首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mechanism(s) underlying activation of store-operated Ca2+ entry currents, ISOC, remain incompletely understood. F-actin configuration is an important determinant of channel function, although the nature of interaction between the cytoskeleton and ISOC channels is unknown. We examined whether the spectrin membrane skeleton couples Ca2+ store depletion to Ca2+ entry. Thapsigargin activated an endothelial cell ISOC (-45 pA at -80 mV) that reversed at +40 mV, was inwardly rectifying when Ca2+ was the charge carrier, and was inhibited by La3+ (50 microM). Disruption of the spectrin-protein 4.1 interaction at residues A207-V445 of betaSpIISigma1 decreased the thapsigargin-induced global cytosolic Ca2+ response by 50% and selectively abolished the endothelial cell ISOC, without altering activation of a nonselective current through cyclic nucleotide-gated channels. In contrast, disruption of the spectrin-actin interaction at residues A47-K186 of betaSpIISigma1 did not decrease the thapsigargin-induced global cytosolic Ca2+ response or inhibit ISOC. Results indicate that the spectrin-protein 4.1 interaction selectively controls ISOC, indicating that physical coupling between calcium release and calcium entry is reliant upon the spectrin membrane skeleton.  相似文献   

2.
We previously reported that the prostaglandin E(2) (PGE(2)) receptor subtype EP(1) is coupled to intracellular Ca(2+) mobilization in CHO cells, which is dependent on extracellular Ca(2+) in a pertussis toxin-insensitive manner [H. Katoh, et al., Biochim. Biophys. Acta 1244 (1995) 41-48]. However, it remains unknown about the signal transduction involved in this response. To investigate the mechanism regulating Ca(2+) mobilization mediated by EP(1) receptors in detail, we performed a series of experiments using the Xenopus laevis oocyte expression system and found that endogenous G(q) and/or G(11), and not G(i1) is involved in the Ca(2+) mobilization induced by PGE(2). We further investigated the receptor-activated Ca(2+) channel (RACC)-related response by introducing mRNA for mouse transient receptor potential 5 (TRP5), a possible candidate for the RACC, and found effective coupling between them. These results suggest that the EP(1) receptors induce Ca(2+) mobilization via G(q) and/or G(11) and Ca(2+) influx via TRP.  相似文献   

3.
During oocyte maturation, eggs acquire the ability to generate specialized Ca(2+) signals in response to sperm entry. Such Ca(2+) signals are crucial for egg activation and the initiation of embryonic development. We examined the regulation during Xenopus oocyte maturation of store-operated Ca(2+) entry (SOCE), an important Ca(2+) influx pathway in oocytes and other nonexcitable cells. We have previously shown that SOCE inactivates during Xenopus oocyte meiosis. SOCE inactivation may be important in preventing premature egg activation. In this study, we investigated the correlation between SOCE inactivation and the Mos-mitogen-activated protein kinase (MAPK)-maturation-promoting factor (MPF) kinase cascade, which drives Xenopus oocyte maturation. SOCE inactivation at germinal vesicle breakdown coincides with an increase in the levels of MAPK and MPF. By differentially inducing Mos, MAPK, and MPF, we demonstrate that the activation of MPF is necessary for SOCE inactivation during oocyte maturation. In contrast, sustained high levels of Mos kinase and the MAPK cascade have no effect on SOCE activation. We further show that preactivated SOCE is not inactivated by MPF, suggesting that MPF does not block Ca(2+) influx through SOCE channels, but rather inhibits coupling between store depletion and SOCE activation.  相似文献   

4.
The difference of Ca(2+) mobilization induced by muscarinic receptor activation between parotid acinar and duct cells was examined. Oxotremorine, a muscarinic-cholinergic agonist, induced intracellular Ca(2+) release and extracellular Ca(2+) entry through store-operated Ca(2+) entry (SOC) and non-SOC channels in acinar cells, but it activated only Ca(2+) entry from non-SOC channels in duct cells. RT-PCR experiments showed that both types of cells expressed the same muscarinic receptor, M3. Given that ATP activated the intracellular Ca(2+) stores, the machinery for intracellular Ca(2+) release was intact in the duct cells. By immunocytochemical experiments, IP(3)R2 colocalized with M3 receptors in the plasma membrane area of acinar cells; in duct cells, IP(3)R2 resided in the region on the opposite side of the M3 receptors. On the other hand, purinergic P2Y2 receptors were found in the apical area of duct cells where they colocalized with IP(3)R2. These results suggest that the expression of the IP(3)Rs near G-protein-coupled receptors is necessary for the activation of intracellular Ca(2+) stores. Therefore, the microenvironment probably affects intracellular Ca(2+) release and Ca(2+) entry.  相似文献   

