首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular and humoral immunity against vaccinia virus infection of mice   总被引:8,自引:0,他引:8  
Despite the widespread use of vaccinia virus (VV) as a vector for other Ags and as the smallpox vaccine, there is little information available about the protective components of the immune response following VV infection. In this study, protection against wild-type VV was evaluated in mice with respect to the relative contributions of CD8(+) T cells vs that of CD4(+) T cells and Ab. C57BL/6 mice primed with the Western Reserve strain of VV mount significant IgM and IgG Ab responses, specific cytotoxic T cell responses, IFN-gamma responses in CD4(+) and CD8(+) T cells, and effectively clear the virus. This protection was abrogated by in vivo depletion of CD4(+) T cells or B cells in IgH(-/-) mice, but was not sensitive to CD8(+) T cell depletion alone. However, a role for CD8(+) T cells in primary protection was demonstrated in MHC class II(-/-) mice, where depleting CD8(+) T cells lead to increase severity of disease. Unlike control MHC class II(-/-) mice, the group depleted of CD8(+) T cells developed skin lesions on the tail and feet and had adrenal necrosis. Adoptive transfer experiments also show CD8(+) T cells can mediate protective memory. These results collectively show that both CD4(+) and CD8(+) T cell-mediated immunity can contribute to protection against VV infection. However, CD4(+) T cell-dependent anti-virus Ab production plays a more important role in clearing virus following acute infection, while in the absence of Ab, CD8(+) T cells can contribute to protection against disease.  相似文献   

2.
Interleukin-1alpha (IL-1alpha) and IL-1beta are proinflammatory cytokines, which induce a plethora of genes and activities by binding to the type 1 IL-1 receptor (IL-1R1). We have investigated the role of IL-1 during pulmonary antiviral immune responses in IL-1R1(-/-) mice infected with influenza virus. IL-1R1(-/-) mice showed markedly reduced inflammatory pathology in the lung, primarily due to impaired neutrophil recruitment. Activation of CD4(+) T cells in secondary lymphoid organs and subsequent migration to the lung were impaired in the absence of IL-1R1. In contrast, activation of virus-specific cytotoxic T lymphocytes and killing of virus-infected cells in the lung were intact. Influenza virus-specific immunoglobulin G (IgG) and IgA antibody responses were intact, while the IgM response was markedly reduced in both serum and mucosal sites in IL-1R1(-/-) mice. We found significantly increased mortality in the absence of IL-1R1; however, lung viral titers were only moderately increased. Our results demonstrate that IL-1alpha/beta mediate acute pulmonary inflammatory pathology while enhancing survival during influenza virus infection. IL-1alpha/beta appear not to influence killing of virus-infected cells but to enhance IgM antibody responses and recruitment of CD4(+) T cells to the site of infection.  相似文献   

3.
Optimal expansion of influenza virus nucleoprotein (D(b)NP(366))-specific CD8(+) T cells following respiratory challenge of naive Ig(-/-) microMT mice was found to require CD4(+) T-cell help, and this effect was also observed in primed animals. Absence of the CD4(+) population was consistently correlated with diminished recruitment of virus-specific CD8(+) T cells to the infected lung, delayed virus clearance, and increased morbidity. The splenic CD8(+) set generated during the recall response in Ig(-/-) mice primed at least 6 months previously showed a normal profile of gamma interferon production subsequent to short-term, in vitro stimulation with viral peptide, irrespective of a concurrent CD4(+) T-cell response. Both the magnitude and the localization profiles of virus-specific CD8(+) T cells, though perhaps not their functional characteristics, are thus modified in mice lacking CD4(+) T cells.  相似文献   

