首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The insecticidal effect of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreaes) in combination with three diatomaceous earth (DE) formulations against adults of the granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae) was tested in the laboratory. The three DEs were Insecto™, SilicoSec® and PyriSec®. The fungus was applied at 400 ppm alone, or in combination with 200 ppm of each of the three DEs. Mortality was measured after 7 d of exposure. Bioassays were conducted at three temperatures 20, 25 and 30 °C and two relative humidities (rh) 55% and 75%. On wheat treated with B. bassiana alone, mortality was higher at 55% than at 75% rh. Also, the fungus alone was less effective at 20 °C than at the other two temperatures tested, but mortality did not exceed 52% for any of the conditions tested. Similar mortality levels were also noted on wheat treated with each of the three DEs alone. The simultaneous presence of B. bassiana and DE increased weevil mortality. In this combination, mortality was higher at high temperatures and low rh, and this effect was similar for all DEs tested. Progeny production on wheat treated with B. bassiana was higher that the respective progeny counts in the DE-treated wheat. The results indicate that a combination of B. bassiana and DEs is effective against S. granarius, under a broad range of temperature and rh levels in stored wheat.  相似文献   

2.
As part of a 3-fold approach to select potential mycoinsecticides for whitefly control, we evaluated infectivity, thermal requirements, and toxicogenic activity of the entomopathogenic fungus Beauveria bassiana (Ascomycota: Clavicipitaceae) under laboratory conditions. Twenty-five native B. bassiana isolates and a commercially available mycoinsecticide (based on B. bassiana) were evaluated for virulence to fourth instar nymphs of sweetpotato whitefly, Bemisia tabaci, and greenhouse whitefly, Trialeurodes vaporariorum, at a concentration of 1 × 107 conidia/ml. All isolates were pathogenic for both whitefly species, whereas mortality rates varied from 3 to 85%. A second series of bioassays was conducted on 10 selected isolates using four 10-fold concentrations ranging from 1 × 105 to 1 × 108 conidia/ml. Median lethal concentrations (LC50) of the four most virulent isolates varied from 1.1 × 105 to 6.2 × 106 conidia/ml and average survival time (AST) of treated nymphs from 5.9 to 7.4 days. T. vaporariorum were significantly more susceptible to all B. bassiana isolates than B. tabaci. The thermal biology of the eight most virulent isolates to both whitefly species was investigated at six temperatures (10–35 °C). The colony radial growth rate was estimated from the slope of the linear regression of colony radius on time and data were then fitted to a modified generalized β function that accounted for 90.5–99.3% of the data variance. Optimum temperatures for extension rate ranged from 23.1 to 27.1 °C, whereas maximum temperatures for fungal growth varied from 31.8 to 36.6 °C. On the basis of their virulence and thermal requirements, three isolates showed promise as candidates for whitefly management in Mediterranean greenhouses. Whilst in vitro production of macromolecular compounds toxic to Galleria mellonella larvae was not a requisite for virulence, ASTs of larvae injected with Sephadex G-25 fractions from candidate isolates ranged from 1.4 to 3.7 days compared with 5–6 days for non-toxic G-25 fractions. In addition, proteinase K treatment significantly reduced their toxic activity suggesting that they were proteins and revealing the potential of these isolates to be further improved through biotechnology to kill the pest more quickly.  相似文献   

