首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract: The potent nicotinic agonist anatoxin-a elicits mecamylamine-sensitive [3H]dopamine release from striatal synaptosomes, and this action is both Na+ and Ca2+ dependent and is blocked by Cd2+. This suggests that stimulation of presynaptic nicotinic receptors results in Na+ influx and local depolarisation that activates voltage-sensitive Ca2+ channels, which in turn provide the Ca2+ for exocytosis. Here we have investigated the subtypes of Ca2+ channels implicated in this mechanism. [3H]Dopamine release evoked by anatoxin-a (1 µM) was partially blocked by 20 µM nifedipine, whereas KCl-evoked release was insensitive to the dihydropyridine. However, a 86Rb+ efflux assay of nicotinic receptor function suggested that nifedipine has a direct effect on the receptor, discrediting the involvement of L-type channels. The N-type Ca2+ channel blocker ω-conotoxin GVIA (1 µM) blocked anatoxin-a-evoked [3H]dopamine release by 60% but had no significant effect on 86Rb+ efflux; release evoked by both 15 and 25 mM KCl was inhibited by only 30%. The P-type channel blocker ω-agatoxin IVA (90 nM) also inhibited KCl-evoked release by ~30%, whereas anatoxin-a-evoked release was insensitive. The Q-type channel blocker ω-conotoxin MVIIC (1 µM) had no effect on either stimulus. These results suggest that presynaptic nicotinic receptors on striatal nerve terminals promote [3H]dopamine release by activation of N-type Ca2+ channels. In contrast, KCl-evoked [3H]dopamine release appears to involve both N-type and P-type channels.  相似文献   

2.
Abstract: The voltage-dependent calcium channels present in mammalian and chicken brain synaptosomes were characterized pharmacologically using specific blockers of L-type channels (1,4-dihydropyridines), N-type channels (ω-conotoxin GVIA), and P-type channels [funnel web toxin (FTX) and ω-agatoxin IVA]. K+-induced Ca2+ uptake by chicken synaptosomes was blocked by ω-conotoxin GVIA (IC50 = 250 nM). This toxin at 5 µM did not block Ca2+ entry into rat frontal cortex synaptosomes. FTX and ω-agatoxin IVA blocked Ca2+ uptake by rat synaptosomes (IC50 = 0.17 µl/ml and 40 nM, respectively). Likewise, in chicken synaptosomes, FTX and ω-agatoxin IVA affected Ca2+ uptake. FTX (3 µl/ml) exerted a maximal inhibition of 40% with an IC50 similar to the one obtained in rat preparations, whereas with ω-agatoxin IVA saturation was not reached even at 5 µM. In chicken preparations, the combined effect of saturating concentrations of FTX (1 µl/ml) and different concentrations of ω-conotoxin GVIA showed no additive effects. However, the effect of saturating concentrations of FTX and ω-conotoxin GVIA was never greater than the one observed with ω-conotoxin GVIA. We also found that 60% of the Ca2+ uptake by rat and chicken synaptosomes was inhibited by ω-conotoxin MVIID (1 µM), a toxin that has a high index of discrimination against N-type channels. Conversely, nitrendipine (10 µM) had no significant effect on Ca2+ uptake in either the rat or the chicken. In conclusion, Ca2+ uptake by rat synaptosomes is potently inhibited by different P-type Ca2+ channel blockers, thus indicating that P-type channels are predominant in this preparation. In contrast, Ca2+ uptake by chicken synaptosomes is sensitive to ω-conotoxin GVIA, FTX, ω-agatoxin IVA, and ω-conotoxin MVIID. This suggests that a channel subtype with a mixed pharmacology is present in chicken synaptosomes.  相似文献   

