions were biased towards browsers. In modern times two bovines, the Asian water buffalo (Bubalus bubalis) and banteng (Bos javanicus), have established feral populations in the Northern Territory, Australia. Buffalo have aggressively expanded throughout the savanna landscape, yet banteng remain near their point of introduction on the Cobourg Peninsula. We hypothesized that this difference is related to feeding ecology, possibly reflecting a legacy of the Pleistocene extinctions. Location Western Arnhem Land, Northern Territory, Australia. Methods Analysing a previously published dataset of body mass and feeding ecology of extinct and extant marsupial herbivores, we evaluated whether browsers were at greater risk of extinction than grazers. We compared the carbon isotope composition and nitrogen content of banteng and buffalo dung in order to evaluate the hypotheses that the differences in invasion success are related to feeding ecology, and that seasonal variation in browse consumption is linked to changing nutritional quality of grass. Results Controlling for body mass, the Pleistocene extinctions were clearly biased towards browsers. Introduced banteng appear to be primarily browsers, with their diets comprising 40% grass in the wet season and 15% in the late dry season. Buffalo have a more variable diet, with an increasing proportion of browse from the wet (30%) to the late dry season (75%), and can therefore be described as switching from grazer to browser. The decline of grass in the diet of both species appears to reflect the decline in the nutritional value of grass through the dry season, an inference supported by the negative relationship between δ13C values and the nitrogen content of dung. Main conclusions Banteng and buffalo are much larger than extant native herbivores, of which browsers are restricted to isolated rocky habitats. This suggests that banteng and buffalo have filled niches made vacant following the Pleistocene extinctions. The success of buffalo appears to be related to their greater dietary breadth, which enables them to graze and browse in eucalypt savannas, whilst the browsing banteng remain tethered to a mosaic of rain forest patches. The restriction of browsers may be a long‐range consequence of habitat transformations associated with Aboriginal landscape burning.  相似文献   

2.
Most studies of mammal extinctions during the Pleistocene–Holocene transition explore the relative effects of climate change vs human impacts on these extinctions, but the relative importance of the different environmental factors involved remains poorly understood. Moreover, these studies are strongly biased towards megafauna, which may have been more influenced by human hunting than species of small body size. We examined the potential environmental causes of Pleistocene–Holocene mammal extinctions by linking regional environmental characteristics with the regional extinction rates of large and small mammals in 14 Palaearctic regions. We found that regional extinction rates were larger for megafauna, but extinction patterns across regions were similar for both size groups, emphasizing the importance of environmental change as an extinction factor as opposed to hunting. Still, the bias towards megafauna extinctions was larger in southern Europe and smaller in central Eurasia. The loss of suitable habitats, low macroclimatic heterogeneity within regions and an increase in precipitation were identified as the strongest predictors of regional extinction rates. Suitable habitats for many species of the Last Glacial fauna were grassland and desert, but not tundra or forest. The low‐extinction regions identified in central Eurasia are characterized by the continuous presence of grasslands and deserts until the present. In contrast, forest expansion associated with an increase in precipitation and temperature was likely the main factor causing habitat loss in the high‐extinction regions. The shift of grassland into tundra also contributed to the loss of suitable habitats in northern Eurasia. Habitat loss was more strongly related to the extinctions of megafauna than of small mammals. Ungulate species with low tolerance to deep snow were more likely to go regionally extinct. Thus, the increase in precipitation at the Pleistocene–Holocene transition may have also directly contributed to the extinctions by creating deep snow cover which decreases forage availability in winter.  相似文献   