3.
Our objective was to estimate the biocontrol potential of the recently discovered entomopathogenic nematode species Heterorhabditis georgiana (Kesha strain). Additionally, we conducted a phylogenetic characterization of the nematode’s symbiotic bacterium. In laboratory experiments, we compared H. georgiana to other entomopathogenic nematodes for virulence, environmental tolerance (to heat, desiccation, and cold), and host seeking ability. Virulence assays targeted Acheta domesticus, Agrotis ipsilon, Diaprepes abbreviatus, Musca domestica, Plodia interpunctella, Solenopsis invicta, and Tenebrio molitor. Each assay included H. georgiana and five or six of the following species: Heterorhabditis floridensis, Heterorhabditis indica, Heterorhabditis mexicana, Steinernema carpocapsae, Steinernema feltiae, Steinernema rarum, and Steinernema riobrave. Environmental tolerance assays included Heterorhabditis bacteriophora, H. georgiana, H. indica, S. carpocapsae, S. feltiae, and S. riobrave (except cold tolerance did not include S. carpocapsae or S. riobrave). Host seeking ability was assessed in H. bacteriophora, H. georgiana, S. carpocapsae, and Steinernema glaseri, all of which showed positive orientation to the host with S. glaseri having greater movement toward the host than S. carpocapsae (and the heterorhabditids being intermediate). Temperature range data (tested at 10, 13, 17, 25, 30 and 35 °C) indicated that H. georgiana can infect Galleria mellonella between 13 and 35 °C (with higher infection at 17–30 °C), and could reproduce between 17 and 30 °C (with higher nematode yields at 25 °C). Compared with other nematode species, H. georgiana expressed low or intermediate capabilities in all virulence and environmental tolerance assays indicating a relatively low biocontrol potential. Some novel observations resulted from comparisons among other species tested. In virulence assays, H. indica caused the highest mortality in P. interpunctella followed by S. riobrave; S. carpocapsae caused the highest mortality in A. domesticus followed by H. indica; and S. riobrave was the most virulent nematode to S. invicta. In cold tolerance, S. feltiae exhibited superior ability to cause mortality in G. mellonella (100%) at 10 °C, yet H. bacteriophora and H. georgiana exhibited the ability to produce attenuated infections at 10 °C, i.e., the infections resumed and produced mortality at 25 °C. In contrast, H. indica did not show an ability to cause attenuated infections. Based on the phylogenetic analysis, the bacterium associated with H. georgiana was identified as Photorhabdus luminescens akhurstii.  相似文献   

4.
A survey for entomopathogenic fungi of Musca domestica adults was conducted in poultry houses in La Plata, Buenos Aires province, Argentina, during the years 2002 and 2003. Adult house flies were found infected with the fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) from field collections, with a natural infected prevalence between 0.4–1.45%. This is the first record of natural infections of house flies caused by B. bassiana for the neotropics. Pathogenicity assays under laboratory conditions showed 94% adult mortality at 14 days post challenge. CIC fellow  相似文献   

5.
西花蓟马是一种外来入侵的世界性害虫,对农林业危害巨大。查阅国内外相关文献,综述了当前防治西花蓟马的虫生真菌的种类、高毒力菌株的筛选及防治现状。现已知西花蓟马的寄生病原真菌有5种,包括蜡蚧轮枝菌(半知菌:丝孢目)、球孢白僵菌(半知菌:丝孢目)、金龟子绿僵菌(半知菌:丝孢目)、玫烟色棒束孢(半知菌:束梗孢目)和小孢新接霉。其中,球孢白僵菌、金龟子绿僵菌在西花蓟马的生物防治中应用最广,具有良好的开发应用潜力,部分防效好的虫生真菌已申请专利及实现工厂化生产。  相似文献   

6.
7.
A Surface Response Model was used to study the effect of pH, temperature and agitation on growth, sporulation and production of antifungal metabolites by Bacillus subtilis CCMI 355.Strong agitation, temperature between 27 and 34 °C and pH 6 favoured cell growth. Alkaline pH, strong agitation and temperature between 28 and 34 °C favoured spore formation. No relationship was found between sporulation and the production of antifungal metabolites. According to the model, pH 8, 37 °C and the absence of agitation were the optimal conditions for the production of broad-spectrum antifungal metabolites against Botrytis cinerea, Penicillium expansum, Trichoderma sp, Trichoderma harzianum, Trichoderma koningii and Trichoderma virgatum.In situ assays using green wood impregnated with Bacillus subtilis CCMI 355 inoculated in Yeast Extract Glucose Broth medium in the conditions above, displayed an efficient protection against wood surface contaminant fungi.  相似文献   

8.
A survey for natural entomopathogenic fungi of the Chagas disease vector Triatoma infestans was conducted in five provinces of Argentina since 2001. Nymphs (1.5%) and adults (3.3%) infected with a strain of the fungus Beauveria bassiana were found at Dean Funes, Córdoba province, Argentina. Field collected insects that died in the laboratory were maintained in moist chambers and incubated at 22 °C. Beauveria bassiana from infected insects was cultured on SDAY media. Pathogenicity tests were conducted with a conidial suspension (1 × 107 conidia/ml) of this isolate on T. infestans adults. A mortality rate of 100% was obtained at 15 days post-infection. This is the first record of natural infection of T. infestans by B. bassiana.  相似文献   

