首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Acetone extracts from eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peels both belonging to the Solanaceae plant family were characterized with respect to their anthocyanin profiles, colour qualities and antioxidant capacities. According to HPLC-DAD-MS3 analyses the major anthocyanin in eggplant was delphinidin-3-rutinoside, while the predominant pigment in violet pepper was assigned to delphinidin-3-trans-coumaroylrutinoside-5-glucoside. Since virtually all anthocyanins were delphinidin-based, the effect of acylation and glycosylation patterns on colour stability and antioxidant capacity could be assessed. Application of two in vitro-assays for antioxidant capacity assessment revealed that eggplant generally exhibited higher values compared to violet pepper which was ascribed to 3,5-diglycosylated structures predominating in the latter. The higher extent of acylation in violet pepper was reflected by a more purplish colour shade of the extracts, but did not translate into a higher stability against fading which again was attributed to additional glycosyl substitution at C5. These findings support the relevance of structure-related activities of anthocyanins both for understanding food colour and their particular nutritional value.  相似文献   

2.
3.
This work demonstrates that spermine is a natural antioxidant and anti-inflammatory agent. It is found that: (1) Spermine inhibits the cytochrome C reduction initiated by FMLP- or PMA-stimulated human granulocytes. (2) Spermine inhibits the Fe(III)/xanthine oxidase stimulated lipid peroxidation of brain phospholipid liposomes. The antioxidative effect disappears at high Fe(III) concentrations. (3) Spermine forms a complex with Fe(II). (4) Spermine inhibits the Fe(II)-induced depolymerization of hyaluronic acid, and EDTA abolishes this effect. (5) Spermine or spermine-Fe(II) has no superoxide mimetic effect. These findings suggest that spermine has at least two antioxidative mechanisms of action: (I) Spermine inhibits the generation of the transport of superoxide radicals from stimulated granulocytes, and (II) Spermine inhibits the Haber-Weiss reaction by forming an unreactive chelate with Fe. Spermine thus prevents generation of destructive hydroxyl radicals.  相似文献   

4.
The inhibitory effect of anthocyanins has been investigated in the peroxidation of linoleic acid in micelles in the presence and in the absence of (+)-catechin. The peroxidation was initiated by thermal decomposition of 2,2(')-azobis[2-(2-imidazolin-2-yl)propane], and the kinetics of peroxidation were followed by measuring the rate of oxygen consumption and the rate of disappearance of the antioxidant. The analysis of the antioxidant effect of various anthocyanins, alone or in the presence of catechin, demonstrates that catechin, which is relatively inefficient at inhibiting linoleic acid oxidation, regenerates the highly efficient antioxidant malvidin 3-glucoside and, at a lower extent, peonidin 3-glucoside. The malvidin 3-glucoside recycling by catechin strongly increases the antioxidant efficiency of these two antioxidants. This protective mechanism appears specific for malvidin and peonidin 3-glucosides. The high unpaired spin density of the phenolic O atoms in the radicals generated by these anthocyanins, calculated by the semiempirical quantum chemical AM1 method, may explain the observed behavior.  相似文献   

5.
Synthesis of nitrone derivatives of trolox is described. Their biological evaluation was performed in vitro for scavenging different free radicals, inhibiting Fe(2+)-induced lipid peroxidation, and in vivo in a permanent middle cerebral artery occlusion model in mice. New compounds exert pharmacological activities comparable to or better than those of trolox or nitrone-type reference compounds.  相似文献   

6.
L-adrenaline belongs to a group of the compounds known as catecholamines, which play an important role in the regulation of physiological process in living organisms. The antioxidant activity and antioxidant mechanism of L-adrenaline was clarified using various in vitro antioxidant assays including 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), N,N-dimethyl-p-phenylenediamine (DMPD(+)), and superoxide anion radicals (O(2)(-)) scavenging activity, hydrogen peroxide (H(2)O(2)), total antioxidant activity, ferric ions (Fe(3+)) and cupric ions (Cu(2+)) reducing ability, ferrous ions (Fe(2+)) chelating activity. L-adrenaline inhibited 74.2% lipid peroxidation of a linoleic acid emulsion at 30 microg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), alpha-tocopherol and trolox displayed 83.3, 82.1, 68.1 and 81.3% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. BHA, BHT, alpha-tocopherol and trolox were used as reference antioxidants and radical scavenger compounds. Moreover, this study will bring an innovation for further studies related to antioxidant properties of L-adrenaline. According to present study, L-adrenaline had effective in vitro antioxidant and radical scavenging activity.  相似文献   