4.
Recent studies have revealed that innate immunity is involved in the development of adaptive immune responses; however, its role in protection is not clear. In order to elucidate the exact role of Toll-like receptor (TLR) or RIG-I-like receptor (RLR) signaling on immunogenicity and protective efficacy against influenza A virus infection (A/PR/8/34 [PR8]; H1N1), we adapted several innate signal-deficient mice (e.g., TRIF(-/-), MyD88(-/-), MyD88(-/-) TRIF(-/-), TLR3(-/-) TLR7(-/-), and IPS-1(-/-)). In this study, we found that MyD88 signaling was required for recruitment of CD11b(+) granulocytes, production of early inflammatory cytokines, optimal proliferation of CD4 T cells, and production of Th1 cytokines by T cells. However, PR8 virus-specific IgG and IgA antibody levels in both systemic and mucosal compartments were normal in TLR- and RLR-deficient mice. To further assess the susceptibility of these mice to influenza virus infection, protective efficacy was determined after primary or secondary lethal challenge. We found that MyD88(-/-) and MyD88(-/-) TRIF(-/-) mice were more susceptible to primary influenza virus infection than the B6 mice but were fully protected against homologous (H1N1) and heterosubtypic (H5N2) secondary infection when primed with a nonlethal dose of PR8 virus. Taken together, these results show that MyD88 signaling plays an important role for resisting primary influenza virus infection but is dispensable for protection against a secondary lethal challenge.  相似文献   

5.
Although somatically mutated autoantibodies are characteristic of many autoimmune diseases, the processes that can lead to their development remain poorly understood. We have examined the formation of autoreactive memory B cells in PevHA mice, which express the influenza virus PR8 hemagglutinin (HA) as a transgenic membrane bound neo-self-Ag. Using a virus immunization strategy, we show that PR8 HA-specific memory B cell formation can occur in PevHA mice, even though a major subset of PR8 HA-specific B cells is negatively selected from the primary repertoire. Moreover, PR8 HA-specific memory B cells develop spontaneously in TS1 x PevHA mice, which coexpress a transgenic PR8 HA-specific TCR and contain a high frequency of HA-specific CD4(+) T cells. Notably, autoreactive memory B cell formation occurred in TS1 x PevHA mice even though approximately half of the HA-specific CD4(+) T cells were CD25(+)Foxp3(+) cells that could significantly attenuate, but did not completely abolish HA-specific autoantibody production in an adoptive transfer setting. The findings provide evidence that a high frequency of autoreactive CD4(+) T cells can be sufficient to promote autoreactive memory B cell formation in the absence of signals provided by overt immunization or infection and despite the presence of abundant autoantigen-specific CD4(+)CD25(+)Foxp3(+) regulatory T cells.  相似文献   

6.
Both innate and adaptive immune responses play an important role in the recovery of the host from viral infections. In the present report, a subset of cells coexpressing CD8 and NKR-P1C (NK1.1) was found in the lungs of mice infected with influenza A virus. These cells were detected at low numbers in the lungs of uninfected mice, but represented up to 10% of the total CD8(+) T cell population at day 10 postinfection. Almost all of the CD8(+)NK1.1(+) cells were CD8alphabeta(+)CD3(+)TCRalphabeta(+) and a proportion of these cells also expressed the NK cell-associated Ly49 receptors. Interestingly, up to 30% of these cells were virus-specific T cells as determined by MHC class I tetramer staining and by intracellular staining of IFN-gamma after viral peptide stimulation. Moreover, these cells were distinct from conventional NKT cells as they were also found at increased numbers in influenza-infected CD1(-/-) mice. These results demonstrate that a significant proportion of CD8(+) T cells acquire NK1.1 and other NK cell-associated molecules, and suggests that these receptors may possibly regulate CD8(+) T cell effector functions during viral infection.  相似文献   

7.
Antibody and cytotoxic T-lymphocyte (CTL) responses have critical roles in eliminating many viral infections. In addition to stimulation of the T-cell receptor, T cells require costimulatory signals to respond optimally. We evaluated the role of B7 costimulatory molecules (B7-1 and B7-2) in the immune response to viral infection using vesicular stomatitis virus (VSV) and mice lacking either B7-1 or B7-2 or both molecules. Mice lacking both B7-1 and B7-2 had essentially no anti-VSV immunoglobulin G1 (IgG1) response, decreased IgG2a responses, and normal IgM responses, while mice lacking either B7-1 or B7-2 had unaltered anti-VSV antibody responses compared to wild-type mice. Depletion of CD4(+) cells further reduced the IgG2a response in mice lacking both B7 molecules, suggesting that CD4(-) cells may supply help for IgG2a in the absence of B7 costimulation. The absence of both B7 molecules profoundly reduced generation of both primary and secondary VSV-specific class I major histocompatibility complex (MHC)-restricted CTL, whereas VSV-specific CTL responses in mice lacking either B7-1 or B7-2 were similar to those of wild-type animals. Class I MHC-restricted CTL in wild-type mice were not dependent on CD4(+) cells, suggesting that the failure of CTL in the absence of B7s is due to a lack of B7 costimulation directly to the CD8(+) CTL. These data demonstrate that B7-1 and B7-2 have critical, overlapping functions in the antibody and CTL responses to this viral infection.  相似文献   