3.
The Permo‐Triassic mass extinction devastated life on land and in the sea, but it is not clear why some species survived and others went extinct. One explanation is that lineage loss during mass extinctions is a random process in which luck determines which species survive. Alternatively, a phylogenetic signal in extinction may indicate a selection process operating on phenotypic traits. Large body size has often emerged as an extinction risk factor in studies of modern extinction risk, but this is not so commonly the case for mass extinctions in deep time. Here, we explore the evolution of non‐teleostean Actinopterygii (bony fishes) from the Devonian to the present day, and we concentrate on the Permo‐Triassic mass extinction. We apply a variety of time‐scaling metrics to date the phylogeny, and show that diversity peaked in the latest Permian and declined severely during the Early Triassic. In line with previous evidence, we find the phylogenetic signal of extinction increases across the mass extinction boundary: extinction of species in the earliest Triassic is more clustered across phylogeny compared to the more randomly distributed extinction signal in the late Permian. However, body length plays no role in differential survival or extinction of taxa across the boundary. In the case of fishes, size did not determine which species survived and which went extinct, but phylogenetic signal indicates that the mass extinction was not a random field of bullets.  相似文献   

4.
Recent studies connecting the decline of large predators and consumers with the disintegration of ecosystems often overlook that this natural experiment already occurred. As recently as 14 ka, tens of millions of large‐bodied mammals were widespread across the American continents. Within 1000 yr of the arrival of humans, ~ 80% were extinct including all > 600 kg. While the cause of the late Pleistocene (LP) extinction remains contentious, largely overlooked are the ecological consequences of the loss of millions of large‐bodied animals. Here, we examine the influence of the LP extinction on a local mammal community. Our study site is Hall's Cave in the Great Plains of Texas, which has unparalleled fine‐grained temporal resolution over the past 20 ka, allowing characterization of the community before and after the extinction. In step with continental patterns, this community lost 80% of large‐bodied herbivores and 20% of apex predators at the LP extinction. Using tightly constrained temporal windows spanning full glacial to modern time periods and comprehensive faunal lists, we reconstruct mammal associations and body size distributions over time. We find changes in alpha and beta diversity, and in the statistical moments associated with periods of climate change as well as with the LP extinction event. Additionally, there is a fundamental change in the composition of herbivores, with grazers being replaced by frugivores/granivores starting about 15 ka; the only large‐bodied grazer remaining today is the bison Bison bison. Moreover, the null model program PAIRS reveals interesting temporal patterns in the disassociation or co‐occurrence of species through the terminal Pleistocene and Holocene. Extinct species formed more significant associations than modern ones, and formed more aggregated pairs than do modern species. Further, negative species associations were about three times stronger than positive ones, suggesting that competitive interactions or environmental filtering are a strong force in community structure.  相似文献   

5.
Large herbivorous mammals, already greatly reduced by the late‐Pleistocene extinctions, continue to be threatened with decline. However, many herbivorous megafauna (body mass ≥ 100 kg) have populations outside their native ranges. We evaluate the distribution, diversity and threat status of introduced terrestrial megafauna worldwide and their contribution towards lost Pleistocene species richness. Of 76 megafauna species, 22 (~29%) have introduced populations; of these eleven (50%) are threatened or extinct in their native ranges. Introductions have increased megafauna species richness by between 10% (Africa) and 100% (Australia). Furthermore, between 15% (Asia) and 67% (Australia) of extinct species richness, from the late Pleistocene to today, have been numerically replaced by introduced megafauna. Much remains unknown about the ecology of introduced herbivores, but evidence suggests that these populations are rewilding modern ecosystems. We propose that attitudes towards introduced megafauna should allow for broader research and management goals.  相似文献   

6.
Late Pleistocene extinctions are of interest to paleontological and anthropological research. In North America and Australia, human occupation occurred during a short period of time and overexploitation may have led to the extinction of mammalian megafauna. In northern Eurasia megafaunal extinctions are believed to have occurred over a relatively longer period of time, perhaps as a result of changing environmental conditions, but the picture is much less clear. To consider megafaunal extinction in Eurasia, we compare differences in the geographical distribution and commonness of extinct and extant species between paleontological and archaeological localities from the late middle Pleistocene to Holocene. Purely paleontological localities, as well as most extinct species, were distributed north of archaeological sites and of the extant species, suggesting that apart from possible differences in adaptations between humans and other species, humans could also have a detrimental effect on large mammal distribution. However, evidence for human overexploitation applies only to the extinct steppe bison Bison priscus. Other human-preferred species survive into the Holocene, including Rangifer tarandus, Equus ferus, Capreolus capreolus, Cervus elaphus, Equus hemionus, Saiga tatarica, and Sus scrofa. Mammuthus primigenius and Megaloceros giganteus were rare in archaeological sites. Carnivores appear little influenced by human presence, although they become rarer in Holocene archaeological sites. Overall, the data are consistent with the conclusion that humans acted as efficient hunters selecting for the most abundant species. Our study supports the idea that the late Pleistocene extinctions were environmentally driven by climatic changes that triggered habitat fragmentation, species range reduction, and population decrease, after which human interference either by direct hunting or via indirect activities probably became critical.  相似文献   