3.
Abstract: Serotonin 5-HT2C receptor-mediated intracellular Ca2+ mobilization was investigated in Chinese hamster ovary (CHO) cells transfected with 5-HT2C receptors. Fura-2 acetoxymethyl ester was used to investigate the regulation of 5-HT2C receptor function. CHO cells, transfected with a cDNA clone for the 5-HT2C receptor, expressed 287 fmol/mg of the receptor protein as determined by mianserin-sensitive [3H]mesulergine binding (KD = 0.49 nM). The addition of 5-HT mobilized intracellular Ca2+ in a dose-dependent fashion, ranging from a basal level of 99 ± 1.8 up to 379 ± 18 nM, with an EC50 value for 5-HT of 0.029 µM. Exposure to 5-HT, 1-(3-chlorophenyl)piperazine dihydrochloride (a 5-HT2C agonist), and 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (a 5-HT2C and 5-HT2A agonist) resulted in increased intracellular Ca2+ levels. Mianserin, mesulergine, ritanserin, and ketanserin each blocked 5-HT-mediated intracellular Ca2+ mobilization more effectively than spiperone. The receptor was rapidly desensitized by preexposure to 5-HT in a time- and concentration-dependent manner. Mezerein and phorbol 12-myristate 13-acetate, protein kinase C activators, weakly inhibited the intracellular Ca2+ mobilization induced by 10 µM 5-HT. Furthermore, the protein kinase C inhibitor H-7 partially prevented the protein kinase C activator-induced inhibition of the 5-HT-mediated increase in intracellular Ca2+ concentration. The desensitization induced by pretreatment with 5-HT was blocked by W-7, added in conjunction with 5-HT, and partially inhibited by W-5, a nonselective inhibitor of protein kinases and weak analogue of W-7. Therefore, the 5-HT2C receptor may be connected with protein kinase C and calcium/calmodulin turnover. These results suggest that 5-HT2C receptor activation mobilizes Ca2+ in CHO cells and that the acute desensitization of the receptor may be due to calmodulin kinase-mediated feedback.  相似文献   

4.
Abstract: It has been suggested that murine neuroblastoma C1300 cells express endogenous neurokinin NK2 receptors with features that differ from those of NK2 receptors characterized in other systems. In this study, we have further characterized the neurokinin receptor types present in this cell line. RNA blots showed that mRNAs of NK2 and NK3 receptors, but not of NK1 receptors, were expressed in C1300 cells. The increase in the cytosolic calcium concentration ([Ca2+]i) induced by 0.33 µM neurokinin A was completely inhibited by SR 48968, an NK2 receptor antagonist, whereas the partial response to 0.33 µM neurokinin B was unaffected, and the response was completely inhibited by SR 142801, an NK3 receptor antagonist. In addition, the [Ca2+]i increase by 0.33 µM senktide, an NK3 receptor agonist, was inhibited by SR 142801 but not by SR 48968. These findings indicated that C1300 cells endogenously express functional NK2 and NK3 receptors. It was also demonstrated that NK2 and NK3 receptors can be activated independently by 3.3 µM neurokinin A in the presence of 1.0 µM SR 142801 or 1.0 µM senktide, respectively. Therefore, the mechanisms of Ca2+ signaling mediated by endogenous NK2 and NK3 receptors were investigated. The independent activation of NK2 or NK3 receptors induced not only the [Ca2+]i increase, but also stimulated the formation of inositol trisphosphates; both these responses were inhibited by U73122, a phospholipase C (PLC) inhibitor. In addition, NK2 and NK3 receptor-mediated [Ca2+]i increase was partially attenuated in the absence of extracellular Ca2+ or in the presence of nickel, an inorganic Ca2+ influx blocker, but was unaffected by nifedipine and ω-conotoxin, L- and N-type voltage-dependent Ca2+ channel blockers, respectively. Furthermore, the depolarization by 60 mM K+ did not affect the [Ca2+]i. These findings suggested that the NK2 and NK3 receptor-mediated [Ca2+]i increase was due to the activation of PLC and was dependent on the mobilization of internal Ca2+ and the entry of extracellular Ca2+ through voltage-independent channels. This study showed that the C1300 cell line is a useful system with which to investigate pharmacological functions and signaling pathways of endogenous NK2 and NK3 receptors.  相似文献   

5.
Abstract: Treatment of cultured bovine adrenal chromaffin cells with 100 nM insulin raised [3H]saxitoxin ([3H]STX) binding in a time-dependent manner (t1/2 = 26 h). Insulin (100 nM for 4 days) increased the Bmax of [3H]STX binding by 49% without changing the KD value and also augmented the maximal influx of 22Na+ due to 560 µM veratridine by 39% without altering the EC50 value of veratridine. The stimulatory effect of insulin on 22Na+ influx was concentration-dependent with an EC50 of 3 nM, whereas insulin-like growth factor (IGF)-I had little effect at 1 nM. Ptychodiscus brevis toxin-3 allosterically potentiated veratridine (100 µM)-induced 22Na+ influx by approximately twofold in both insulin-treated cells and untreated cells. Veratridine-induced 45Ca2+ influx via voltage-dependent Ca2+ channels and catecholamine secretion were also enhanced by insulin treatment, whereas insulin did not alter nicotine-induced 22Na+ influx via the nicotinic receptor-ion channel complex and high-K+ (direct activation of voltage-dependent Ca2+ channels)-induced 45Ca2+ influx. Stimulatory effects of insulin on [3H]STX binding and veratridine-induced 22Na+ influx were nullified by simultaneous treatment with either 5,6-dichlorobenzimidazole riboside, an inhibitor of RNA synthesis, or cycloheximide, an inhibitor of protein synthesis, whereas insulin treatment did not appreciably increase the level of mRNA encoding the Na+ channel α-subunit. These results suggest that the binding of insulin to insulin (but not IGF-I) receptors mediates the up-regulation of functional Na+ channel expression at plasma membranes; this up-regulation may be due, at least in part, to the de novo synthesis of an as yet unidentified protein(s).  相似文献   