5.
Using whole-cell recording in Drosophila S2 cells, we characterized a Ca(2+)-selective current that is activated by depletion of intracellular Ca2+ stores. Passive store depletion with a Ca(2+)-free pipette solution containing 12 mM BAPTA activated an inwardly rectifying Ca2+ current with a reversal potential >60 mV. Inward currents developed with a delay and reached a maximum of 20-50 pA at -110 mV. This current doubled in amplitude upon increasing external Ca2+ from 2 to 20 mM and was not affected by substitution of choline for Na+. A pipette solution containing approximately 300 nM free Ca2+ and 10 mM EGTA prevented spontaneous activation, but Ca2+ current activated promptly upon application of ionomycin or thapsigargin, or during dialysis with IP3. Isotonic substitution of 20 mM Ca2+ by test divalent cations revealed a selectivity sequence of Ba2+ > Sr2+ > Ca2+ > Mg2+. Ba2+ and Sr2+ currents inactivated within seconds of exposure to zero-Ca2+ solution at a holding potential of 10 mV. Inactivation of Ba2+ and Sr2+ currents showed recovery during strong hyperpolarizing pulses. Noise analysis provided an estimate of unitary conductance values in 20 mM Ca2+ and Ba2+ of 36 and 420 fS, respectively. Upon removal of all external divalent ions, a transient monovalent current exhibited strong selectivity for Na+ over Cs+. The Ca2+ current was completely and reversibly blocked by Gd3+, with an IC50 value of approximately 50 nM, and was also blocked by 20 microM SKF 96365 and by 20 microM 2-APB. At concentrations between 5 and 14 microM, application of 2-APB increased the magnitude of Ca2+ currents. We conclude that S2 cells express store-operated Ca2+ channels with many of the same biophysical characteristics as CRAC channels in mammalian cells.  相似文献   

6.
Mammalian transient receptor potential channels (TRPCs) form a family of Ca(2+)-permeable cation channels currently consisting of seven members, TRPC1-TRPC7. These channels have been proposed to be molecular correlates for capacitative Ca(2+) entry channels. There are only a few studies on the regulation and properties of the subfamily consisting of TRPC4 and TRPC5, and there are contradictory reports concerning the possible role of intracellular Ca(2+) store depletion in channel activation. We therefore investigated the regulatory and biophysical properties of murine TRPC4 and TRPC5 (mTRPC4/5) heterologously expressed in human embryonic kidney cells. Activation of G(q/11)-coupled receptors or receptor tyrosine kinases induced Mn(2+) entry in fura-2-loaded mTRPC4/5-expressing cells. Accordingly, in whole-cell recordings, stimulation of G(q/11)-coupled receptors evoked large, nonselective cation currents, an effect mimicked by infusion of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS). However, depletion of intracellular Ca(2+) stores failed to activate mTRPC4/5. In inside-out patches, single channels with conductances of 42 and 66 picosiemens at -60 mV for mTRPC4 and mTRPC5, respectively, were stimulated by GTPgammaS in a membrane-confined manner. Thus, mTRPC4 and mTRPC5 form nonselective cation channels that integrate signaling pathways from G-protein-coupled receptors and receptor tyrosine kinases independently of store depletion. Furthermore, the biophysical properties of mTRPC4/5 are inconsistent with those of I(CRAC), the most extensively characterized store-operated current.  相似文献   