9.
Heat and cold are environmental abiotic factors that restrict the use of entomopathogenic fungi as agents for biological control of insects. The thermotolerance and cold activity of 60 entomopathogenic fungal isolates, including five species of Beauveria and one isolate of Engyodontium albus (=Beauveria alba) were examined as to tolerance of temperatures that might be encountered during field use. In addition, cold activity of eight Metarhizium spp. isolates was evaluated. The isolates were from various geographic regions, arthropod hosts or substrates. High variability in conidial thermotolerance was found among the Beauveria spp. isolates after exposure to 45 °C for 2 h, as evidenced by low (0-20%), medium (20-60%), or high germination (60-80%). The thermal death point (0% germination) for three rather thermotolerant B. bassiana isolates (CG 138, GHA and ARSEF 252) was 46 °C for 6 h. At low temperatures (5 °C), with few exceptions (e.g. CG 66, UFPE 479, CG 227, CG 02), most of the B. bassiana isolates germinated well (ca. 100%). On the other hand, only one isolate of Metarhizium sp. was cold-active (i.e. ARSEF 4343 from Macquarie Island, 54.4°S, Australia). This probably is a M. frigidum isolate. The E. albus isolate (UFPE 3138) was the most susceptible isolate to both heat and cold stress. Isolates ARSEF 252 and GHA of B. bassiana, on the other hand, presented exceptionally high thermotolerance and cold activity. Some isolates with high cold activity, however, were thermosensitive (e.g. ARSEF 1682) and others with high thermotolerance had low cold activity (e.g. CG 227). An attempt to correlate the latitude of origin with thermotolerance or cold activity indicated that B. bassiana isolates from higher latitudes were more cold-active than isolates from nearer the equator, but there was not a similar correlation for heat.  相似文献   

10.
Larvae of the cedar web-spinning sawfly, Cephalcia tannourinensis Chevin (Hymenoptera: Pamphiliidae), infected with a white fungus were collected from the Tannourine-Hadath El-Jebbeh cedar forest. Macro- and micro-morphological data based on the examination of colonies, conidiophores, and conidial shape of the fungus suggested a Beauveria species. Sequence analysis of the internal transcribed spacer regions of the isolated fungus showed that it is most closely related to isolates of B. bassiana Clade C. The present study showed that the isolated B. bassiana is a naturally occurring entomopathogenic fungus parasitizing the larvae of C. tannourinensis in Lebanon. Laboratory bioassays showed that B. bassiana caused high mortality of eggs and larvae. The infected eggs turned brownish in color, while larvae of the first instar ceased feeding and showed immobility and rigidity within 5 days and before sporulating conidial mat appeared on their cuticle. Second and third larval instars took longer time to show fungal sporulation: mortalities ranged between 85 and 100% within 7 days when treated with different conidial concentrations. The efficacy of control of C. tannourinensis using B. bassiana was higher or equal to the reference insect growth regulator, diflubenzuron, suggesting the possibility of its success as a biological control agent.  相似文献   

11.
Visceral leishmaniasis is a zoonosis whose primary vector in Brazil is the sandfly Lutzomyia longipalpis Lutz & Neiva. Presently, efforts to control the vector have not been effective in reducing the prevalence of disease. A possible alternative to current strategies is the biological control of the vector using entomopathogenic fungi. This study evaluates the effects of the fungus, Beauveria bassiana (Bals.) Vuilleman, in different developmental stages of L. longipalpis. Five concentrations of the fungus were utilized ranging from 104 to 108 conidia/ml, with appropriate controls. The unhatched eggs, larvae and dead adults exposed to B. bassiana were sown to reisolate the fungus. The fungus was subsequently identified by polymerase chain reaction (PCR) and DNA sequencing. Exposure to B. bassiana reduced the number of eggs that hatched by 59% (< 0.01). The longevity of infected adults was 5 days, significantly lower than that of the negative control which was 7 days (< 0.001). The longevity of the adult sandfly exposed to the positive chemical (pyrethroid, cypermetherin) control was less than 1 day. The effects of fungal infection on the hatching of eggs laid by infected females were also significant and dose-dependent (< 0.05). With respect to fungal post-infection growth parameters, only germination and sporulation were significantly higher than the fungi before infection (< 0.001). The identity of the reisolated fungus was confirmed by automated DNA sequencing post-passage in all insect stages. These data show that B. bassiana has good pathogenic potential, primarily on L. longipalpis larvae and adults. Consequently, the use of this fungus in sandfly control programs has potential in reducing the use of chemical insecticides, resulting in benefits to humans and the environment.  相似文献   