6.
Abstract: Methylmercury (MeHg) increases the concentration of intracellular Ca2+ ([Ca2+]i) and another endogenous polyvalent cation in both synaptosomes and NG108-15 cells. In synaptosomes, the elevation in [Ca2+]i was strictly dependent on extracellular Ca2+ (Ca2+e); similarly, in NG108-15 cells, a component of the elevations in [Ca2+]i was Ca2+e dependent. The MeHg-induced elevations in endogenous polyvalent cation concentration were independent of Ca2+e in synaptosomes and NG108-15 cells. The pattern of alterations in fura-2 fluorescence suggested the endogenous polyvalent cation may be Zn2+. Using 19F-NMR spectroscopy of rat cortical synaptosomes loaded with the fluorinated chelator 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N′,N′-tetraacetic acid (5F-BAPTA), we have determined unambiguously that MeHg increases the free intrasynaptosomal Zn2+ concentration ([Zn2+]i). In buffer containing 200 µM EGTA to prevent the Ca2+e-dependent elevations in [Ca2+]i, the [Zn2+]i was 1.37 ± 0.20 nM; following a 40-min exposure to MeHg-free buffer [Zn2+]i was 1.88 ± 0.53 nM. Treatment of synaptosomes for 40 min with 125 µM MeHg yielded [Zn2+]i of 2.69 ± 0.55 nM, whereas 250 µM MeHg significantly elevated [Zn2+]i to 3.99 ± 0.68 nM. No Zn2+ peak was observed in synaptosomes treated with the cell-permeant heavy metal chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN, 100 µM) following 250 µM MeHg exposure. [Ca2+]i in buffer containing 200 µM EGTA was 338 ± 26 nM and was 370 ± 64 nM following an additional 40-min exposure to MeHg-free buffer. [Ca2+]i was 498 ± 28 or 492 ± 53 nM during a 40-min exposure to 125 or 250 µM MeHg, respectively. None of the values of [Ca2+]i differed significantly from either pretreatment levels or buffer-treated controls.  相似文献   

7.
Abstract: Morphine-induced release of adenosine from the spinal cord is believed to contribute to spinal antinociception. Although this release is Ca2+ dependent, little is known of the nature of this dependence. In this study, the effects of the dihydropyridine L-type Ca2+ channel agonist Bay K 8644 and the antagonist nifedipine, the N-type Ca2+ channel antagonist ω-conotoxin, and ruthenium red, a blocker of Ca2+ influx induced by capsaicin, on release of adenosine evoked by morphine were determined. The effect of partial depolarization with a minimally effective concentration of K+ on morphine-evoked release of adenosine also was examined. Morphine 10?5-10?4M produced a dose-dependent enhancement of adenosine release from dorsal spinal cord synaptosomes. Following the addition of 6 mM K+ (total K+ concentration of 10.7 mM), 10?6M morphine also enhanced release, and an additional component of action at 10?8M was revealed. Release was Ca2+-dependent as it was not observed in the absence of Ca2+ and presence of EGTA. Bay K 8644 (10 nM) and nifedipine (100 nM) had no effect on the release of adenosine evoked by morphine, but ω-conotoxin (100 nM) markedly reduced such release in both the absence and the presence of the additional 6 mM K+. Morphine-evoked adenosine release was not altered in the presence of a partially effective dose of capsaicin, nor by ruthenium red. These results indicate that morphine can stimulate two distinct phases of adenosine release from the spinal cord (nanomolar and micromolar), and that both phases of release are due to Ca2+ entry via ω-conotoxin-sensitive N-type Ca2+ channels.  相似文献   