7.
Ca(2+)-induced Ca(2+) release (CICR) enhances a variety of cellular Ca(2+) signaling and functions. How CICR affects impulse-evoked transmitter release is unknown. At frog motor nerve terminals, repetitive Ca(2+) entries slowly prime and subsequently activate the mechanism of CICR via ryanodine receptors and asynchronous exocytosis of transmitters. Further Ca(2+) entry inactivates the CICR mechanism and the absence of Ca(2+) entry for >1 min results in its slow depriming. We now report here that the activation of this unique CICR markedly enhances impulse-evoked exocytosis of transmitter. The conditioning nerve stimulation (10-20 Hz, 2-10 min) that primes the CICR mechanism produced the marked enhancement of the amplitude and quantal content of end-plate potentials (EPPs) that decayed double exponentially with time constants of 1.85 and 10 min. The enhancement was blocked by inhibitors of ryanodine receptors and was accompanied by a slight prolongation of the peak times of EPP and the end-plate currents estimated from deconvolution of EPP. The conditioning nerve stimulation also enhanced single impulse- and tetanus-induced rises in intracellular Ca(2+) in the terminals with little change in time course. There was no change in the rate of growth of the amplitudes of EPPs in a short train after the conditioning stimulation. On the other hand, the augmentation and potentiation of EPP were enhanced, and then decreased in parallel with changes in intraterminal Ca(2+) during repetition of tetani. The results suggest that ryanodine receptors exist close to voltage-gated Ca(2+) channels in the presynaptic terminals and amplify the impulse-evoked exocytosis and its plasticity via CICR after Ca(2+)-dependent priming.  相似文献   

8.
The universal signal for egg activation at fertilization is a rise in cytoplasmic Ca(2+) with defined spatial and temporal kinetics. Mammalian and amphibian eggs acquire the ability to produce such Ca(2+) signals during a maturation period that precedes fertilization and encompasses resumption of meiosis and progression to metaphase II. In Xenopus, immature oocytes produce fast, saltatory Ca(2+) waves that can be oscillatory in nature in response to IP(3). In contrast, mature eggs produce a single continuous, sweeping Ca(2+) wave in response to IP(3) or sperm fusion. The mechanisms mediating the differentiation of Ca(2+) signaling during oocyte maturation are not well understood. Here, I characterized elementary Ca(2+) release events (Ca(2+) puffs) in oocytes and eggs and show that the sensitivity of IP(3)-dependent Ca(2+) release is greatly enhanced during oocyte maturation. Furthermore, Ca(2+) puffs in eggs have a larger spatial fingerprint, yet are short lived compared to oocyte puffs. Most interestingly, Ca(2+) puffs cluster during oocyte maturation resulting in a continuum of Ca(2+) release sites over space in eggs. These changes in the spatial distribution of elementary Ca(2+) release events during oocyte maturation explain the continuous nature and slower speed of the fertilization Ca(2+) wave.  相似文献   

9.
Adenine and uridine nucleotides evoke Ca(2+) signals via four subtypes of P2Y receptor in cultured aortic smooth muscle cells, but the mechanisms underlying the different patterns of these Ca(2+) signals are unresolved. Cytosolic Ca(2+) signals were recorded from single cells and populations of cultured rat aortic smooth muscle cells, loaded with a fluorescent Ca(2+) indicator and stimulated with agonists that allow subtype-selective activation of P2Y1, P2Y2, P2Y4, or P2Y6 receptors. Activation of P2Y1, P2Y2, and P2Y6 receptors caused homologous desensitisation, while activation of P2Y2 receptors also caused heterologous desensitisation of the other subtypes. The Ca(2+) signals evoked by each P2Y receptor subtype required activation of phospholipase C and release of Ca(2+) from intracellular stores via inositol 1,4,5-trisphosphate (IP(3)) receptors, but they were unaffected by inhibition of ryanodine or nicotinic acid adenine dinucleotide phosphate (NAADP) receptors. Sustained Ca(2+) signals were independent of the Na(+)/Ca(2+) exchanger and were probably mediated by store-operated Ca(2+) entry. Analyses of single cells established that most cells express P2Y2 receptors and at least two other P2Y receptor subtypes. We conclude that four P2Y receptor subtypes evoke Ca(2+) signals in cultured aortic smooth muscle cells using the same intracellular (IP(3) receptors) and Ca(2+) entry pathways (store-operated Ca(2+) entry). Different rates of homologous desensitisation and different levels of receptor expression account for the different patterns of Ca(2+) signal evoked by each P2Y receptor subtype.  相似文献   