12.
The influence of relative humidity (RH) and temperature on growth and metabolism of eight microfungi on 21 different types of building material was investigated. The fungi were applied as a dry mixture to the materials, which were incubated at 5°C, 10°C, 20°C and 25°C at three humidity levels in the range 69–95% RH over 4–7 months. The lower limit for fungal growth on wood, wood composites and starch-containing materials was 78% RH at 20–25°C and increased to 90% RH at 5°C. An RH of 86% was necessary for growth on gypsum board. Ceramic materials supported growth at RH >90%, although 95% RH was needed to yield chemically detectable quantities of biomass. Almost exclusively only Penicillium, Aspergillus and Eurotium (contaminant) species grew on the materials. Production of secondary metabolites and mycotoxins decreased with humidity and the quantities of metabolites were insignificant compared with those produced at high RH (RH >95%), except in the case of Eurotium.  相似文献   

13.
The virulence of two isolates of the hyphomycete fungi, Beauveria bassianaand B. brongniartii, and additional fungal species isolated from diseased Bactrocera oleae pupae and Sesamia nonagrioideslarvae were assessed against adults of the olive fruit fly B. oleae and the Mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae). Contact and oral bioassays revealed that moderate to high mortality rates for the olive fruit fly occurred when the adults were exposed to conidia of Mucor hiemalis, Penicillium aurantiogriseum, P. chrysogenum and B. bassianaisolates. A strain of M. hiemalis isolated from S. nonagrioides larvae was the most toxic resulting in 85.2% mortality to the olive fruit fly adults. B. brongniartiiand B. bassiana were the most pathogenic to the C. capitataadults causing 97.4 and 85.6% mortality. Metabolites collected from the M. hiemalis and P. chrysogenum isolates were toxic to adults of both species.  相似文献   

14.
Factors affecting the occurrence and distribution of entomopathogenic fungi in 244 soil samples collected from natural and cultivated areas in Spain were studied using an integrated approach based on univariate and multivariate analyses. Entomopathogenic fungi were isolated from 175 of the 244 (71.7 %) soil samples, with only two species found, Beauveria bassiana and Metarhizium anisopliae. Of the 244 soil samples, 104 yielded B. bassiana (42.6 %), 18 yielded M. anisopliae (7.3 %), and 53 soil samples (21.7 %) harboured both fungi. Log-linear models indicated no significant effect of habitat on the occurrence of B. bassiana, but a strong association between M. anisopliae and soils from cultivated habitats, particularly field crops. Also, irrespective of habitat type, B. bassiana predominated over M. anisopliae in soils with a higher clay content, higher pH, and lower organic matter content. Logistic regression analyses showed that pH and clay content were predictive variables for the occurrence of B. bassiana, whereas organic matter content was the predictive variable for M. anisopliae. Also, latitude and longitude predicted the occurrence of these same species, but in opposite directions. Altitude was found to be predictive for the occurrence of B. bassiana. Using principal component analysis, four factors (1 to 4) accounted for 86 % of the total variance; 32.8, 22.9, 19.6 and 10.4 % of the cumulative variance explained, respectively. Factor 1 was associated with high positive weights for soil clay and silt content and high negative weights for soil sand content. Factor 2 was associated with high positive weights for soil organic matter content and high negative weights for soil pH. Factor 3 was associated with high positive weights for latitude and longitude of the sampled localities and factor 4, had high positive weights only for the altitude. Bi-plot displays representing soil samples were developed for different factor combinations and indicated that, irrespective of geographical location, absence of both fungal species was determined by alkaline sandy soils with low organic matter content, whereas heaviness of soil texture, acidity and increasing organic matter content led to progressively higher percentages of samples harbouring entomopathogenic fungi. These results could aid decision-making as to whether or not a particular cultivated or natural soil is suitable for using entomopathogenic fungi as a pest control measure and for selecting the fungal species best suited to a particular soil.  相似文献   