8.
Abstract: The inhibitory effects of Na+/Ca2+ exchange inhibitory peptide (XIP), which corresponds to residues 219–238 of the Na+/Ca2+ exchange protein from canine heart, were studied in both rat and human brain plasma membrane vesicles. XIP had very high potency with respect to the inhibition of the initial velocity of intravesicular Na+-dependent Ca2+ uptake in both rat brain [IC50 = 3.05 ± 0.69 µM (mean ± SE)] and human brain (IC50 = 3.58 ± 0.58 µM). The maximal inhibition seen in rat brain vesicles was ~80%, whereas human brain vesicles were inhibited 100%. XIP also inhibited extravesicular Na+-dependent Ca2+ release, and the inhibitory effect was enhanced by increasing the extravesicular Na+ concentration. In contrast, the inhibitory effect of bepridil was competitive with respect to extravesicular Na+. When XIP was added at steady state (5 min after the initiation of intravesicular Na+-dependent Ca2+ uptake), it was found that the intravesicular Ca2+ content declined with time. Analysis of unidirectional fluxes for Ca2+ at steady state showed that 50 µM XIP inhibited Ca2+ influx and efflux ~85 and 70%, respectively. This result suggested that XIP inhibited both Na+/Ca2+ exchange and Ca2+/Ca2+ exchange but had no effect on the passive release pathway for Ca2+. The results suggest structural homology among cardiac, rat, and human brain exchangers in the XIP binding domain and that the binding of Na+ or other monovalent cations, e.g., K+, is required for XIP to have its inhibitory effect on Ca2+ transport.  相似文献   

9.
Abstract: The mechanisms involved in Ca2+ mobilization evoked by the muscarinic cholinoceptor (mAChR) agonist carbachol (CCh) and N-methyl-d -aspartate (NMDA) in cerebellar granule cells have been investigated. An initial challenge with caffeine greatly reduced the subsequent intracellular Ca2+ concentration ([Ca2+]i) response to CCh (to 45 ± 19% of the control), and, similarly, a much reduced caffeine response was detectable after prior stimulation with CCh (to 27 ± 6% of the control). CCh-evoked [Ca2+]i responses were inhibited by preincubation with thapsigargin (10 µM), 2,5-di(tert-butyl)-1,4-benzohydroquinone (BHQ; 25 µM), ryanodine (10 µM), or dantrolene (25 µM). BHQ pretreatment was found to have no effect on the sustained phase of the NMDA-evoked [Ca2+]i response. Both CCh (1 mM) and 1-aminocyclopentane-1S,3R-dicarboxylic acid (ACPD; 200 µM) evoked a much diminished increase in [Ca2+]i in granule cells pretreated with CCh for 24 h compared with vehicle-treated control cells (CCh, 23 ± 14%; ACPD, 27 ± 1% of respective control values). In contrast, a 24-h CCh pretreatment decreased the subsequent inositol 1,4,5-trisphosphate (InsP3) response to CCh to a much greater extent compared with responses evoked by metabotropic glutamate receptor (mGluR) agonists; this suggests that the former effect on Ca2+ mobilization represents a heterologous desensitization of the mGluR-mediated response distal to the pathway second messenger. Furthermore, [Ca2+]i responses to caffeine and NMDA were unaffected by a 24-h pretreatment with CCh. This study indicates that ryanodine receptors, as well as InsP3 receptors, appear to be crucial to the mAChR-mediated [Ca2+]i response in granule cells. As BHQ apparently differentiates between the CCh- and NMDA-evoked responses, it is possible that the directly InsP3-sensitive pool is physically different from the ryanodine receptor pool. Also, activation of InsP3 receptors may not contribute significantly to NMDA-evoked elevation of [Ca2+]i in cerebellar granule cells. A model for the topographic organization of cerebellar granule cell Ca2+ stores is proposed.  相似文献   

10.
Abstract: Serotonin (5-hydroxytryptamine; 5-HT) 5-HT2A and 5-HT2C receptors belong to the class of phosphoinositide-specific phospholipase C (PLC)-linked receptors. Conditions were established for measuring 5-HT2A-linked and 5-HT2C-linked PLC activity in membranes prepared from previously frozen rat frontal cortex and caudate. In the presence of Ca2+ (300 nM) and GTPγS (1 µM), 5-HT increased PLC activity in caudate membranes. Pharmacological analysis using the selective 5-HT2A antagonist, spiperone, and the nonselective 5-HT2A/2C antagonist, mianserin, demonstrated that over half of the 5-HT-stimulated PLC activity was due to stimulation of 5-HT2C receptors as opposed to 5-HT2A receptors. Radioligand binding assays with [3H]RP 62203 and [3H]-mesulergine were used to quantify 5-HT2A and 5-HT2C sites, respectively, in caudate. From these data, the Bmax for caudate 5-HT2A sites and 5-HT2C sites was 165.4 ± 9.7 fmol/mg of protein and 49.7 ± 3.3 fmol/mg of protein, respectively. In contrast to that in caudate, PLC activity in frontal cortex was stimulated by 5-HT in a manner that was inhibited by the 5-HT2A-selective antagonists, spiperone and ketanserin. Taken together, the results indicate that 5-HT2A- and 5-HT2C-linked PLC activity can be discerned in brain regions possessing both receptor subtypes using membranes prepared from previously frozen tissue. More importantly, significant 5-HT2C-mediated phosphoinositide hydrolysis was observed in caudate, despite the relatively low density of 5-HT2C sites. The significance of these observations with respect to the physiological function of 5-HT2C receptors is discussed.  相似文献   