7.
alpha-Tocopherol inhibited H2O2-Fe2+-induced lipid peroxidation of linoleic acid (LA) by scavenging OH radicals in tetradecyltrimethylammonium bromide (TTAB) micelles. The inhibiting ability of alpha-tocopherol was much greater than that of OH-radical scavengers mannitol and t-butanol. In contrast, alpha-tocopherol enhanced linoleic acid hydroperoxide (LOOH)-Fe2+-induced lipid peroxidation through regeneration of Fe2+ in sodium dodecyl sulfate (SDS) micelles containing LA. alpha-Tocopherol was oxidized by Fenton's reagent (FeSO4 + H2O2) at a higher rate in SDS micelles than in TTAB micelles. The likely oxidants were OH radicals in the former and Fe3+ in the latter. Both reagents formed in the Fenton reaction. Ferrous ion catalyzed in a dose-dependent manner the decomposition of LOOH and conjugated diene compounds in SDS but not in TTAB micelles. alpha-Tocopherol and Fe3+ individually had no effect on the decomposition of LOOH, but together were quite effective. The rate of the decomposition was a function of the concentration of alpha-tocopherol. The mechanism of "site-specific" antioxidant action of alpha-tocopherol in charged micelles is discussed.  相似文献   

8.
Comparison of iron-catalyzed DNA and lipid oxidation   总被引:4,自引:0,他引:4  
Lipid and DNA oxidation catalyzed by iron(II) were compared in HEPES and phosphate buffers. Lipid peroxidation was examined in a sensitive liposome system constructed with a fluorescent probe that allowed us to examine the effects of both low and high iron concentrations. With liposomes made from synthetic 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine or from rat liver microsomal lipid, lipid peroxidation increased with iron concentration up to the range of 10--20 microM iron(II), but then rates decreased with further increases in iron concentration. This may be due to the limited amount of lipid peroxides available in liposomes for oxidation of iron(II) to generate equimolar iron(III), which is thought to be important for the initation of lipid peroxidation. Addition of hydrogen peroxide to incubations with 1--10 microM iron(II) decreased rates of lipid peroxidation, whereas addition of hydrogen peroxide to incubations with higher iron concentrations increased rates of lipid peroxidation. Thus, in this liposome system, sufficient peroxide from either within the lipid or from exogenous sources must be present to generate equimolar iron(II) and iron(III). With iron-catalyzed DNA oxidation, hydrogen peroxide always stimulated product formation. Phosphate buffer, which chelates iron but still allows for generation of hydroxyl radicals, inhibited lipid peroxidation but not DNA oxidation. HEPES buffer, which scavenges hydroxyl radicals, inhibited DNA oxidation, whereas lipid peroxidation was unaffected since presumably iron(II) and iron(III) were still available for reaction with liposomes in HEPES buffer.  相似文献   

9.
In order to resolve a conflict between previous papers regarding the floral anthocyanins of red flowers of Petunia exserta, a naturally occurring species, the HPLC profile of this species was compared with that of commercial red garden petunias. Both HPLC profiles extremely superficially resemble each other in terms of relative amounts and retention times of the major anthocyanins. However, co-elution on HPLC of the mixed sample resulted in clear separation of the components. Three major anthocyanins in red petunias were determined to be cyanidin 3-sophoroside, cyanidin 3-glucoside and peonidin 3-glucoside, which exhibited similar behaviors on HPLC to delphinidin 3-glucoside. delphinidin-3-rutinoside and petunidin 3-rutinoside, respectively, the major floral anthocyanins of P. exserta.  相似文献   

10.
Tocopherols (vitamin E) function as inhibitors of lipid peroxidation in biomembranes by donating a hydrogen atom to the chain propagating lipid radicals, thus giving rise to chromanoxyl radicals of the antioxidant. We have shown that alpha-tocopherol homologs differing in the lengths of their hydrocarbon side chains (alpha-Cn) manifest strikingly different antioxidant potencies in membranes. The antioxidant activity of tocopherol homologs during (Fe2+ + ascorbate)- or (Fe2+ + NADPH)-induced lipid peroxidation in rat liver microsomes increased in the order alpha-tocopherol (alpha-C16) less than alpha-C11 less than alpha-C6 less than alpha-C1. Chromanoxyl radicals generated from alpha-tocopherol and its more polar homologs by an enzymatic oxidation system (lipoxygenase + linolenic acid) can be recycled in rat liver microsomes by NAD-PH-dependent electron transport or by ascorbate. The efficiency of recycling increased in the same order: alpha-tocopherol (alpha-C16) less than alpha-C11 less than alpha-C6 less than alpha-C1. Thus the high efficiency of regeneration of short-chain homologs of vitamin E may account for their high antioxidant potency.  相似文献   

