首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
It was shown during experiments on cats undergoing surgery under ketamine-induced anesthesia and immobilized with myorelaxin that applying trains of stimuli to the locus coeruleus (LC) produces an effect on 79% of parietal cortex neurons. This manifests as inhibition lasting 300–700 msec or a 16–32% decline in the activity rate of neurons with background activity. Hyperpolarization of 5–7 mV lasting 120–500 msec preceded by a latency of 30–90 msec was noted in such neurons as well as "silent" cells during intracellular recording. Duration of the inhibitory pause in neuronal background activity induced by transcallosal stimulation (TCS) increased by 50–200 msec under the effects of conditioned stimuli applied to the LC. Duration of the IPSP triggered by TCS likewise increased (by 50–100 msec) under the effects of LC stimulation. It was concluded that the effects of stimulating the LC on neuronal activity in the parietal cortex may manifest either directly, as inhibition of background activity and hyperpolarization, or else as modulation of influences exerted by other neurotransmitters.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 486–494, July–August, 1990.  相似文献   

2.
Unit activity in the visual (area 17) and sensomotor (areas 4 and 6) cortex in response to an optical stimulus up to 1000 msec in duration was investigated by extracellular recording in acute experiments on cats anesthetized with chloralose (70 mg/kg body weight). Comparative analysis of the types of unitary responses and the durations of the intervals of functional changes showed that: 1) The number of neurons generating on-off responses was about 25% in the visual cortex and 100% in the sensomotor cortex; 2) the intervals of functional changes of the neurons were equal in length to the time intervals of on-off discharges; 3) together with a single time range (200–500 msec), for each area studied specific ranges also exist: from 0 to 200 msec for the visual cortex and from 500 msec and more for the sensomotor cortex; 4) the latent period of after-discharge is equal to the duration of the intervals of functional changes. The results were analyzed from the standpoint of reflection of temporal parameters of optical stimuli by neurons of the sensomotor cortex.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 7, No. 4, pp. 365–371, July–August, 1975.  相似文献   

3.
The activity of single neurons of the visual cortex in the initial state and upon presentation of a certain program of stimuli, which included a series of modality-specific (light flashes, continuous light) and nonspecific (clicks, tone) stimuli used separately and in combination, was recorded extracellularly by glass electrodes in unanesthetized and uncurarized white rats restrained in a stall. The responses of the neurons to flashes and clicks were analyzed by the poststimulus histogram method. The regular shifts of neuronal activity in response to light flashes (with a frequency of one per second) in the form of an increase or decrease of firing rate were noted not only during the first 150–200 msec (short-latent responses — SLR) but also later, after 700–800 msec (long-latent responses — LLR). The LLR differed from the SLR also by greater variability (decrease or increase upon repeating the stimuli) and by pronounced interaction with the modality-nonspecific stimuli, which had a weak effect on the SLR and by themselves very rarely evoked responses of the visual cortex neurons. The neuron could demonstrate several LLR with a different latent period. The independent nature of each LLR was indicated by the relative independence of its dynamics. All these data permit the consideration that one and the same neuron in one cycle of its activity can be included in different functional systems of the brain, which evidently provide direct reception of information arriving over specific sensory conductors and its subsequent processing. Therefore, neurons, which made up more than half of those investigated, can be regarded as polyfunctional.N. I. Grashchekov Laboratory of Problems of Controlling Functions in Man and Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 3, pp. 242–250, May–June, 1970.  相似文献   

4.
The spike responses of the motor cortex neurons (area 4) associated with forelimb movement were studied in awake cats earlier trained to perform placing motor reactions. Responses produced by the same neurons were compared in two situations: 1) when a sound-click conditioning stimulus (CS) was applied in isolation; 2) when a CS followed a preliminary warning stimulus (WS), a light flash, with a 100–1000 msec delay. During the reflex initiation by combined action of the WS and CS, response components that occurred prior to the placing movement (PM) performance under isolated CS action weakened and arrived 50–150 msec later; yet, response components that appeared in the same situation simultaneously with PM onset or later remained unchanged. PM latent periods were not changed when WS was applied. The temporal interval between WS and CS was characterized by depression of neuronal activity; depression duration was determined by the interstimulus delay. It is conceivable that the described transformations in spike responses of cortical neurons occurred due to changes in the sensory direction of the animal's attention; this direction, in all cases, is a crucial factor in the formation of neuronal activity in the cortex.Translated from Neirofiziologiya, Vol. 25, No. 1, pp. 21–27, January–February, 1993.t  相似文献   