11.
Abstract: Hyposmotic swelling-induced changes in intracellular Ca2+ concentration ([Ca2+]i) and their influence on regulatory volume decrease (RVD) were examined in rat cultured suspended cerebellar astrocytes. Hyposmotic media (50 or 30%) evoked an immediate rise in [Ca2+]i from 117 nM to a mean peak increase of 386 (50%) and 220 nM (30%), followed by a maintained plateau phase. Ca2+ influx through the plasmalemma as well as release from internal stores contributed to this osmosensitive [Ca2+]i elevation. Omission of external Ca2+ or addition of Cd2+, Mn2+, or Gd3+ did not reduce RVD, although it was decreased by La3+ (0.1–1 mM). Verapamil did not affect either the swelling-evoked [Ca2+]i or RVD. Maneuvers that deplete endoplasmic reticulum (ER) Ca2+ stores, such as treatment (in Ca2+-free medium) with 0.2 µM thapsigargin (Tg), 10 µM 2,5-di-tert-butylhydroquinone, 1 µM ionomycin, or 100 µM ATP abolished the increase in [Ca2+]i but did not affect RVD. However, prolonged exposure to 1 µM Tg blocked RVD regardless of ER Ca2+ content or cytosolic Ca2+ levels. Ryanodine (up to 100 µM) and caffeine (10 mM) did not modify [Ca2+]i or RVD. BAPTA-acetoxymethyl ester (20 µM) abolished [Ca2+]i elevation without affecting RVD, but at higher concentrations BAPTA prevented cell swelling and blocked RVD. We conclude that the osmosensitive [Ca2+]i rise occurs as a consequence of increased Ca2+ permeability of plasma and organelle membranes, but it appears not relevant as a transduction signal for RVD in rat cultured cerebellar astrocytes.  相似文献   

12.
Abstract: Stable transfection of the human neuroblastoma cell line SH-SY5Y with the human 5-hydroxytryptamine2A (5-HT2A) or 5-HT2C receptor cDNA produced cell lines demonstrating ligand affinities that correlated closely with those for the corresponding endogenous receptors in human frontal cortex and choroid plexus, respectively. Stimulation of the recombinant receptors by 5-HT induced phosphoinositide hydrolysis with higher potency but lower efficacy at the 5-HT2C receptor (pEC50 = 7.80 ± 0.06) compared with the 5-HT2A receptor (pEC50 = 7.30 ± 0.08). Activation of the 5-HT2A receptor caused a transient fourfold increase in intracellular Ca2+ concentration. Whole-cell recordings of cells clamped at ?50 mV demonstrated a small inward current (2 pA) in response to 10 µM 5-HT for both receptors. There were no differences in potency or efficacy of phosphoinositide hydrolysis among four hallucinogenic [d-lysergic acid diethylamide (LSD), 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (DOI), 5-methoxy-N,N-dimethyltryptamine, and mescaline] and three nonhallucinogenic drugs (m-chlorophenylpiperazine, quipazine, and ergotamine). Comparison of equipotent doses producing 20% of the maximal response induced by 5-HT revealed selective activation of the 5-HT2A receptor by LSD and to a lesser degree by DOI, mescaline, and ergotamine. Quipazine and 5-methoxy-N,N-dimethyltryptamine were relatively nonselective, whereas m-chlorophenylpiperazine selectively activated the 5-HT2C receptor. It is unlikely therefore that hallucinosis is mediated primarily by activity at the 5-HT2C receptor, whereas activity at the 5-HT2A receptor may represent an important but not unique mechanism associated with hallucinogenic drug action.  相似文献   

13.
Abstract: The effect of replacement of extracellular Na+ with N-methyl-d -glucamine (NMG) on P2 receptor signaling pathways was investigated in dibutyryl cyclic AMP-differentiated NG108-15 cells. Benzoylbenzoic ATP (BzATP) dose-dependently increased the cytosolic Ca2+ concentration ([Ca2+]i) with an EC50 value of 230 µM. Replacement of Na+ with NMG as well as removal of Mg2+ from the bathing buffer potentiated ethidium bromide uptake, [Ca2+]i increase, and 45Ca2+ uptake in response to ATP or BzATP. In contrast, in the presence of 5 mM Mg2+ to limit the amount of ATP4?, replacement of Na+ with NMG had no effect on the ATP-induced [Ca2+]i increase but caused a markedly larger [Ca2+]i increase when the calculated concentration of ATP4? was >10 µM. The calculated EC50 value for ATP4? stimulation of the [Ca2+]i increase was 23 µM in NG108-15 cells. In vascular smooth muscle cells, intracellular Ca2+ release was the major pathway for the ATP-induced [Ca2+]i increase; both removal of Mg2+ and replacement of Na+ with NMG did not affect the action of ATP. These data suggest that ATP4?-promoted pores are antagonized by Na+ and Mg2+ in dibutyryl cyclic AMP-differentiated NG108-15 cells.  相似文献   