7.
Many traits have been linked to extinction risk among modern vertebrates, including mode of life and body size. However, previous work has indicated there is little evidence that body size, or any other trait, was selective during past mass extinctions. Here, we investigate the impact of the Triassic–Jurassic mass extinction on early Archosauromorpha (basal dinosaurs, crocodylomorphs and their relatives) by focusing on body size and other life history traits. We built several new archosauromorph maximum‐likelihood supertrees, incorporating uncertainty in phylogenetic relationships. These supertrees were then employed as a framework to test whether extinction had a phylogenetic signal during the Triassic–Jurassic mass extinction, and whether species with certain traits were more or less likely to go extinct. We find evidence for phylogenetic signal in extinction, in that taxa were more likely to become extinct if a close relative also did. However, there is no correlation between extinction and body size, or any other tested trait. These conclusions add to previous findings that body size, and other traits, were not subject to selection during mass extinctions in closely‐related clades, although the phylogenetic signal in extinction indicates that selection may have acted on traits not investigated here.  相似文献   

8.
The uncertain blitzkrieg of Pleistocene megafauna   总被引:6,自引:1,他引:5  
We investigated, using meta‐analysis of empirical data and population modelling, plausible scenarios for the cause of late Pleistocene global mammal extinctions. We also considered the rate at which these extinctions may have occurred, providing a test of the so‐called ‘blitzkrieg’ hypothesis, which postulates a rapid, anthropogenically driven, extinction event. The empirical foundation for this work was a comprehensive data base of estimated body masses of mammals, comprising 198 extinct and 433 surviving species > 5 kg, which we compiled through an extensive literature search. We used mechanistic population modelling to simulate the role of human hunting efficiency, meat off‐take, relative naivety of prey to invading humans, variation in reproductive fitness of prey and deterioration of habitat quality (due to either anthropogenic landscape burning or climate change), and explored the capacity of different modelling scenarios to recover the observed empirical relationship between body mass and extinction proneness. For the best‐fitting scenarios, we calculated the rate at which the extinction event would have occurred. All of the modelling was based on sampling randomly from a plausible range of parameters (and their interactions), which affect human and animal population demographics. Our analyses of the empirical data base revealed that the relationship between body mass and extinction risk relationship increases continuously from small‐ to large‐sized animals, with no clear ‘megafaunal’ threshold. A logistic ancova model incorporating body mass and geography (continent) explains 92% of the variation in the observed extinctions. Population modelling demonstrates that there were many plausible mechanistic scenarios capable of reproducing the empirical body mass–extinction risk relationship, such as specific targeting of large animals by humans, or various combinations of habitat change and opportunistic hunting. Yet, given the current imperfect knowledge base, it is equally impossible to use modelling to isolate definitively any single scenario to explain the observed extinctions. However, one universal prediction, which applied in all scenarios in which the empirical distribution was correctly predicted, was for the extinctions to be rapid following human arrival and for surviving fauna to be suppressed below their pre‐‘blitzkrieg’ densities. In sum, human colonization in the late Pleistocene almost certainly triggered a ‘blitzkrieg’ of the ‘megafauna’, but the operational details remain elusive.  相似文献   