5.
Unit responses of the sensomotor cortex to paired electrical stimulation and visual cortex, applied either simultaneously or after various delays (from 0 to 200 msec) depend on the order of application of the stimuli and on the interval between them. If stimulation of the sensomotor cortex was used in a conditioning role the response continued unchanged when the intervals between stimuli were increased to 200 msec. If, however, stimulation of the sensomotor cortex had a testing role interaction was observed between the stimuli so that responses to both first and second stimuli were blocked; this was exhibited most clearly for intervals of 40–80 msec between stimuli. The blocking effect persisted on some neurons with delays of up to 200 msec between stimuli, while the response of others to both the first and the second stimulus was restored.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 6, pp. 628–635, November–December, 1973.  相似文献   

6.
Evoked potentials (EP) of the cerebellar cortex in response to stimulation of peripheral nerves are characterized by a two-phase positive-negative oscillation of the potential having a latent period of 10–25 msec. The electropositive phase can contain up to three components. The latent period of component I comprises 3–9 msec. The latent period and amplitude of this component are distinguished by considerable stability, which indicates the predominant significance of presynaptic processes in its formation. The sign of component II changes at a depth of 500 µ (and more), which corresponds to the position of the granular cell layer. At this level there arises in the neurons a response with a latent period of 4–10 msec in the form of a group (3–10) of impulses with a frequency of up to 200 per sec. It is concluded that the granular cells participate in the formation of component II and partially participate in the formation of components I and III of the EP. Responses to stimulation of the nerves appear synchronously with the EP in 24% of responding Purkinje cells; they fall on the maximum electropositive deviation or component III of the EP. Microinjections of 1% strychnine into the cerebellar cortex cause an increase of EP amplitude; impulse activity of the neurons is intensified. This indicates participation of postsynaptic processes in the formation of EP. No shifts in the EP of the cerebellar cortex were observed after intracortical injection of 0.1% atropine.N. I. Pirogov Vinnitsa Medical Institute. Translated from Neirofiziologiya, Vol. 2, No. 4, pp. 429–433, July–August, 1970.  相似文献   

7.
Temporal characteristics of motor responses evoked in unanesthetized cats by stimulation of the motor cortex through bipolar needle electrodes were investigated in chronic experiments. Isometric and isotonic contractions of the flexor muscles of the hip and knee joints of the limb contralateral to the point of stimulation were recorded. The latent period of response varied from 100 msec or more in the case of low-frequency (100–150 Hz) and low-threshold (1.1–1.2 thresholds) stimulation of the motor cortex to 30–35 msec in the case of "optimal" parameters of stimulation (300–400 Hz, 1.5–1.6 thresholds). If the intensity of stimulation was high enough the rising time constant of evoked contraction was 50–80 msec; values of the falling time constant of muscular contraction after cessation of stimulation were much greater, namely 150–300 msec. The rising time constant of contraction decreased with an increase in both the frequency and strength of motor cortical stimulation. The results are examined and discussed from the standpoint of methods of automatic control theory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 451–458, September–October, 1980.  相似文献   

8.
Correlation analysis of unit activity in spinal locomotor centers was carried out in immobilized thalamic cats. Within a short time interval (the time shift of one spike train relative to the other during plotting of the cross-correlation histogram did not exceed 54 msec) correlation between the spike flows of these cells was absent, irrespective of the distance between them, both at rest and during efferent discharge generation. Spike flows of neurons could correlate only in the case of a long time interval (maximal time shift of one spike train relative to the other not less than 4–8 sec during plotting of the cross-correlation histogram). Weak correlation with a long time interval (4–8 sec) was found between changes in the momentary frequency of a neuron and the intensity of the discharge in the motor nerve, but no correlation was found between changes in momentary frequency of the neuron and intensity of discharge. The possible causes of the absence of correlation with a short time interval and its presence with a long time interval are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 3, pp. 283–289, May–June, 1980.  相似文献   