14.
Stimulation of 5-HT3 receptors (5-HT3Rs) by 2-methylserotonin (2-Me-5-HT), a selective 5-HT3 receptor agonist, can induce vomiting. However, downstream signaling pathways for the induced emesis remain unknown. The 5-HT3R channel has high permeability to extracellular calcium (Ca2+) and upon stimulation allows increased Ca2+ influx. We examined the contribution of Ca2+/calmodulin-dependent protein kinase IIα (Ca2+/CaMKIIα), interaction of 5-HT3R with calmodulin, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling to 2-Me-5-HT-induced emesis in the least shrew. Using fluo-4 AM dye, we found that 2-Me-5-HT augments intracellular Ca2+ levels in brainstem slices and that the selective 5-HT3R antagonist palonosetron, can abolish the induced Ca2+ signaling. Pre-treatment of shrews with either: i) amlodipine, an antagonist of L-type Ca2+ channels present on the cell membrane; ii) dantrolene, an inhibitor of ryanodine receptors (RyRs) Ca2+-release channels located on the endoplasmic reticulum (ER); iii) a combination of their less-effective doses; or iv) inhibitors of CaMKII (KN93) and ERK1/2 (PD98059); dose-dependently suppressed emesis caused by 2-Me-5-HT. Administration of 2-Me-5-HT also significantly: i) enhanced the interaction of 5-HT3R with calmodulin in the brainstem as revealed by immunoprecipitation, as well as their colocalization in the area postrema (brainstem) and small intestine by immunohistochemistry; and ii) activated CaMKIIα in brainstem and in isolated enterochromaffin cells of the small intestine as shown by Western blot and immunocytochemistry. These effects were suppressed by palonosetron. 2-Me-5-HT also activated ERK1/2 in brainstem, which was abrogated by palonosetron, KN93, PD98059, amlodipine, dantrolene, or a combination of amlodipine plus dantrolene. However, blockade of ER inositol-1, 4, 5-triphosphate receptors by 2-APB, had no significant effect on the discussed behavioral and biochemical parameters. This study demonstrates that Ca2+ mobilization via extracellular Ca2+ influx through 5-HT3Rs/L-type Ca2+ channels, and intracellular Ca2+ release via RyRs on ER, initiate Ca2+-dependent sequential activation of CaMKIIα and ERK1/2, which contribute to the 5-HT3R-mediated, 2-Me-5-HT-evoked emesis.  相似文献   

15.
Characteristics for the up-regulated response in the concentration of intracellular calcium ion ([Ca2+] i ) and in the sodium ion (Na+) current by serotonin (5-HT) were investigated in differentiated neuroblastoma × glioma hybrid NG108-15 (NG) cells. The results for the changes in [Ca2+] i by 5-HT were as follows, (1) The 5-HT-induced Ca2+ response was inhibited by 3 × 10−9 M tropisetron (a 5-HT3 receptor blocker), but not by other types of 5-HT receptor blockers; (2) The 5-HT-induced Ca2+ response was mainly inhibited by calciseptine (a L-type Ca2+ blocker), but not by other types of Ca2+ channel blockers or 10−7 M TTX (a voltage-sensitive Na+ channel blocker); (3) When the extracellular Na+ was removed by exchange with choline chloride or N-methyl-d-glucamine, the 5-HT-induced Ca2+ response was extremely inhibited. The results for the 5-HT-induced Na+ current by the whole cell patch-clamp technique were as follows, (1) The 5-HT-induced Na+ current in differentiated cells was significantly larger than that in undifferentiated cells; (2) The ED50 value for 5-HT-induced Na+ current in undifferentiated and differentiated cells was almost the same, about 4 × 10−6 M each other; (3) The 5-HT-induced Na+ current was completely blocked by 3 × 10−9 M tropisetron, but not by other 5-HT receptor antagonists and 10−7 M TTX. These results suggested that 5-HT-induced Ca2+ response in differentiated NG cells was mainly due to L-type voltage-gated Ca2+ channels allowing extracellular Na+ to enter via 5-HT3 receptors, but not through voltage-gated Na+ channels.  相似文献   