9.
1.  The populations of many UK farmland birds declined between 1970 and 1990, frequently accompanied by contractions in breeding ranges. Ornithological atlas data, land use data and environmental data at the scale of 10-km squares were used to investigate the relationship between local extinctions and habitat suitability for six species, and to predict where future losses are most likely.
2.  For each species we tested the hypothesis that local extinctions were concentrated in environments that were inherently less suitable. We also tested the hypothesis that spatial patterns of loss were not independent between species due to their concurrence in the same habitats.
3.  Multivariate analyses (PCA) showed that areas where each species became extinct between 1970 and 1990 were more similar in land use type, climate and topography to areas where a species was never present than those where it was retained; local extinction was more likely in less suitable environments. Multiple logistic regression showed that for five of the six species the environmental gradient best predicting presence or absence in 1970 was also that best predicting loss between 1970 and 1990. For the six species studied, local extinctions were least likely in lowland arable areas.
4.  For any pair of species, local extinctions were more frequent outside the area of overlap of the two species' ranges than inside. Within the area of overlap, species tended to be lost from the same squares. For each species, likelihood of local extinction declined with increasing number of the other five species present.
5.  We used model parameters to map the probability of future local extinctions of the six species considered, allowing the identification of key areas for conservation management at a spatial scale appropriate to agri-economic incentives.  相似文献   

10.
Pleistocene extinctions affected mainly large‐bodied animals, determining the loss or changes in numerous ecological functions. Evidence points to a central role of many extinct megafauna herbivores as seed dispersers. An important step in understanding the legacy of extinct mutualistic interactions is to evaluate the roles and effectiveness of megafauna herbivores in seed dispersal. Here we use morphological and ecophysiological allometries to estimate both quantitative and qualitative aspects of seed‐dispersal services likely provided by extinct megafauna. We developed a mechanistic model that encompasses four stages of seed dispersal – seed ingestion, gut retention, animal movement, and seed deposition. We estimate seed‐dispersal kernels through simulations to infer the role of Pleistocene megafauna in promoting long‐distance dispersal and examine how seed dispersal was affected by extinctions. Simulations suggest extinct large‐bodied frugivores would frequently disperse large seeds over a thousand meters, whereas smaller‐bodied frugivores are more likely to deposit the seeds over a few hundred meters. Moreover, events of long‐distance seed dispersal by the extinct megafauna would be up to ten times longer than long‐distance dispersal by smaller‐sized extant mammals. By estimating the combined distribution of seed dispersal distances considering all large‐bodied mammalian frugivores in specific South American Pleistocene assemblages we found that long‐distance dispersal contracted by at least two thirds after the megafauna died out. The disruption of long‐distance dispersal is expected to have consequences for recruitment, spatial and genetic structure of plant populations, population persistence and community composition. Promoting long‐distance seed dispersal was one among other salient features of extinct Pleistocene megafauna that reveal their influence on natural ecosystems. Modeling the consequences of megafaunal extinctions can offer quantitative predictions on the consequences of ongoing defaunation to plant populations and ecological communities.  相似文献   

11.
Between 50,000 and 3,000 years before present (BP) 65% of mammal genera weighing over 44 kg went extinct, together with a lower proportion of small mammals. Why species went extinct in such large numbers is hotly debated. One of the arguments proposes that climate changes underlie Late Quaternary extinctions, but global quantitative evidence for this hypothesis is still lacking. We test the potential role of global climate change on the extinction of mammals during the Late Quaternary. Our results suggest that continents with the highest climate footprint values, in other words, with climate changes of greater magnitudes during the Late Quaternary, witnessed more extinctions than continents with lower climate footprint values, with the exception of South America. Our results are consistent across species with different body masses, reinforcing the view that past climate changes contributed to global extinctions. Our model outputs, the climate change footprint dataset, provide a new research venue to test hypotheses about biodiversity dynamics during the Late Quaternary from the genetic to the species richness level.  相似文献   