11.
Structurally diverse plant phenolics were examined for their abilities to inhibit lipid peroxidation induced either by Fe(II) and Fe(III) metal ions or by azo-derived peroxyl radicals in a liposomal membrane system. The antioxidant abilities of flavonoids were compared with those of coumarin and tert-butylhydroquinone (TBHQ). The antioxidant efficacies of these compounds were evaluated on the basis of their abilities to inhibit the fluorescence intensity decay of an extrinsic probe, 3-(p-(6-phenyl)-1,3,5-hexatrienyl)phenylpropionic acid (DPH-PA), caused by the free radicals generated during lipid peroxidation. All the flavonoids tested exhibited higher antioxidant efficacies against metal-ion-induced peroxidations than peroxyl-radical-induced peroxidation, suggesting that metal chelation may play a larger role in determining the antioxidant activities of these compounds than has previously been believed. Distinct structure–activity relationships were also revealed for the antioxidant abilities of the flavonoids. Presence of hydroxyl substituents on the flavonoid nucleus enhanced activity, whereas substitution by methoxy groups diminished antioxidant activity. Substitution patterns on the B-ring especially affected antioxidant potencies of the flavonoids. In cases where the B-ring could not contribute to the antioxidant activities of flavonoids, hydroxyl substituents in an catechol structure on the A-ring were able to compensate and become a larger determinant of flavonoid antioxidant activity.  相似文献   

12.
Berry extracts rich in anthocyanins have been linked to protective effects including the modulation of age-related neurological dysfunction and the improvement of the resistance of red blood cells against oxidative stress in vitro . In this study the bioavailability, metabolism and elimination of polyphenols from blackcurrant juice, rich in anthocyanins, flavonols, and hydroxycinnamates, were investigated. The four major native anthocyanidin glycosides of blackcurrant juice, delphinidin-3-glucoside, delphinidin-3-rutinoside, cyanidin-3-glucoside and cyanidin-3-rutinoside, were detected and identified in low amounts by HPLC and LC-MS in plasma and urine post-ingestion. Elimination of the anthocyanins was fast (maximum excretion after 1 h) and plasma levels (0-128.6 nmol/l) and total urinary excretion (0.07-1.35 mg; 0.007-0.133% of the dose ingested) were low. Most significantly, of the hydroxycinnamates, conjugated and free ferulic, isoferulic, p -coumaric, sinapic and vanillic acids were identified in plasma and urine, using GC-MS techniques. Quercetin and kaempferol (as glucuronides) and the proposed colonic metabolite of quercetin, 3-hydroxyphenylacetic acid, were detectable in a minority of subjects. Increased daily urinary hippuric, 4-hydroxyhippuric and 3-hydroxyhippuric acid levels were also observed post-ingestion in all volunteers.  相似文献   

13.
The antioxidant activity of anthocyanins has been well characterized in vitro; many cases has been postulated to provide an important exogenous mediator of oxidative stress in the gastrointestinal tract. The objective of this study was to evaluate the efficacy of anthocyanin protection against peroxyl radical (AAPH)-induced oxidative damage and associated cytotoxicity in Caco-2 colon cancer cells. Crude blackberry extracts were purified by gel filtration column to yield purified anthocyanin extracts that were composed of 371 mg/g total anthocyanin, 90.1% cyanidin-3-glucoside, and 4.9 mmol Trolox equivalent/g (ORAC) value. There were no other detectable phenolic compounds in the purified anthocyanin extract. The anthocyanin extract suppressed AAPH-initiated Caco-2 intracellular oxidation in a concentration-dependent manner, with an IC50 value of 6.5 ± 0.3 μg/ml. Anthocyanins were not toxic to Caco-2 cells, but provided significant (P < 0.05) protection against AAPH-induced cytotoxicity, when assessed using the CellTiter-Glo assay. AAPH-induced cytoxicity in Caco-2 cells was attributed to a significant (P < 0.05) reduction in the G1 phase and increased proportion of cells in the sub G1 phase, indicating apoptosis. Prior exposure of Caco-2 cells to anthocyanins suppressed (P < 0.05) the AAPH-induced apoptosis by decreasing the proportion of cells in the sub-G1 phase, normalized the proportion of cells in other cell cycle phases. Our results show that the antioxidant activity of anthocyanins principally attributed to cyanidin-3-O-glucoside and common to blackberry, are effective at inhibiting peroxyl radical induced apoptosis in cultured Caco-2 cells.  相似文献   