16.
Abstract: Oxidative insult elicited by hydrogen peroxide (H2O2) was previously shown to increase the basal intracellular Ca2+ concentration in synaptosomes. In the present study, the effect of H2O2 on the depolarization-evoked [Ca2+] signal was investigated. Pretreatment of synaptosomes with H2O2 (0.1–1 mM) augmented the [Ca2+] rise elicited by high K+ depolarization with essentially two alterations, the sudden sharp rise of [Ca2+]i due to K+ depolarization is enhanced and, instead of a decrease to a stable plateau, a slow, steady rise of [Ca2+]i follows the peak [Ca2+]i. H2O2 in the same concentration range lowered the ATP level and the [ATP]/[ADP] ratio. When carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) (1 µM) or rotenone (2 µM)/oligomycin (10 µM) was applied initially to block mitochondrial ATP production, the lowered [ATP]/[ADP] ratio was further reduced by subsequent addition of 0.5 mM H2O2. The decline of the [ATP]/[ADP] ratio was parallel with but could not explain the enhanced K+-evoked [Ca2+]i signal, indicated by experiments in which the [ATP]/[ADP] ratio was decreased by FCCP (0.1 µM) or rotenone (2 µM) to a similar value as by H2O2 without causing any alteration in the [Ca2+]i signal. These results indicate that H2O2-evoked oxidative stress, in its early phase, gives rise to a complex dysfunction in the Ca2+ homeostasis and, parallel with it, to an impaired energy status.  相似文献   

17.
Abstract: The effects of K+ depolarization and of stimulation by veratridine on apparent cytosolic free Ca2+ ([Ca2+]cyt) and net Ca2+ accumulation were measured in isolated rat brain presynaptic nerve terminals (synaptosomes). [Ca2+]cyt was determined with fura-2, and Ca2+ accumulation was measured with tracer 45Ca. [Ca2+]cyt was ~ 325 nM in synaptosomes incubated in the normal physiological salt solution under resting conditions. When [K+]0, was increased from the normal 5 mM to 30 or 50 mM, 45Ca uptake and [Ca2+]cyt both increased within 1 s. Both increases were directly related to [Ca2+]0 for [Ca2+]0= 0.02–1.2 mM; however, the increase in 45Ca uptake greatly exceeded the increase in [Ca2+]cyt. With small Ca2+ loads ≤100 μmol/L of cell water, equivalent to the Ca2+ entry during a train of ≤60 impulses), the 45Ca uptake exceeded the increase in [Ca2+]cyt by a factor of nearly 1,000. This indicates that ~99.9% of the entering Ca2+ was buffered and/or sequestered within ~ 1 s. With larger Ca2+ loads, a larger fraction of the entering Ca2+ was buffered; ~99.97% of the load was buffered with loads of 250–425 μmol/L of cell water. The ratio between the total Ca2+ entry and the increase in [Ca2+]cyt, the “calcium buffer ratio”β, was therefore ~ 3,500:1. This ratio was somewhat lower than the ratio of total intraterminal calcium: [Ca2+]cyt, which ranged between ~7,300:1 and 12,800:1. When the synaptosomes were activated with 10 μM veratridine ([Ca2+]0= 0.2–0.6 mM), 45Ca influx and [Ca2+]cyt increased progressively for ~10 s (β= 2,700:13,050:1) and then leveled off. Application of 10 μM tetrodotoxin before the introduction of veratridine prevented the increases in 45Ca influx and [Ca2+]cyt. Application of 10 μM tetrodotoxin after 5–10 s of exposure to veratridine caused both the [Ca2+]cyt and the veratridine-stimulated 45Ca within the terminals to decline, thereby demonstrating that the Ca2+ loading is reversible in the presence of extracellular Ca2+. These data show that synaptosomes are capable of buffering and metabolizing Ca2+ in a manner expected for intact neurons.  相似文献   