12.
Local extinctions are often non‐randomly associated with range size, dispersal ability and habitat specificity, as well as body size, sexual dimorphism and phylogeny. We used a large data set of the Orthoptera species (bush crickets, crickets, grasshoppers) occurring in Germany and compared the number of occupied grid cells before 1980 to those occupied after 1980, corrected for monitoring intensity. The number of grid cells in which a species went extinct was non‐linearly related to the number of occupied grid cells per species. Using generalized linear modelling we analysed extinction in relation to national distribution (the number of occupied grid cells before 1980), dispersal ability (derived from a large body of literature concerning wing development, colonization dynamics and within‐habitat mobility), habitat specificity (moisture specialists versus generalists), potential reproduction (the number of ovarioles), the degree of sexual size dimorphism and phylogeny (twelve clades). Species with a large global range size also had a large national range size. Species with a large range experienced more total extinction events than species with smaller ranges but relatively fewer compared to range size. The latter relationship was largely shaped by the dispersal ability of the species: the interactions of range size×dispersal ability and range size×habitat specificity explained almost one third of the variation in the number of extinction events. Species with high dispersal ability went extinct in a similar number of grid cells irrespective of their range size. By contrast, species with low dispersal ability went extinct in proportion to their range size. Therefore, comparing the speed of extinction across species in the conventional way of extinction rates (that is the percentage of range contraction) might be flawed because it only applies to species with low dispersal ability. Sexual size dimorphism was not a significant predictor of extinction. Extinction was not concentrated on particular clades.  相似文献   

13.
Raup DM 《Palaeontology》1987,30(1):1-13
Four neocatastrophist claims about mass extinction are currently being debated; they are that: 1, the late Cretaceous mass extinction was caused by large body impact; 2, as many as five other major extinctions were caused by impact; 3, the timing of extinction events since the Permian is uniformly periodic; and 4, the ages of impact craters on Earth are also periodic and in phase with the extinctions. Although strongly interconnected the four claims are independent in the sense that none depends on the others. Evidence for a link between impact and extinction is strong but still needs more confirmation through bed-by-bed and laboratory studies. An important area for future research is the question of whether extinction is a continuous process, with the rate increasing at times of mass extinctions, or whether it is episodic at all scales. If the latter is shown to be generally true, then species are at risk of extinction only rarely during their existence and catastrophism, in the sense of isolated events of extreme stress, is indicated. This is line of reasoning can only be considered an hypothesis for testing. In a larger context, paleontologists may benefit from a research strategy that looks to known Solar System and Galactic phenomena for predictions about environmental effects on earth. The recent success in the recognition of Milankovitch Cycles in the late Pleistocene record is an example of the potential of this research area.  相似文献   

14.
During the Late Pleistocene and early Holocene 59 species of South American megafauna went extinct. Their extinction potentially triggered population declines of large‐seeded tree species dispersed by the large‐bodied frugivores with which they co‐evolved, a theory first proposed by Janzen and Martin (1982). We tested this hypothesis using species range maps for 257 South American tree species, comparing 63 species thought to be primarily distributed by megafauna with 194 distributed by other animals. We found a highly significant (p < 0.001) decreased mean range size of 26% for the megafauna dispersed fruit (n = 63 species) versus fruit dispersed by other animals (n = 194), results which support the hypothesis. We then developed a mathematical model of seed dispersal to estimate the theoretical impact of megafauna extinction on tree species range and found the estimated dispersal capacity (Φseed) of a 2 g seed decreases by > 95% following disperser extinction. A numerical gap dynamic simulations suggests that over a 10 000 yr period following the disperser extinctions, the average convex hull range size of large‐seeded tree species decreased by ~ 31%, while the estimated decrease in population size was ~ 54%, indicating a likely greater decrease in species population size than indicated by the empirical range patterns. Finally, we found a positive correlation between seed size and wood density of animal‐dispersed tree species implying that the Late Pleistocene and early Holocene megafaunal extinctions reduced carbon content in the Amazon by ~ 1.5 ± 0.7%. In conclusion, we 1) provide some empirical evidence that megafauna distributed fruit species have a smaller mean range size than wind, water or other animal‐dispersed species, 2) demonstrate mathematically that such range reductions are expected from megafauna extinctions ca 12 000 yr ago, and 3) illustrate that these extinctions may have reduced the Amazon's carbon storage capacity.  相似文献   