10.
In rat basophilic leukemia (RBL) cells and Jurkat T cells, Ca(2+) release-activated Ca(2+) (CRAC) channels open in response to passive Ca(2+) store depletion. Inwardly rectifying CRAC channels admit monovalent cations when external divalent ions are removed. Removal of internal Mg(2+) exposes an outwardly rectifying current (Mg(2+)-inhibited cation [MIC]) that also admits monovalent cations when external divalent ions are removed. Here we demonstrate that CRAC and MIC currents are separable by ion selectivity and rectification properties: by kinetics of activation and susceptibility to run-down and by pharmacological sensitivity to external Mg(2+), spermine, and SKF-96365. Importantly, selective run-down of MIC current allowed CRAC and MIC current to be characterized under identical ionic conditions with low internal Mg(2+). Removal of internal Mg(2+) induced MIC current despite widely varying Ca(2+) and EGTA levels, suggesting that Ca(2+)-store depletion is not involved in activation of MIC channels. Increasing internal Mg(2+) from submicromolar to millimolar levels decreased MIC currents without affecting rectification but did not alter CRAC current rectification or amplitudes. External Mg(2+) and Cs(+) carried current through MIC but not CRAC channels. SKF-96365 blocked CRAC current reversibly but inhibited MIC current irreversibly. At micromolar concentrations, both spermine and extracellular Mg(2+) blocked monovalent MIC current reversibly but not monovalent CRAC current. The biophysical characteristics of MIC current match well with cloned and expressed TRPM7 channels. Previous results are reevaluated in terms of separate CRAC and MIC channels.  相似文献   

11.
We evaluated currents induced by expression of human homologs of Orai together with STIM1 in human embryonic kidney cells. When co-expressed with STIM1, Orai1 induced a large inwardly rectifying Ca(2+)-selective current with Ca(2+)-induced slow inactivation. A point mutation of Orai1 (E106D) altered the ion selectivity of the induced Ca(2+) release-activated Ca(2+) (CRAC)-like current while retaining an inwardly rectifying I-V characteristic. Expression of the C-terminal portion of STIM1 with Orai1 was sufficient to generate CRAC current without store depletion. 2-APB activated a large relatively nonselective current in STIM1 and Orai3 co-expressing cells. 2-APB also induced Ca(2+) influx in Orai3-expressing cells without store depletion or co-expression of STIM1. The Orai3 current induced by 2-APB exhibited outward rectification and an inward component representing a mixed calcium and monovalent current. A pore mutant of Orai3 inhibited store-operated Ca(2+) entry and did not carry significant current in response to either store depletion or addition of 2-APB. Analysis of a series of Orai1-3 chimeras revealed the structural determinant responsible for 2-APB-induced current within the sequence from the second to third transmembrane segment of Orai3. The Orai3 current induced by 2-APB may reflect a store-independent mode of CRAC channel activation that opens a relatively nonselective cation pore.  相似文献   

12.
Store-operated calcium entry (SOCE) is the predominant Ca(2+) influx pathway in non-excitable cells and is activated in response to depletion of intracellular Ca(2+) stores. We have studied SOCE regulation during Xenopus oocyte meiosis. SOCE can be measured readily in stage VI Xenopus oocytes arrested at the G(2)-M transition of the cell cycle, either by Ca(2+) imaging or by recording the SOCE current. However, following meiotic maturation, SOCE can no longer be activated by store depletion. We have characterized the time course of SOCE inactivation during oocyte maturation, and show that SOCE inactivates almost completely, in a very short time period, at the germinal vesicle breakdown stage of meiosis. This acute inactivation offers an opportunity to better understand SOCE regulation.  相似文献   

13.
Zhou JG  Qiu QY  Zhang Z  Liu YJ  Guan YY 《Life sciences》2006,78(14):1558-1563
It is generally thought that receptor-operated Ca2+ entry is related to store-operated or capacitative Ca2+ entry mechanism. Recent evidence suggests that non-capacitative Ca2+ entry pathways are also involved in receptor activated Ca2+ influx in many different kinds of cells. In this study, we studied whether alpha1-adrenoreceptor (alpha1-AR)-activated Ca2+ entry is coupled to both capacitative and non-capacitative pathways in A10 vascular smooth muscle cells by fura-2 fluorescence probe and conventional whole-cell patch clamp techniques. We found that both thapsigargin (TG) and phenylephrine (Phe) induced transient increase in cytoplasmic Ca2+ concentration ([Ca2+]i) in Ca2+-free medium, and subsequent addition of Ca2+ evoked a sustained [Ca2+]i rise. When the membrane potential was held at -60 mV, both TG and Phe activated inward currents, which were inhibited by GdCl3(Gd3+), 0Na+/0Ca2+ solution and 1-{beta[3-(4-mehtoxyphenyl)propoxy]-4-methoxypheneth-yl}-1H- imidazole hydro-chloride (SK&F96365), but not by nifedipine. When Ca2+ store was depleted by TG in Ca2+-free solution, Phe failed to further evoke [Ca2+]i rise. However, when capacitative Ca2+ entry was activated by TG in the medium containing Ca2+, 10 microM Phe further increased [Ca2+]i. At the same concentration, TG activated an inward cation current, subsequent addition of Phe also further induced an inward cation current. Furthermore, the amplitudes of [Ca2+]i increase and current density induced by Phe in the presence of TG were less than that induced by Phe alone. Our results suggest that both capacitative and non-capacitative Ca2+ entry pathways are involved in Ca2+ influx induced by activation of alpha1-AR in A10 vascular smooth muscle cells.  相似文献   