9.
Background and evoked neuronal activity in the cat sensorimotor cortex was recorded under a-chloralose anesthesia. Pairs of heterogeneous stimuli were applied, spaced at intervals of 0, 100, 200, 300, and 400 msec. A clicking sound, flashing light, and electroshock to the contralateral forepaw were used as stimuli. Partial or complete blockade of response to test stimuli presentations spaced 100–200 msec apart were observed when using stimulation of varying modality. The greatest test response was recorded at interstimulus intervals of 200–300 msec. Intracellular mechanisms of heterosensory interaction were investigated by applying the inhibitory transmitter antagonist picrotoxin microiontophoretically to the test cell to produce local attenuation of inhibitory effects. This substance also reduced the duration of blockage following the conditioning stimulus and the occurrence of peak level test response at a lower interstimulus interval than in the controls. Either a consistent increase in the number of spikes per response at one of the interstimulus intervals or a uniform reinforcement in unit response to several different interstimulus intervals were observed in a proportion of the cells. The contribution of intracortical inhibitory influences to the mechanisms of heterosensory interaction on neurons of the cat sensorimotor cortex is discussed in the light of our findings.A. A. Ukhtomskii Institute of Physiology, A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 147–156, March–April, 1987.  相似文献   

10.
Responses in 160 neurons of the cat parietal cortex were investigated during the performance of instrumental food reflex (lever pressing) during experiments involving presentation of a conditioned acoustic stimulus. Discharge rate changed in 49% of neurons during the period preceding the conditioned reflex movement. Three basic types of cell with an excitatory response pattern were discovered apart from a small group showing suppression of activity, each differently involved in the process of conditioned reflex movement performance. Excitation arose in neurons of the first type 200±52.9 msec (average) before the onset of the conditioned reflex movement, reaching its peak discharge rate as the animal placed its paw on the lever. The former parameter was 605±54.2 msec for the second type of neuron, with firing rate peaking between the start of electromyographic response and the completion of lever pressing. The same parameter measured 1,000–2,000 msec in the third type and activation took the form of a diffuse increase in discharge rate without a clear-cut peak occurring during performance of the instrumental reflex. Findings would suggest the involvement of the parietal cortex neuronal system in the triggering as well as the follow-through of conditioned reflex motion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 223–231, March–April, 1987.  相似文献   

11.
Spike activity was investigated in limbic cortex neurons during defensive conditioning to acoustic stimulation in chronic experiments on cats. A relationship was found between the numbers of neurons responding, their contribution to formation of a temporal connection, and the duration of the acoustic stimulus. Phasic responses of 50–500 msec duration with latencies of 15–50 msec were observed for the most part. Intensive spike response with a minimum latency of 15 msec and a duration of between 200 msec and 2.5 sec evolved in most cells (95.1% in field 24 and 83% in field 32) in response to electrical stimulation. Response to acoustic stimulation rose during defensive conditioning in 33.3% cells and declined and finally disappeared in 13.3%, but response at the site where reinforcement was abolished was reproduced in all these cells. It was thus found that the numbers of limbic cortex neurons responding to sound not only fails to increase but actually decreases after training. The limbic cortex is thought to play its most active part in conditioning response to a recognized signal during the period preceding the awaited painful reinforcement.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 5, pp. 660–669, September–October, 1986.  相似文献   

12.
Extracellular and intracellular single unit responses of neurons of the auditory cortex to electrical stimulation of geniculocortical fibers (GCF) were recorded in experiments on cats immobilized with tubocurarine. The latent period of responses of 15% of neurons to GCF stimulation was 0.3–1.5 msec. It is postulated that they were excited anti-dromically. The latent period of spikes generated by neurons responding to GCF stimulation orthodromically varied from 1.6 to 12 msec. In 28.6% of neurons the latent period was 1.6–2.5 msec. It is postulated that these neurons were excited monosynaptically. Intracellular recording revealed primary IPSPs in response to GCF stimulation in 63.3% of neurons, a brief EPSP followed by a prolonged IPSP in 17.7%, an EPSP-spike-IPSP complex in 12.3%, and subthreshold EPSPs in 7% of neurons. The latent period of the primary IPSPs varied from 1.8 to 11 msec, being 1.8–3.7 in 72%, 3.8–5.7 in 20.0%, and 5.8–11 msec in 8.0% of neurons. The latent period of responses beginning with an EPSP was 1–4 msec (mean 1.8 msec). Orthodromic responses arising 3–10 msec after the antidromic response, and consisting of 3–5 spikes, were recorded in some antidromically excited neurons. Hypotheses regarding the functional organization of the auditory cortex and mechanisms of inhibition in its neurons are put forward on the basis of the results obtained.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 3, pp. 227–235, May–June, 1972.  相似文献   