15.
A. Mysterud 《Oecologia》2000,124(1):40-54
Ecological segregation (sexual differences in diet or habitat use) in large herbivores has been intimately linked to sexual body size dimorphism, and may affect both performance and survival of the sexes. However, no one has tested comparatively whether segregation occurs at a higher frequency among more dimorphic species. To test this comparatively, data on sex-specific diet, habitat use and body size of 40 species of large herbivores were extracted from the literature. The frequency of ecological segregation was higher among more dimorphic herbivores; however, this was only significant for browsers. This provides the first evidence that segregation is more common among more dimorphic species. The comparative evidence supported the nutritional-needs hypothesis over the incisor breadth hypothesis, as there was no difference in frequency of segregation between seasons with high and low resource levels, and since segregation was also evident among browsers. Whether the absence of a correlation between ecological segregation and level of sexual body size dimorphism for intermediate feeders and grazers is due to biological differences relative to browsers or to the fact that the monomorphic species included in the analysis were all browsers is discussed. Received: 18 August 1999 / Accepted: 31 January 2000  相似文献   

16.
The Early Pleistocene Regatta Point sediments contain macrofossils that suggest that generic and specific rainforest diversity was higher in the region that it is today both locally and regionally, but the diversity was probably lower than it was for most of the Tertiary. The sediments contain extinct species of conifers and angiosperms which have closest living relatives in a wide range of environments, mainly wet forests of warmer areas than western Tasmania, but also relatively cool and dry areas. Simple models of climatically driven extinction explain these extinctions poorly. It is more likely that there was a wide range of causes of extinctions. New species, Acacia bulbosa, Rubus nebuloides, Quintinia tasmanensis, Oxylobium pungens, Laurophyttum australum and Myrtaceaephyllum pleistocenicum , are described. 1997 The Linnean Society of London  相似文献   

17.
Species are being lost at an unprecedented rate during the Anthropocene. Progress has been made in clarifying how species traits influence their propensity to go extinct, but the role historical demography plays in species loss or persistence is unclear. In eastern North America, five charismatic landbirds went extinct last century, and the causes of their extinctions have been heavily debated. Although these extinctions are most often attributed to post-colonial human activity, other factors such as declining ancestral populations prior to European colonization could have made these species particularly susceptible. We used population genomic data from these extinct birds and compared them with those from four codistributed extant species. We found extinct species harboured lower genetic diversity and effective population sizes than extant species, but both extinct and non-extinct birds had similar demographic histories of population expansion. These demographic patterns are consistent with population size changes associated with glacial–interglacial cycles. The lack of support for overall population declines during the Pleistocene corroborates the view that, although species that went extinct may have been vulnerable due to low diversity or small population size, their disappearance was driven by human activities in the Anthropocene.  相似文献   