8.
Larena M  Regner M  Lee E  Lobigs M 《Journal of virology》2011,85(11):5446-5455
The immunological correlates for recovery from primary Japanese encephalitis virus (JEV) infection in humans and experimental animals remain poorly defined. To investigate the relative importance of the adaptive immune responses, we have established a mouse model for Japanese encephalitis in which a low-dose virus inoculum was administered into the footpads of adult C57BL/6 mice. In this model, ~60% of the mice developed a fatal encephalitis and a virus burden in the central nervous system (CNS). Using mice lacking B cells (μMT(-/-) mice) and immune B cell transfer to wild-type mice, we show a critically important role for humoral immunity in preventing virus spread to the CNS. T cell help played an essential part in the maintenance of an effective antibody response necessary to combat the infection, since mice lacking major histocompatibility complex class II showed truncated IgM and blunted IgG responses and uniformly high lethality. JEV infection resulted in extensive CD8(+) T cell activation, judged by upregulation of surface markers CD69 and CD25 and cytokine production after stimulation with a JEV NS4B protein-derived H-2D(b)-binding peptide and trafficking of virus-immune CD8(+) T cells into the CNS. However, no significant effect of CD8(+) T cells on the survival phenotype was found, which was corroborated in knockout mice lacking key effector molecules (Fas receptor, perforin, or granzymes) of cytolytic pathways triggered by T lymphocytes. Accordingly, CD8(+) T cells are mostly dispensable for recovery from infection with JEV. This finding highlights the conflicting role that CD8(+) T cells play in the pathogenesis of JEV and closely related encephalitic flaviviruses such as West Nile virus.  相似文献   

9.
Sitati EM  Diamond MS 《Journal of virology》2006,80(24):12060-12069
Although studies have established that innate and adaptive immune responses are important in controlling West Nile virus (WNV) infection, the function of CD4(+) T lymphocytes in modulating viral pathogenesis is less well characterized. Using a mouse model, we examined the role of CD4(+) T cells in coordinating protection against WNV infection. A genetic or acquired deficiency of CD4(+) T cells resulted in a protracted WNV infection in the central nervous system (CNS) that culminated in uniform lethality by 50 days after infection. Mice surviving past day 10 had high-level persistent WNV infection in the CNS compared to wild-type mice, even 45 days following infection. The absence of CD4(+) T-cell help did not affect the kinetics of WNV infection in the spleen and serum, suggesting a role for CD4-independent clearance mechanisms in peripheral tissues. WNV-specific immunoglobulin M (IgM) levels were similar to those of wild-type mice in CD4-deficient mice early during infection but dropped approximately 20-fold at day 15 postinfection, whereas IgG levels in CD4-deficient mice were approximately 100- to 1,000-fold lower than in wild-type mice throughout the course of infection. WNV-specific CD8(+) T-cell activation and trafficking to the CNS were unaffected by the absence of CD4(+) T cells at day 9 postinfection but were markedly compromised at day 15. Our experiments suggest that the dominant protective role of CD4(+) T cells during primary WNV infection is to provide help for antibody responses and sustain WNV-specific CD8(+) T-cell responses in the CNS that enable viral clearance.  相似文献   