14.
The inhibition by anthocyanins of the free radical-mediated peroxidation of linoleic acid in a SDS micelle system was studied at pH 7.4 and at 37 degrees C, by oxygraphic and ESR tecniques. The number of peroxyl radicals trapped by anthocyanins and the efficiency of these molecules in the trapping reaction, which are two fundamental aspects of the antioxidant action, were measured and discussed in the light of the molecular structure. In particular the contribution of the substituents to the efficiency is -OH>-OCH(3)>-H. By ESR we found that the free radicals of anthocyanins are generated in the inhibition of the peroxidation of linoleic acid. The life time of these radical intermediates, the concentration of which ranges from 7 to 59 nM under our experimental conditions, is strictly correlated with the anthocyanin efficiency and with the heat of formation of the radical, as calculated by a semiempirical molecular orbital approach.  相似文献   

15.
《Free radical research》2013,47(11):1229-1241
Berry extracts rich in anthocyanins have been linked to protective effects including the modulation of age-related neurological dysfunction and the improvement of the resistance of red blood cells against oxidative stress in vitro . In this study the bioavailability, metabolism and elimination of polyphenols from blackcurrant juice, rich in anthocyanins, flavonols, and hydroxycinnamates, were investigated. The four major native anthocyanidin glycosides of blackcurrant juice, delphinidin-3-glucoside, delphinidin-3-rutinoside, cyanidin-3-glucoside and cyanidin-3-rutinoside, were detected and identified in low amounts by HPLC and LC-MS in plasma and urine post-ingestion. Elimination of the anthocyanins was fast (maximum excretion after 1 h) and plasma levels (0-128.6 nmol/l) and total urinary excretion (0.07-1.35 mg; 0.007-0.133% of the dose ingested) were low. Most significantly, of the hydroxycinnamates, conjugated and free ferulic, isoferulic, p -coumaric, sinapic and vanillic acids were identified in plasma and urine, using GC-MS techniques. Quercetin and kaempferol (as glucuronides) and the proposed colonic metabolite of quercetin, 3-hydroxyphenylacetic acid, were detectable in a minority of subjects. Increased daily urinary hippuric, 4-hydroxyhippuric and 3-hydroxyhippuric acid levels were also observed post-ingestion in all volunteers.  相似文献   

16.
Structural relationship between the antioxidant melatonin and the non-benzodiazepine hypnotic zolpidem (ZPD) suggests possible direct antioxidant and neuroprotective properties of this compound. In the present work, these effects were analyzed for zolpidem and four of its synthesis intermediates. In vitro assays include lipid peroxidation and protein oxidation studies in liver and brain homogenates. Intracellular antioxidant effects were analyzed by evaluation of free radical formation prevention in HT-22 hippocampal cells treated with glutamate 10mM and measured by flow cytometer DCF fluorescence. The neuroprotective effect of these compounds was evaluated as neuronal death prevention of HT-22 cells treated with the same concentration of glutamate. Zolpidem was found to prevent induced lipid peroxidation in rat liver and brain homogenates showing figures similar to melatonin, although it failed to prevent protein oxidation. ZPD-I was the most effective out of the several zolpidem intermediates studied as it prevented lipid peroxidation with an efficiency higher than melatonin or zolpidem and with an effectiveness similar to estradiol and trolox. ZPD-I prevents protein oxidation, which trolox is known to be unable to prevent. When cellular experiments were undertaken, ZPD-I prevented totally the increase of intracellular free radicals induced by glutamate 10mM in culture medium for 12h, while zolpidem and ZPD-III partially prevented this increase. Also the three compounds protected hippocampal neurons from glutamate-induced death in the same conditions, being their comparative efficacy, ZPD-III > ZPD-I = ZPD.  相似文献   