18.
The 'mass extinctions' at the end of the Pleistocene were unique, both in the Pleistocene and earlier in the geological record, in that the species lost were nearly all large terrestrial mammals. Although a global phenomenon, late Pleistocene extinctions were most severe in North America, South America and Australia, and moderate in northern Eurasia (Europe plus Soviet Asia). In Africa, where nearly all of the late Pleistocene 'megafauna' survives to the present day, losses were slight. Ruling out epidemic disease or cosmic catastrophe, the contending hypotheses to explain late Pleistocene extinctions are: (a) failure to adapt to climatic/environmental change; and (b) extermination by human hunters ('prehistoric overkill'). This review focuses on extinctions in northern Eurasia (mainly Europe) in comparison with North America. In addition to reviewing the faunal evidence, the highly relevant environmental and archaeological backgrounds are summarized. The latest survival dates of extinct species are estimated from stratigraphic occurrences of fossil remains, radiocarbon dates, or association with archaeological industries. The Middle and Upper Pleistocene (ca. 700,000-10,000 BP) in northern Eurasia and North America was a time of constantly changing climate, ranging from phases of extensive glaciation in cold stages, to temperate periods (interglacials). In the Lateglacial (ca. 15,000-10,000 BP), during which most extinctions occurred, there was a major reorganization of vegetation, mainly involving the replacement of open vegetation by forests. These changes were more profound than earlier in the Last Cold Stage, but similar in nature to vegetational changes that took place at previous cold stage/interglacial transitions. The archaeological record shows that humans have been present in Europe since the early Middle Pleistocene. The arrival in Europe ca. 35,000 BP of 'anatomically modern humans', with their technologically more advanced upper palaeolithic industries, was a 'quantum leap' in human history. Extinctions occurred throughout the European Pleistocene, but until the late Pleistocene most losses were replaced by the evolution or immigration of new species, and most of those lost without replacement were small mammals. In marked contrast, extinctions without replacement in the late Pleistocene were almost entirely confined to the largest mammals (greater than 1000 kg) and some medium-large species (100-1000 kg).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Species ranges and relative abundances of dominant planktonic foraminifers of eight late Eocene to early Oligocene deep-sea sections are discussed to determine the nature and magnitude of extinctions and to investigate a possible cause-effect relationship between impact events and mass extinctions.Late Eocene extinctions are neither catastrophic nor mass extinctions, but occur stepwise over a period of about 1–2 million years. Four stepwise extinctions are identified at the middle/late Eocene boundary, the upperGlobigerapsis semiinvoluta zone, theG. semiinvoluta/Globorotalia cerroazulensis zone boundary and at the Eocene/Oligocene boundary. Each stepwise extinction event represents a time of accelerated faunal turnover characterized by generally less than 15% species extinct and in itself is not a significant extinction event. Relative species abundance changes at each stepwise extinction event, however, indicate a turnover involving > 60% of the population implying major environmental changes.There microtektite horizons are present in late Eocene sediments; one in the upperG. semiinvoluta zone (38.2 Ma) and two closely spaced layers only a few thousand years apart in the lower part of theGloborotalia cerroazulensis zone (37.2 Ma). Each of the three impact events appears to have had some effect on microplankton communities. However, the overriding factor that led to the stepwise mass extinctions may have been the result of multiple causes as there is no evidence of impacts associated with the step preceding, or the step following the deposition of the presently known microtektite horizons.  相似文献   

20.
For hundreds of millions of years, large vertebrates (megafauna) have inhabited most of the ecosystems on our planet. During the late Quaternary, notably during the Late Pleistocene and the early Holocene, Earth experienced a rapid extinction of large, terrestrial vertebrates. While much attention has been paid to understanding the causes of this massive megafauna extinction, less attention has been given to understanding the impacts of loss of megafauna on other organisms with whom they interacted. In this review, we discuss how the loss of megafauna disrupted and reshaped ecological interactions, and explore the ecological consequences of the ongoing decline of large vertebrates. Numerous late Quaternary extinct species of predators, parasites, commensals and mutualistic partners were associated with megafauna and were probably lost due to their strict dependence upon them (co‐extinctions). Moreover, many extant species have megafauna‐adapted traits that provided evolutionary benefits under past megafauna‐rich conditions, but are now of no or limited use (anachronisms). Morphological evolution and behavioural changes allowed some of these species partially to overcome the absence of megafauna. Although the extinction of megafauna led to a number of co‐extinction events, several species that likely co‐evolved with megafauna established new interactions with humans and their domestic animals. Species that were highly specialized in interactions with megafauna, such as large predators, specialized parasites, and large commensalists (e.g. scavengers, dung beetles), and could not adapt to new hosts or prey were more likely to die out. Partners that were less megafauna dependent persisted because of behavioural plasticity or by shifting their dependency to humans via domestication, facilitation or pathogen spill‐over, or through interactions with domestic megafauna. We argue that the ongoing extinction of the extant megafauna in the Anthropocene will catalyse another wave of co‐extinctions due to the enormous diversity of key ecological interactions and functional roles provided by the megafauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号