15.
Infestation of sugar cane nodes by the mealybug Saccharicoccus sacchari (Cockerell) was studied in two commercial fields over a 7-month period in 1987. Natural enemies associated with S. sacchari were fungi Aspergillus parasiticus Speare, Metarhizium anisopliae (Metschnikoff) Sorokin, and Penicillium spp.; the dipteran Cacoxenus perspicax Knab; and the hymenopteran parasitoid Anagyrus saccharicola Timberlake. A. parasiticus was the predominent natural enemy of S. sacchari whereas all other natural enemies showed a low level of activity. The highest prevalence of A. parasiticus was in March when it occurred on 84% of S. sacchari-infested nodes. The prevalence of A. parasiticus declined rapidly during April and May and was absent in the winter months during which nodal infestation of S. sacchari increased. In laboratory bioassays all fungal isolates originating from S. sacchari were more virulent at 28°C than at 24°C. Laboratory studies supported the hypothesis based on field observations that temperature highly influenced the efficacy of A. parasiticus against S. sacchari.  相似文献   

16.
A survey was conducted on confined dairy cattle farms and a pig farm from May–October in 1999 to determine the activity and relative abundance of pupal parasitoids and the prevalence of entomopathogenic fungi in populations of the haematophagous stable fly, Stomoxys calcitrans (Diptera: Muscidae), in Denmark. Four species of pteromalids were found with Spalangia cameroni as the predominant. The other parasitoids were S. nigripes, S. nigra and Phygadeuon fumator (Ichneumonidae). Peak activity of the parasitoids was observed to be late in the summer and the beginning of autumn (August–September) when approximately 10% of the collected stable fly pupae were parasitised. Adult stable flies were infected with four species of entomopathogenic fungi: Entomophthora muscae, E. schizophorae, Beauveria bassiana and Verticillium lecanii. All fungi occurred in low percentages (max. 4%) and remained at this level throughout the sampling period. Likewise, adult house flies were infected with B. bassiana and V. lecanii,but Metarhizium anisopliae, Paecilomyces fumosoroseus and V. fusisporum were also recorded. The overall hyphomycete prevalence in house flies was 0.3%, and single species rarely exceeded 0.1%. The prevalence remained low in spite of increasing house fly numbers in August–September.  相似文献   

17.
The embryonic development of oothecae of Periplaneta americana was evaluated under four different constant temperatures (5, 10, 15, 20, 25, 30, and 35 °C) and also at different exposure times at <5 °C. Their suitability as hosts after the treatment for the parasitoids Evania appendigaster and Aprostocetus hagenowii was also assessed. Temperatures of 5, 10, 15, and 35 °C adversely affected the development of the cockroaches, and exposure times to <5 °C longer than 5 days sufficed to kill all the embryos in the oothecae. The lower thermal threshold for complete development of P. americana was estimated to be 6.8 °C, with a required total amount of 900.9 degree-days. Cold-killed oothecae were still fit for the development of parasitoids. Parasitism rates of A. hagenowii were higher than those of E. appendigaster, although with lower emergence rates. Our results can be useful in aiding mass-rearing of these parasitoids for biological control programmes of P. americana, and may help forecast the time of emergence of nymphs of American cockroaches in infested areas.  相似文献   

18.
Collaborative research was conducted at the USDA-ARS Subtropical Agricultural Research Center in southern Texas to assess the microbial control potential of Beauveria bassiana and Paecilomyces fumosoroseus against Bemisia whiteflies. Laboratory assays demonstrated the capacity of both pathogens to infect Bemisia argentifolii nymphs on excised hibiscus leaves incubated at relative humidities as low as 25% at 23 ± 2°C (ca. 35% infection by B. bassiana and P. fumosoroseus resulted from applications of 0.6–1.4 × 103 conidia/mm2 of leaf surface). In small-scale field trials using portable air-assist sprayers, applications at a high rate of 5 × 1013 conidia in 180 liters water/ha produced conidial densities of ca. 1–2.5 × 103 conidia/mm2 on the lower surfaces of cucurbit leaves. Multiple applications of one isolate of P. fumosoroseus and four isolates of B. bassiana made at this rate at 4- to 5-day intervals provided >90% control of large (third- and fourth-instar) nymphs on cucumbers and cantaloupe melons. The same rate applied at 7-day intervals also provided >90% control in zucchini squash, and a one-fourth rate (1.25 × 1013 conidia/ha) applied at 4- to 5-day intervals reduced numbers of large nymphs by >85% in cantaloupe melons. In contrast to the high efficacy of the fungal applications against nymphs, effects against adult whiteflies were minimal. The results indicated that both B. bassiana and P. fumosoroseus have strong potential for microbial control of nymphal whiteflies infesting cucurbit crops.  相似文献   