10.
Huber SA  Sartini D  Exley M 《Journal of virology》2002,76(21):10785-10790
T cells expressing the Vgamma4 T-cell receptor (TCR) promote myocarditis in coxsackievirus B3 (CVB3)-infected BALB/c mice. CD1, a major histocompatibility complex (MHC) class I-like molecule, is required for activation of Vgamma4(+) cells. Once activated, Vgamma4(+) cells initiate myocarditis through gamma interferon (IFN-gamma)-mediated induction of CD4(+) T helper type 1 (Th1) cells in the infected animal. These CD4(+) Th1 cells are required for activation of an autoimmune CD8(+) alphabeta TCR(+) effector, which is the predominant pathogenic agent in this model of CVB3-induced myocarditis. Activated Vgamma4(+) cells can adoptively transfer myocarditis into BALB/c mice infected with a nonmyocarditic variant of CVB3 (H310A1) but cannot transfer myocarditis into either uninfected or CD1(-/-) recipients, demonstrating the need for both infection and CD1 expression for Vgamma4(+) cell function. In contrast, CD8(+) alphabeta TCR(+) cells transfer myocarditis into either infected CD1(-/-) or uninfected recipients, showing that once activated, the CD8(+) alphabeta TCR(+) effectors function independently of both virus and CD1. Vgamma4(+) cells given to mice lacking CD4(+) T cells minimally activate the CD8(+) alphabeta TCR(+) cells. These studies show that Vgamma4(+) cells determine CVB3 pathogenicity by their ability to influence both the CD4(+) and CD8(+) adaptive immune response. Vgamma4(+) cells enhance CD4(+) Th1 (IFN-gamma(+)) cell activation through IFN-gamma- and CD1-dependent mechanisms. CD4(+) Th1 cells promote activation of the autoimmune CD8(+) alphabeta TCR(+) effectors.  相似文献   

11.
The mechanisms of broad cross-protection to influenza viruses of different subtypes, termed heterosubtypic immunity, remain incompletely understood. We used knockout mouse strains to examine the potential for heterosubtypic immunity in mice lacking IgA, all Ig and B cells, NKT cells (CD1 knockout mice), or gamma(delta) T cells. Mice were immunized with live influenza A virus and compared with controls immunized with unrelated influenza B virus. IgA(-/-) mice survived full respiratory tract challenge with heterosubtypic virus that was lethal to controls. IgA(-/-) mice also cleared virus from the nasopharynx and lungs following heterosubtypic challenge limited to the upper respiratory tract, where IgA has been shown to play an important role. Ig(-/-) mice controlled the replication of heterosubtypic challenge virus in the lungs. Acute depletion of CD4+ or CD8+ T cell subsets abrogated this clearance of virus, thus indicating that both CD4+ and CD8+ T cells are required for protection in the absence of Ig. These results in Ig(-/-) mice indicate that CD4+ T cells can function by mechanisms other than providing help to B cells for the generation of Abs. Like wild-type mice, CD1(-/-) mice and gamma(delta) (-/-) mice survived lethal heterosubtypic challenge. Acute depletion of CD4+ and CD8+ cells abrogated heterosubtypic protection in gamma(delta) (-/-) mice, but not B6 controls, suggesting a contribution of gamma(delta) T cells. Our results demonstrate that the Ab and cellular subsets deficient in these knockout mice are not required for heterosubtypic protection, but each may play a role in a multifaceted response that as a whole is more effective than any of its parts.  相似文献   

12.
4-1BB ligand (4-1BBL) is a member of the TNF family expressed on activated APC. 4-1BBL binds to 4-1BB (CD137) on activated CD4 and CD8 T cells and in conjunction with strong signals through the TCR provides a CD28-independent costimulatory signal leading to high level IL-2 production by primary resting T cells. Here we report the immunological characterization of mice lacking 4-1BBL and of mice lacking both 4-1BBL and CD28. 4-1BBL-/- mice mount neutralizing IgM and IgG responses to vesicular stomatitis virus that are indistinguishable from those of wild-type mice. 4-1BBL-/- mice show unimpaired CTL responses to lymphocytic choriomeningitis virus (LCMV) and exhibit normal skin allograft rejection but have a weaker CTL response to influenza virus than wild-type mice. 4-1BBL-/-CD28-/- mice retain the CTL response to LCMV, respond poorly to influenza virus, and exhibit a delay in skin allograft rejection. In agreement with these in vivo results, allogeneic CTL responses of CD28-/- but not CD28+/+ T cells to 4-1BBL-expressing APC are substantially inhibited by soluble 4-1BB receptor as is the in vitro secondary response of CD28+ T cells to influenza virus peptides. TCR-transgenic CD28-/- LCMV glycoprotein-specific T cells are insensitive to the presence of 4-1BBL when a wild-type peptide is used, but the response to a weak agonist peptide is greatly augmented by the presence of 4-1BBL. These results further substantiate the idea that different immune responses vary in their dependence on costimulation and suggest a role for 4-1BBL in augmenting suboptimal CTL responses in vivo.  相似文献   