14.
Extracellular Ca(2+) concentration ([Ca(2+)](o)) regulates the functions of many cell types through a G protein-coupled [Ca(2+)](o)-sensing receptor (CaR). Whether the receptor is functionally expressed in vascular endothelial cells is largely unknown. In cultured human aortic endothelial cells (HAEC), RT-PCR yielded the expected 555-bp product corresponding to the CaR, and CaR protein was demonstrated by fluorescence immunostaining and Western blot. RT-PCR also demonstrated the expression in HAEC of alternatively spliced variants of the CaR lacking exon 5. Although stimulation of fura 2-loaded HAEC by several CaR agonists (high [Ca(2+)](o), neomycin, and gadolinium) failed to increase intracellular Ca(2+) concentration ([Ca(2+)](i)), the CaR agonist spermine stimulated an increase in [Ca(2+)](i) that was diminished in buffer without Ca(2+) and was abolished after depletion of an intracellular Ca(2+) pool with thapsigargin or after blocking IP(3)- and ryanodine receptor-mediated Ca(2+) release with xestospongin C and with high concentration ryanodine, respectively. Spermine stimulated an increase in DAF-FM fluorescence in HAEC, consistent with NO production. Both the increase in [Ca(2+)](i) and in NO production were reduced or absent in HAEC transfected with siRNA specifically targeted to the CaR. HAEC express a functional CaR that responds to the endogenous polyamine spermine with an increase in [Ca(2+)](i), primarily due to release of IP(3)- and ryanodine-sensitive intracellular Ca(2+) stores, leading to the production of NO. Expression of alternatively spliced variants of the CaR may result in the absence of a functional response to other known CaR agonists in HAEC.  相似文献   

15.
Ca2+ store depletion activates both Ca2+ selective and non-selective currents in endothelial cells. Recently, considerable progress has been made in understanding the molecular make-up and regulation of an endothelial cell thapsigargin-activated Ca2+ selective current, ISOC. Indeed, ISOC is a relatively small inward Ca2+ current that exhibits an approximate +40 mV reversal potential and is strongly inwardly rectifying. This current is sensitive to organization of the actin-based cytoskeleton. Transient receptor potential (TRP) proteins 1 and 4 (TRPC1 and TRPC4, respectively) each contribute to the molecular basis of ISOC, although it is TRPC4 that appears to be tethered to the cytoskeleton through a dynamic interaction with protein 4.1. Activation of ISOC requires association between protein 4.1 and the actin-based cytoskeleton (mediated through spectrin), suggesting protein 4.1 mediates the physical communication between Ca2+ store depletion and channel activation. Thus, at present findings indicate a TRPC4–protein 4.1 physical linkage regulates ISOC activation following Ca2+ store depletion.  相似文献   

16.
We investigated signal transduction between receptor-operated Ca(2+) influx (ROCI) and Src-related nonreceptor protein tyrosine kinase (PTK) in rat pancreatic acini. CCK and the Ca(2+) ionophore enhanced the Src-related PTK activity, whereas the high-affinity CCK-A receptor agonists, fibroblast growth factor (FGF), and the protein kinase C (PKC) activator had no or little effect. This increase was abolished by eliminating [Ca(2+)](o), loading of the intracellular Ca(2+) chelator, and administering the PTK inhibitor genistein. While genistein inhibited extracellular Ca(2+) or Mn(2+) entry induced by CCK and carbachol, it did not affect intracellular Ca(2+) release and oscillations. CCK dose-dependently increased the Src phosphotransferase activity, which was abolished by inhibitors of G(q) protein, phospholipase C (PLC), and Src, but not by the calmodulin kinase (CaMK) inhibitor. Intensities of the Src band and amounts of tyrosine phosphorylated Src were enhanced by CCK stimulation. Thus, Src cascades appear to be coupled to the low-affinity CCK-A receptor and utilize G(q)-PLC pathways for their activation, independent of PKC and CaMK cascades. The low-affinity CCK-A receptor regulates ROCI via mediation of Src-related PTK and activates Src pathways to cause [Ca(2+)](o)-dependent pancreatic exocytosis.  相似文献   