19.
A technically standardised bioassay method was designed, evaluated and used to assess virulence and host range of hypocrealean fungi against aphids. A track mounted sprayer was used to apply conidia because hand held versions of the same sprayer can be used for field applications, thereby allowing the outcome from laboratory experiments to predict activity in the field accurately. Eighteen fungal isolates were assessed in single concentration bioassays against the black bean aphid Aphis fabae Scopoli. Isolates comprised commercially available mycoinsecticides (based on Beauveria bassiana and Lecanicillium longisporum) and isolates of B. bassiana, Lecanicillium spp., Paecilomyces fumosoroseus and Metarhizium anisopliae. Aphid mortality was in excess of 80% for 15 isolates, and HRI 1.72 (L. longipsorum), Z11 (P. fumosoroseus), Mycotech strain GHA (B. bassiana) and ARSEF 2879 (B. bassiana) were studied further. Multiple concentration bioassays identified HRI 1.72 as the most virulent isolate against A. fabae with significantly smaller LC50 and LT50 values compared to other isolates. A precise LC50 value (2.95 × 102 conidia ml−1) was calculated for HRI 1.72 using a second multiple concentration assay with smaller concentrations of conidia. The four isolates were applied at a single concentration (1 × 108 conidia ml−1) against Myzus persicae, A. fabae, Acyrthosiphon pisum, Metopolophium dirhodum, Sitobion avenae and Rhopalosiphum padi. A ranking of aphid susceptibility was obtained, such that S. avenae > M. persicae, A. pisum, A. fabae > R. padi. Results indicate the importance of standardising bioassay methods to reduce bioassay variability without compromising the ability to use the bioassay to investigate fungus–host interactions under varying abiotic and biotic conditions.  相似文献   

20.
Tipula paludosa (Diptera: Nematocera) is the major insect pest in grassland in Northwest Europe and has been accidentally introduced to North America. Oviposition occurs during late August and first instars hatch from September until mid-October. Laboratory and field trials were conducted to assess the control potential of entomopathogenic nematodes (EPN) (Steinernema carpocapsae and S. feltiae) and Bacillus thuringiensis subsp. israelensis (Bti) against T. paludosa and to investigate whether synergistic effects can be exploited by simultaneous application of nematodes and Bti. Results indicate that the early instars of the insect are most susceptible to nematodes and Bti. In the field the neonates prevail when temperatures tend to drop below 10 °C. S. carpocapsae, reaching >80% control, is more effective against young stages of T. paludosa than S. feltiae (<50%), but the potential of S. carpocapsae might be limited by temperatures below 12 °C. Mortality of T. paludosa caused by Bti was not affected by temperature even at 4 °C but the lethal time increased with decreasing temperatures. Synergistic effects of Bti and EPN against T. paludosa were observed in 3 out of 10 combinations in laboratory assays but not in a field trial. The potential of S. carpocapsae was demonstrated in field trials against early instars in October reaching an efficacy of >80% with 0.5 million nematodes m−2 at soil temperatures ranging between 3 and 18 °C. Results with Bti were strongly influenced by the larval stage and concentration. Against early instars in autumn between 74 and 83% control was achieved with 13 kg ha−1 Bti of 5,700 International Toxic Units (ITUs) and 20 kg ha−1 of 3,000 ITUs. Applications in spring against third and fourth instars achieved between 0 and 32% reduction. The results indicate that application of Bti and nematodes will only be successful and economically feasible during the early instars and that the success of S. carpocapsae is dependent on temperatures >12 °C. Synergistic effects between S. carpocapsae and Bti require more detailed investigations in the field to determine maximal effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号