18.
Abstract

Two types of ligand-gated ion channels were expressed with the Semliki Forest virus (SFV) expression system.The cDNAs for mouse serotonin 5-HT3 receptor and rat and human purinoreceptor P2x subtypes were introduced into the pSFV1 vector. In vitro transcribed RNAs were coelectroporated with pSFV-Helper2 RNA into BHK cells, where in vivo packaging resulted in high titer SFV-5-HT3 and SFV-P2x virus stocks. Infection of BHK, CHO and RJN cells resulted in high-level expression of recombinant receptors. Saturation binding analysis indicated the presence of more than 3 × 106 5-HT3 receptors per cell. Binding studies on isolated membranes yielded from 10 to 60 pmol of either 5-HT3 or P2x receptor per mg protein. Functional responses to the P2x receptors were demonstrated in SFV-infected CHO cells by Ca2+ mobilization or by 45Ca2+ influx. High amplitude electrophysiological responses were also detected for both SFV-5-HT3 and SFV-P2x infected CHO cells in whole-cell patch clamp recordings. To facilitate the purification procedure of SFV-expressed recombinant receptors a histidine tag was introduced at the C-terminus of the 5-HT3 receptor. This 5-HT3His receptor showed high levels of expression, specific binding and high amplitude electrophysiological responses. For large scale expression the BHK cells were adapted to suspension culture and were efficiently infected in a 11.5 liter fermentor culture with SFV-5-HT3His resulting in high-level expression, 52 pmol receptor per mg protein corresponding to 3.2 × 106 receptors per cell.  相似文献   

19.
Abstract: Muscarinic receptor in human neuroblastoma SK-N-BE(2)C cells was identified and characterized. Treatment of the cells with carbachol evoked the generation of inositol 1,4,5-trisphosphate (IP3) with a peak level reached at 1 min after stimulation. Carbachol increased intracellular Ca2+ ([Ca2+]i) with an EC50 value of 35 µM. In addition, carbachol produced a 1.3–3-fold increase in the cyclic AMP (cAMP) level compared with untreated control and elevated synergistically the cAMP level in the treatment with prostaglandin E2 (PGE2). The M3 antagonist p-fluorohexahydrosiladifenidol (IC50 = 0.5–0.8 µM) inhibited the increases in [Ca2+]i, IP3, and cAMP more effectively than the M1 antagonist pirenzepine (IC50 = 5–9 µM) and the M2 antagonist methoctramine (IC50 = 20–30 µM). The involvements of [Ca2+]i elevation and protein kinase C activation induced by phospholipase C activation were tested in the carbachol-induced cAMP production. The calcium chelator BAPTA/AM (75 µM) inhibited significantly the synergistic effects of carbachol and PGE2 on the production of cAMP, whereas the Ca2+ ionophore ionomycin (1 µM) clearly enhanced PGE2-induced cAMP production. However, phorbol 12-myristate 13-acetate did not enhance PGE2-stimulated cAMP production. These data suggest that phospholipase C-linked M3 receptors are present and that stimulation of the receptors activates adenylyl cyclase, at least in part, by the Ca2+-dependent system in the neuronal cells.  相似文献   

20.
Abstract: In the presence of substance P (SP; 10 μM), serotonin (5-HT; 1 μM) triggered a cation permeability in cells of the hybridoma (mouse neuroblastoma X rat glioma) clone NG 108-15 that could be assessed by measuring the cell capacity to accumulate [14C]guanidinium for 10-15 min at 37°C. In addition to 5-HT (EC50, 0.33 μM), the potent 5-HT3 receptor agonists 2-methyl-serotonin, phenylbiguanide, and m-chlorophenylbiguanide, and quipazine, markedly increased [14C]guanidinium uptake in NG 108-15 cells exposed to 10 μM SP. In contrast, 5-HT3 receptor antagonists prevented the effect of 5-HT. The correlation (r= 0.97) between the potencies of 16 different ligands to mimic or prevent the effects of 5-HT on [14C]guanidinium uptake, on the one hand, and to displace [3H]zacopride specifically bound to 5-HT3 receptors on NG 108-15 cells, on the other hand, clearly demonstrated that [14C]guanidinium uptake was directly controlled by 5-HT3 receptors. Various compounds such as inorganic cations (La3+, Mn2+, Ba2+, Ni2+, and Zn2+), D-tubocurarine, and memantine inhibited [14C]guanidinium uptake in NG 108-15 cells exposed to 5-HT and SP, as expected from their noncompetitive antagonistic properties at 5-HT3 receptors. However, ethanol (100 mM), which has been reported to potentiate the electrophysiological response to 5-HT3 receptor stimulation, prevented the effects of 5-HT plus SP on [14C]guanidinium uptake. The cooperative effect of SP on this 5-HT3-evoked response resulted neither from an interaction of the peptide with the 5-HT3 receptor binding site nor from a possible direct activation of G proteins in NG 108-15 cells. Among SP derivatives, [D-Pro9]SP, a compound inactive at the various neurokinin receptor classes, was the most potent to mimic the stimulatory effect of SP on [14C]guanidinium uptake in NG 108-15 cells exposed to 5-HT. Although the cellular mechanisms involved deserve further investigations, the 5-HT-evoked [14C]guanidinium uptake appears to be a rapid and reliable response for assessing the functional state of 5-HT3 receptors in NG 108-15 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号