13.
The development of TCR alphabeta(+), CD8alphabeta(+) intestinal intraepithelial lymphocytes (IEL) is dependent on MHC class I molecules expressed in the thymus, while some CD8alphaalpha(+) IEL may arise independently of MHC class I. We examined the influence of MHC I allele dosage on the development CD8(+) T cells in RAG 2(-/-) mice expressing the H-2D(b)-restricted transgenic TCR specific for the male, Smcy-derived H-Y Ag (H-Y TCR). IEL in male mice heterozygous for the restricting (H-2D(b)) and nonrestricting (H-2D(d)) MHC class I alleles (MHC F(1)) were composed of a mixture of CD8alphabeta(+) and CD8alphaalpha(+) T cells, while T cells in the spleen were mostly CD8alphabeta(+). This was unlike IEL in male mice homozygous for H-2D(b), which had predominantly CD8alphaalpha(+) IEL and few mostly CD8(-) T cells in the spleen. Our results demonstrate that deletion of CD8alphabeta(+) cells in H-Y TCR male mice is dependent on two copies of H-2D(b), whereas the generation of CD8alphaalpha(+) IEL requires only one copy. The existence of CD8alphabeta(+) and CD8alphaalpha(+) IEL in MHC F(1) mice suggests that their generation is not mutually exclusive in cells with identical TCR. Furthermore, our data imply that the level of the restricting MHC class I allele determines a threshold for conventional CD8alphabeta(+) T cell selection in the thymus of H-Y TCR-transgenic mice, whereas the development of CD8alphaalpha(+) IEL is dependent on, but less sensitive to, this MHC class I allele.  相似文献   

14.
This study describes a method for increasing the immunogenicity of influenza virus vaccines by exploiting the natural anti-Gal antibody to effectively target vaccines to antigen-presenting cells (APC). This method is based on enzymatic engineering of carbohydrate chains on virus envelope hemagglutinin to carry the alpha-Gal epitope (Gal alpha 1-3Gal beta 1-4GlcNAc-R). This epitope interacts with anti-Gal, the most abundant antibody in humans (1% of immunoglobulins). Influenza virus vaccine expressing alpha-Gal epitopes is opsonized in situ by anti-Gal immunoglobulin G. The Fc portion of opsonizing anti-Gal interacts with Fc gamma receptors on APC and induces effective uptake of the vaccine virus by APC. APC internalizes the opsonized virus to transport it to draining lymph nodes for stimulation of influenza virus-specific T cells, thereby eliciting a protective immune response. The efficacy of such an influenza vaccine was demonstrated in alpha 1,3galactosyltransferase (alpha 1,3GT) knockout mice, which produce anti-Gal, using the influenza virus strain A/Puerto Rico/8/34-H1N1 (PR8). Synthesis of alpha-Gal epitopes on carbohydrate chains of PR8 virus (PR8(alpha gal)) was catalyzed by recombinant alpha1,3GT, the glycosylation enzyme that synthesizes alpha-Gal epitopes in cells of nonprimate mammals. Mice immunized with PR8(alpha gal) displayed much higher numbers of PR8-specific CD8(+) and CD4(+) T cells (determined by intracellular cytokine staining and enzyme-linked immunospot assay) and produced anti-PR8 antibodies with much higher titers than mice immunized with PR8 lacking alpha-Gal epitopes. Mice immunized with PR8(alpha gal) also displayed a much higher level of protection than PR8 immunized mice after being challenged with lethal doses of live PR8 virus. We suggest that a similar method for increasing immunogenicity may be applicable to avian influenza vaccines.  相似文献   

15.
Immunoglobulin G (IgG) responses to viruses are generally assumed to be T-cell dependent (TD). Recently, however, polyomavirus (PyV) infection of T-cell-deficient (T-cell receptor β chain [TCR-β] −/− or TCR-β×δ −/−) mice was shown to elicit a protective, T-cell-independent (TI) antiviral IgM and IgG response. A repetitive, highly organized antigenic structure common to many TI antigens is postulated to be important in the induction of antibody responses in the absence of helper T cells. To test whether the repetitive structure of viral antigens is essential and/or sufficient for the induction of TI antibodies, we compared the abilities of three forms of PyV antigens to induce IgM and IgG responses in T-cell-deficient mice: soluble capsid antigens (VP1), repetitive virus-like particles (VLPs), and live PyV. Immunization with each of the viral antigens resulted in IgM production. VLPs and PyV elicited 10-fold-higher IgM titers than VP1, indicating that the highly organized, repetitive antigens are more efficient in IgM induction. Antigen-specific TI IgG responses, however, were detected only in mice infected with live PyV, not in VP1- or VLP-immunized mice. These results suggest that the highly organized, repetitive nature of the viral antigens is insufficient to account for their ability to elicit TI IgG response and that signals generated by live-virus infection may be essential for the switch to IgG production in the absence of T cells. Germinal centers were not observed in T-cell-deficient PyV-infected mice, indicating that the germinal center pathway of B-cell differentiation is TD even in the context of a virus infection.  相似文献   