17.
The mechanism by which G(q)-coupled receptors stimulate the c-Jun N-terminal kinase (JNK) activity has not been fully delineated. Here, we showed that stimulation of endogenous G(q)-coupled receptors in human hepatocarcinoma HepG2 cells resulted in an Src family kinase- and Ca(2+)-dependent JNK activation. Cos-7 cells transfected with HA-tagged JNK and various G(q)-coupled receptors also exhibited similar characteristics and provided further evidence for the involvement of Gbetagamma, an upstream intermediate for Src family kinases. The Ca(2+) and Gbetagamma signals operate in a high degree of independence. Transient expression of Gbetagamma subunits and elevation of cytoplasmic Ca(2+) level by thapsigargin activated JNK in a synergistic fashion. JNK activities triggered by G(q)-coupled receptors, Gbetagamma and thapsigargin were all suppressed by dominant negative (DN) mutants of Son of sevenless (Sos) and Rac. We propose that the co-operative effect between Gbetagamma-mediated signaling and the increased intracellular Ca(2+) level represents a robust mechanism for the stimulation of JNK by G(q)-coupled receptors.  相似文献   

18.
19.
In order to investigate the currently unknown cellular signaling pathways of T-type Ca(2+) channels, we decided to construct a new cell line which would stably express alpha(1G) and Kir2.1 subunits in HEK293 cells (HEK293/alpha(1G)/Kir2.1). Compared to cells which only expressed alpha(1G) (HEK293/alpha(1G)), HEK293/alpha(1G)/Kir2.1 cells produced an enormous inward rectifying current which was blocked by external Ba(2+) and Cs(+) in a concentration-dependent manner. The expression of Kir2.1 channels contributed significantly to the shift of membrane potential from -12.2+/-2.8 to -57.3+/-3.7mV. However, biophysical and pharmacological properties of alpha(1G)-mediated Ca(2+) channels remained unaffected by the expression of Kir2.1 subunits, except for the enlarging of the window current region. Biochemical activation of alpha(1G) channels using 150mM KCl brought about an increase in [Ca(2+)](i), which was blocked by mibefradil, the T-type Ca(2+) channel blocker. These data suggest that the HEK293/alpha(1G)/Kir2.1 cell line would have potential uses in the study of T-type Ca(2)(+) channel-mediated signaling pathways and possibly useful in the development of new therapeutic drugs associated with T-type Ca(2)(+) channels.  相似文献   

20.
Inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) were recently demonstrated to be activated independently of InsP(3) by a family of calmodulin (CaM)-like neuronal Ca(2+)-binding proteins (CaBPs). We investigated the interaction of both naturally occurring long and short CaBP1 isoforms with InsP(3)Rs, and their functional effects on InsP(3)R-evoked Ca(2+) signals. Using several experimental paradigms, including transient expression in COS cells, acute injection of recombinant protein into Xenopus oocytes and (45)Ca(2+) flux from permeabilised COS cells, we demonstrated that CaBPs decrease the sensitivity of InsP(3)-induced Ca(2+) release (IICR). In addition, we found a Ca(2+)-independent interaction between CaBP1 and the NH(2)-terminal 159 amino acids of the type 1 InsP(3)R. This interaction resulted in decreased InsP(3) binding to the receptor reminiscent of that observed for CaM. Unlike CaM, however, CaBPs do not inhibit ryanodine receptors, have a higher affinity for InsP(3)Rs and more potently inhibited IICR. We also show that phosphorylation of CaBP1 at a casein kinase 2 consensus site regulates its inhibition of IICR. Our data suggest that CaBPs are endogenous regulators of InsP(3)Rs tuning the sensitivity of cells to InsP(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号