13.
Composite and unitary EPSPs of red nucleus neurons evoked by stimulation of the sensomotor and association parietal cortex and nucleus interpositus of the cerebellum were studied in acute experiments on cats anesthetized with pentobarbital. A monosynaptic connection was shown to exist between not only the sensomotor, but also the association cortex, and rubrospinal neurons, in which unitary EPSPs appeared during stimulation of the association cortex after a latent period of 1.5–2.7 msec, with a peak rise time of 1.1–3.1 msec and an amplitude of 0.22–0.65 mV. Analysis of the temporal characteristics of the unitary EPSP suggested that synapses formed by fibers from the association cortex occupy a position nearer the soma than synapses formed by axons of sensomotor cortical cells.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 67–74, January–February, 1984.  相似文献   

14.
Phase shifts in EEG potentials were investigated in the rabbit cortex during photic stimulation and in controls. Degree of phase shift in the predominating theta waves was found to increase gradually with increasing distance between recording electrodes both with and without photic stimulation, pointing to the existence of a phase gradient — the conditions appropriate to the greater proportion of motor reactions. Photic stimulation induces an increase in numbers of non-phasic EEG waves recorded from close-lying sites as well as reduced scatter in levels of phase shift between EEG of the sensorimotor and visual cortex, thus rendering phase shifts more stable. Irradiation of excitation from the visual to the motor analyzer in response to photic stimulation occurs against a background of high correlation coefficient and coherent function levels and with a phase shift from 0 to 10–11°.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR. Moscow. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 507–513, July–August, 1989.  相似文献   

15.
The characteristics of neurons in Area 17 of the visual cortex in cats were investigated by extracellular recording of their activity. Unit responses to flashes modulated by intensity and duration (100 µsec-1 sec) were recorded. Of 80 neurons tested, 67.6% were spontaneously active and 32.4% were silent. The threshold responses of the neurons to flashes varied by 7 logarithmic units. The distribution curve of the cells by response thresholds had one maximum corresponding to an energy of the order of 1–10 lm·sec. The time during which the cells could summate excitation did not exceed a mean value of 34 msec. Depending on the latent periods of the visual cortical neurons they can be divided into three groups. The first group includes neurons responding 20–40 msec after stimulation, the second and third neurons responding after 100–120 and 160–180 msec, respectively. Photic stimulation considerably altered the ratio between the numbers of cells generating spikes with high and low frequency. No correlation was found between the sensitivity of the visual cortical cells to light, the latent period of their response, and the critical time of summation. This shows that the cortex contains many duplicate units which are grouped together on the basis of only one of the functional characteristics of their spike response.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 173–179, March–April, 1970.  相似文献   

16.
Focal evoked potentials arising in the rabbit visual cortex in response to photic stimulation from a point source were analyzed by determination of the current source density. The response to a point stimulus arises in a circumscribed area of cortex, corresponding retinotopically to the stimulated point of the visual field and it consists of two components. The first component is created by a local current sink at a depth of 0.6 to 1.0 mm (the level of layer IV) and has a latent period of 30 msec and a peak time of 50 msec. The second component is created by a more diffuse current sink at a depth of 0.2–0.3 to 1.3–1.5 mm (levels between layers III and VI); the time to the maximum was 90–100 msec. These local sinks are regarded as active, created by depolarizing synapses. Passive current sources are concentrated around zones of active sinks. The two components of the response may reflect two consecutive waves of activation of cortical neurons.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 5, pp. 474–481, September–October, 1981.  相似文献   