17.
A series of 6-hydroxy-7-methoxy-4-chromanone- (2a-e) and chroman-2-carboxamides (3a-e) were synthesized and their antioxidant activities were evaluated. While compounds 2a-e were less active, compounds 3a-e exhibited more potent inhibition of lipid peroxidation initiated by Fe(2+) and ascorbic acid in rat brain homogenates. Among them, N-arylsubstituted-chroman-2-carboxamides (3d and 3e) exhibited 25-40 times more potent inhibition than trolox (1). The DPPH radical scavenging activity of compound 3d was comparable to that of trolox.  相似文献   

18.
Nitric oxide as a cellular antioxidant: a little goes a long way   总被引:1,自引:0,他引:1  
Nitric oxide (NO*) is an effective chain-breaking antioxidant in free radical-mediated lipid oxidation (LPO). It reacts rapidly with peroxyl radicals as a sacrificial chain-terminating antioxidant. The goal of this work was to determine the minimum threshold concentration of NO* required to inhibit Fe2+ -induced cellular lipid peroxidation. Using oxygen consumption as a measure of LPO, we simultaneously measured nitric oxide and oxygen concentrations with NO* and O2 electrodes. Ferrous iron and dioxygen were used to initiate LPO in docosahexaenoic acid-enriched HL-60 and U937 cells. Bolus addition of NO* (1.5 microM) inhibited LPO when the NO* concentration was greater than 50 nM. Similarly, using (Z)-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate as a NO* donor we found that an average steady-state NO* concentration of at least 72 +/- 9 nM was required to blunt LPO. As long as the concentration of NO* was above 13 +/- 8 nM the inhibition was sustained. Once the concentration of NO* fell below this value, the rate of lipid oxidation accelerated as measured by the rate of oxygen consumption. Our model suggests that a continuous production of NO* that would yield a steady-state concentration of only 10-20 nM is capable of inhibiting Fe2+ -induced LPO.  相似文献   

19.
Anthocyanins are widely distributed secondary metabolites that play an essential role in skin pigmentation of many plant organs and microorganisms. Anthocyanins have been associated with a wide range of biological and pharmacological properties. They are also effective agents in the prevention and treatment of many chronic diseases. Berries are particularly abundant in these compounds; therefore, their dietary intake has health-promoting effects. The aim of this study was to identify and determine the anthocyanin content in selected species and cultivars of berry fruits, such as raspberry, blackberry, red currant, blackcurrant, and highbush blueberry, widely consumed by Europeans. The concentrations of anthocyanins were determined by HPLC, identifying individual compounds: cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside, delphinidin-3-O-glucoside, delphinidin-3-O-rutinoside, cyanidin-3-O-rutinoside, delphinidin-3-O-galactoside, cyanidin-3-O-galactoside, and malvidin-3-O-galactoside. The experimental data showed that the selected species and cultivars of berry fruits differ significantly in the contents of anthocyanins. Among all species tested, blackberry and blackcurrant were characterized significantly by the highest content of anthocyanins (sum), while the lowest content was found in red currant fruits. Additionally, the content of individual anthocyanin compounds in particular species and cultivars was also different. Considering the high content of anthocyanins and their potential positive impact on human health and protection against disease, berries should be part of healthy nutrition.  相似文献   

20.
Silymarin, a known standardized extract obtained from seeds of Silybum marianum is widely used in treatment of several diseases of varying origin. In the present paper, we clarified the antioxidant activity of silymarin by employing various in vitro antioxidant assay such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH(.)) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by Fe3+ - Fe2+ transformation method and Cuprac assay, superoxide anion radical scavenging by riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe2+) chelating activities. Silymarin inhibited 82.7% lipid peroxidation of linoleic acid emulsion at 30 microg/mL concentration; butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), alpha-tocopherol and trolox indicated inhibition of 83.3, 82.1, 68.1 and 81.3% on peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, silymarin had an effective DPPH(.) scavenging, ABTS(.)+ scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power by Fe3+-Fe2+ transformation, cupric ions (Cu2+) reducing ability by Cuprac method, and ferrous ions (Fe2+) chelating activities. Also, BHA, BHT, alpha-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. Moreover, this study, which clarifies antioxidant mechanism of silymarin, brings new information on the antioxidant properties of silymarin. According to the present study, silymarin had effective in vitro antioxidant and radical scavenging activity. It could be used in the pharmacological and food industry because of its antioxidant properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号