16.
The antibody response to influenza infection is largely dependent on CD4 T cell help for B cells. Cognate signals and secreted factors provided by CD4 T cells drive B cell activation and regulate antibody isotype switching for optimal antiviral activity. Recently, we analyzed HLA-DR1 transgenic (DR1) mice and C57BL/10 (B10) mice after infection with influenza virus A/New Caledonia/20/99 (NC) and defined epitopes recognized by virus-specific CD4 T cells. Using this information in the current study, we demonstrate that the pattern of secretion of IL-2, IFN-γ, and IL-4 by CD4 T cells activated by NC infection is largely independent of epitope specificity and the magnitude of the epitope-specific response. Interestingly, however, the characteristics of the virus-specific CD4 T cell and the B cell response to NC infection differed in DR1 and B10 mice. The response in B10 mice featured predominantly IFN-γ-secreting CD4 T cells and strong IgG2b/IgG2c production. In contrast, in DR1 mice most CD4 T cells secreted IL-2 and IgG production was IgG1-biased. Infection of DR1 mice with influenza PR8 generated a response that was comparable to that in B10 mice, with predominantly IFN-γ-secreting CD4 T cells and greater numbers of IgG2c than IgG1 antibody-secreting cells. The response to intramuscular vaccination with inactivated NC was similar in DR1 and B10 mice; the majority of CD4 T cells secreted IL-2 and most IgG antibody-secreting cells produced IgG2b or IgG2c. Our findings identify inherent host influences on characteristics of the virus-specific CD4 T cell and B cell responses that are restricted to the lung environment. Furthermore, we show that these host influences are substantially modulated by the type of infecting virus via the early induction of innate factors. Our findings emphasize the importance of immunization strategy for demonstrating inherent host differences in CD4 T cell and B cell responses.  相似文献   

17.
DNA vaccines are a promising technology for the induction of Ag-specific immune responses, and much recent attention has gone into improving their immune potency. In this study we test the feasibility of delivering a plasmid encoding IL-15 as a DNA vaccine adjuvant for the induction of improved Ag-specific CD8(+) T cellular immune responses. Because native IL-15 is poorly expressed, we used PCR-based strategies to develop an optimized construct that expresses 80-fold higher than the native IL-15 construct. Using a DNA vaccination model, we determined that immunization with optimized IL-15 in combination with HIV-1gag DNA constructs resulted in a significant enhancement of Ag-specific CD8(+) T cell proliferation and IFN-gamma secretion, and strong induction of long-lived CD8(+) T cell responses. In an influenza DNA vaccine model, coimmunization with plasmid expressing influenza A PR8/34 hemagglutinin with the optimized IL-15 plasmid generated improved long term CD8(+) T cellular immunity and protected the mice against a lethal mucosal challenge with influenza virus. Because we observed that IL-15 appeared to mostly adjuvant CD8(+) T cell function, we show that in the partial, but not total, absence of CD4(+) T cell help, plasmid-delivered IL-15 could restore CD8 secondary immune responses to an antigenic DNA plasmid, supporting the idea that the effects of IL-15 on CD8(+) T cell expansion require the presence of low levels of CD4 T cells. These data suggest a role for enhanced plasmid IL-15 as a candidate adjuvant for vaccine or immunotherapeutic studies.  相似文献   