17.
Unit activity was studied in areas 3 and 4 during the conditioned placing reflex in cats. Responses of somatic cortical neurons in this case were shown to develop comparatively late — 80–100 or, more often, 200–450 msec after the conditioned stimulus. In the motor cortex responses preceded movement by 50–550 msec, whereas in the somatosensory cortex they usually began simultaneously with or after the beginning of the movement. Judging from responses of somatic cortical neurons, the placing reflex is realized by the same neuronal mechanism as the corresponding voluntary movement. The differential stimulus and positive conditioned stimulus, after extinction of the conditioned placing reflex, evoked short-latency spike responses lasting 250–350 msec in the same neurons as took part in the reflex itself. In these types of internal inhibition, responses of the neurons were thus initially excitatory in character. Participation of the neurons in the conditioned placing reflex and its extinction, disinhibition, and differentiation, is the result of a change in the time course of excitatory processes and is evidently connected with differential changes in the efficiency of the various synaptic inputs of the neuron.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 392–401, July–August, 1982.  相似文献   

18.
Steady potential shifts produced by focused ultrasond were recorded in the cerebral cortex, hippocampus, thalamus, and caudate nucleus. Impulses of 50–100 msec duration were presented at a frequency of 5 and 10 Hz. Negative steady potential shifts were produced in each of the structures investigated, which gradually increased during rhythmic electrical reaction to reach –3 to –7 mV within 10–30 sec, often succeeded by a wave of spreading depression (SD). In each structure analyzed amplitude of SD waves measured 20–30 mV, lasting 30–40 sec in the cortex, the caudate nucleus and the thalamus, and 80–120 sec in the hippocampus. In unanesthetized and lightly anesthetized animals SD waves were on occasions the precursors of convulsive discharges forming under the action of focused ultrasound. Ultrasound at threshold doses proved ineffective for 5–7 min after the occurrence of an SD wave, but again evoked repeated SD waves once the refractory period had ended. Accordingly, local effects produced by focused ultrasound can result in functional blockage of the brain structures due to cortical and subcortical spreading depression.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Institute of Brain Research, All-Union Research Center of Mental Health, Academy of Medical Sciences of the USSR, Moscow. N. N. Andreev Acoustic Institute, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 55–61, January–February, 1986.  相似文献   

19.
Using alert rabbits trained to perform placing movements in response to a sound click, we investigated impulse responses (IR) of neurons of the somatosensory cortex preceding realization of the reflex by 50–150 msec. When a brief extraneous stimulation (light flashes, audible tone, electrical stimulation of a limb) was applied after initiation of the reflex, learned movements with the earlier behavioral parameters (latent periods and duration) were maintained. However, the IR of neurons to the presentation of a conditioned stimulus (CS) was of lesser intensity and arose 50–250 msec later. A constant extraneous stimulation (an audible tone, a forced stream of air upon the muzzle) or a decrease in the intensity of the CS administered to the threshold of hearing resulted in similar changes in the neuronal responses upon the application of the CS, but the parameters of the learned movements were maintained. We suggest that the cause of these changes in neuronal responses is increased exteroceptive attention to extraneous stimulation to additional extraneous stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 2, pp. 174–181, March–April, 1991.  相似文献   

20.
Responses of 239 neurons of the pericruciate cortex to stimulation of the medial geniculate body and pyramidal tract were investigated (189 extracellularly, 50 intracellularly) in cats anesthetized with thiopental and immobilized with D-tubocurarine. In response to stimulation of the medial geniculate body, the mean spontaneous firing rate of 63.6% of neurons in the pericruciate cortex increased by 10–25%, in 23.6% of neurons it decreased within the same limits, and mixed effects were observed in 5.5% of neurons. Phasic responses to single stimulation of the medial geniculate body were observed in 20% of neurons of the pericruciate cortex. Responses with a latent period of 0.3–1.0 msec (16%) were classed as antidromic, those with a latent period of 1.5–2.0 msec (20%) as orthodromic, monosynaptic, and those with a latent period of 2.5–4.0 msec or more (64%) as polysynaptic. With intracellular recording, excitatory responses of the EPSP, EPSP-AP, and AP type with latent periods of between 1.3 and 19.5 msec developed in 78.2% of cells. IPSPs, which were recorded in 21.8% of neurons, were usually found as components of mixed responses; primary IPSPs were found in only two cases. Monosynaptic connection of the medial geniculate body was shown to take place with neurons of the pericruciate cortex that did not belong to the pyramidal tract.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 1, pp. 18–24, January–February, 1979.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号