18.
Although many studies have investigated the requirement for CD4(+) T cell help for CD8(+) T cell responses to acute viral infections that are fully resolved, less is known about the role of CD4(+) T cells in maintaining ongoing CD8(+) T cell responses to persistently infecting viruses. Using mouse polyoma virus (PyV), we asked whether CD4(+) T cell help is required to maintain antiviral CD8(+) T cell and humoral responses during acute and persistent phases of infection. Though fully intact during acute infection, the PyV-specific CD8(+) T cell response declined numerically during persistent infection in MHC class II-deficient mice, leaving a small antiviral CD8(+) T cell population that was maintained long term. These unhelped PyV-specific CD8(+) T cells were functionally unimpaired; they retained the potential for robust expansion and cytokine production in response to Ag rechallenge. In addition, although a strong antiviral IgG response was initially elicited by MHC class II-deficient mice, these Ab titers fell, and long-lived PyV-specific Ab-secreting cells were not detected in the bone marrow. Finally, using a minimally myeloablative mixed bone marrow chimerism approach, we demonstrate that recruitment and/or maintenance of new virus-specific CD8(+) T cells during persistent infection is impaired in the absence of MHC class II-restricted T cells. In summary, these studies show that CD4(+) T cells differentially affect CD8(+) T cell responses over the course of a persistent virus infection.  相似文献   

19.
Metcalf TU  Griffin DE 《Journal of virology》2011,85(21):11490-11501
Sindbis virus (SINV) infection of the central nervous system (CNS) provides a model for understanding the role of the immune response in recovery from alphavirus infection of neurons. Virus clearance occurred in three phases: clearance of infectious virus (days 3 to 7), clearance of viral RNA (days 8 to 60), and maintenance of low levels of viral RNA (>day 60). The antiviral immune response was initiated in the cervical lymph nodes with rapid extrafollicular production of plasmablasts secreting IgM, followed by germinal center production of IgG-secreting and memory B cells. The earliest inflammatory cells to enter the brain were CD8(+) T cells, followed by CD4(+) T cells and CD19(+) B cells. During the clearance of infectious virus, effector lymphocytes in the CNS were primarily CD8(+) T cells and IgM antibody-secreting cells (ASCs). During the clearance of viral RNA, there were more CD4(+) than CD8(+) T cells, and B cells included IgG and IgA ASCs. At late times after infection, ASCs in the CNS were primarily CD19(+) CD38(+) CD138(-) Blimp-1(+) plasmablasts, with few fully differentiated CD38(-) CD138(+) Blimp-1(+) plasma cells. CD19(+) CD38(+) surface Ig(+) memory B cells were also present. The level of antibody to SINV increased in the brain over time, and the proportion of SINV-specific ASCs increased from 15% of total ASCs at day 14 to 90% at 4 to 6 months, suggesting specific retention in the CNS during viral RNA persistence. B cells in the CNS continued to differentiate, as evidenced by accumulation of IgA ASCs not present in peripheral lymphoid tissue and downregulation of major histocompatibility complex (MHC) class II expression on plasmablasts. However, there was no evidence of germinal center activity or IgG avidity maturation within the CNS.  相似文献   

20.
CD4 effectors generated in vitro can promote survival against a highly pathogenic influenza virus via an antibody-independent mechanism involving class II-restricted, perforin-mediated cytotoxicity. However, it is not known whether CD4 cells activated during influenza virus infection can acquire cytolytic activity that contributes to protection against lethal challenge. CD4 cells isolated from the lungs of infected mice were able to confer protection against a lethal dose of H1N1 influenza virus A/Puerto Rico 8/34 (PR8). Infection of BALB/c mice with PR8 induced a multifunctional CD4 population with proliferative capacity and ability to secrete interleukin-2 (IL-2) and tumor necrosis factor alpha (TNF-α) in the draining lymph node (DLN) and gamma interferon (IFN-γ) and IL-10 in the lung. IFN-γ-deficient CD4 cells produced larger amounts of IL-17 and similar levels of TNF-α, IL-10, and IL-2 compared to wild-type (WT) CD4 cells. Both WT and IFN-γ(-/-) CD4 cells exhibit influenza virus-specific cytotoxicity; however, IFN-γ-deficient CD4 cells did not promote recovery after lethal infection as effectively as WT CD4 cells. PR8 infection induced a population of cytolytic CD4 effectors that resided in the lung but not the DLN. These cells expressed granzyme B (GrB) and required perforin to lyse peptide-pulsed targets. Lethally infected mice given influenza virus-specific CD4 cells deficient in perforin showed greater weight loss and a slower time to recovery than mice given WT influenza virus-specific CD4 cells. Taken together, these data strengthen the concept that CD4 T cell effectors are broadly multifunctional with direct roles in promoting protection against lethal influenza virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号