首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 820 毫秒
1.
Metabolites of catecholamine neurotransmitters in plasma are, potentially, an easily available indicator of brain function in man. The peripheral contribution to these metabolites was lowered by debrisoquin sulfate, a monoamine oxidase inhibitor that does not enter the brain. In the monkey, it had been shown that debrisoquin decreased peripheral production of the dopamine metabolite, homovanillic acid (HVA), without changing production by brain; production of the norepinephrine metabolite, 3-methoxy-4-hydroxyphenethyleneglycol (MHPG) was decreased peripherally and in brain. Low-dose debrisoquin administration in man eliminated about 80% of the peripheral contribution to HVA and MHPG in plasma, resulting in a situation in which at least 75% of these metabolites in plasma were from the brain. Under these conditions, HVA and MHPG in plasma had a significant correlation. It could also be estimated that production of MHPG by brain was reduced 55%. Debrisoquin potentially provides a method for studying brain catecholamines through their metabolites in plasma and for treating conditions of brain noradrenergic excess.  相似文献   

2.
The plasma concentration of the dopamine (DA) metabolite, homovanillic acid (HVA), is used as an indicator of central nervous system dopaminergic activity. Using percutaneously inserted catheters we were able to obtain blood samples simultaneously from the right and left internal jugular veins. Veno-arterial HVA plasma concentration differences combined with adjusted organ plasma flows were used, according to the Fick Principle, to determine the HVA overflow from the brain. The HVA overflow from the liver was also measured. HVA overflow from the brain represented 12% of the total body HVA production. A similar amount was released from the liver, illustrating the limited validity of peripheral plasma HVA measurements as an indicator of central dopaminergic activity. HVA release from the human brain displayed a degree of asymmetry, the overflow into the left internal jugular vein being 36% greater than that into the right. Cerebral venous blood flow scans indicated that cortical cerebral regions drained preferentially into the right internal jugular; by inference the higher HVA overflow on the left originated from dopamine-rich subcortical brain areas. Since HVA in plasma may arise from the metabolism of DA existing either as a neurotransmitter or a norepinephrine (NE) precursor we measured the internal jugular vein plasma concentrations of NE, and its metabolite dihydroxyphenylglycol (DHPG), to determine whether they displayed a similar pattern of release to HVA. The overflow of both NE and DHPG into the right internal jugular vein was approximately double that on the left. Since the overflow of HVA did not parallel that of NE and DHPG it may be inferred that the origin of much of the subcortically produced HVA is from dopaminergic neurons and not from the metabolism of precursor DA in noradrenergic neurones or cerebrovascular sympathetic nerves.  相似文献   

3.
The etiology of vitiligo is still being debated, although neural factors seem to play a pivotal role in its pathogenesis. In our search for a link between vitiligo and the activity of monoaminergic systems, we used high-pressure liquid chromatography and electrochemical detector (HPLC-ED) methods to measure the plasma levels of the following substances in 35 healthy subjects and in 70 patients suffering from nonsegmental vitiligo at the different stages of the disease: catecholamines [norepinephrine (NE), epinephrine (E), and dopamine (DA)], their precursor 3,4-dihydroxyphenylalanine (DOPA), their metabolites [3-methoxy-4-hydroxyphenylglycol (MHPG), normetanephrine (NMN), metanephrine (MN), and homovanillic acid (HVA)], and 5-hydroxyindolacetic acid (5-HIAA) as the major metabolite of serotonin. We found that the levels of NE, E, NMN, MN, HVA, and 5-HIAA were significantly higher in patients compared to controls. The patients at an active phase of the disease (n = 49/70) showed significantly higher levels of NE, NMN, MHPG, and HVA than ones at a stable phase. The patients with progressive vitiligo and at its more recent onset (< 1 year) showed significantly increased levels of E, NE, and MN in comparison with longer-term sufferers. No significant differences were observed when the patients were subdivided according to the type of vitiligo or their age at its onset. The higher catecholamine and metabolite levels in the early phase of the disease may reflect increased activity by monoaminergic systems, probably due to stressful events, including the onset of vitiligo itself.  相似文献   

4.
Major and minor pathways of metabolism in the mammalian CNS result in the formation of 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) and normetanephrine (NMN) from norepinephrine (NE), and homovanillic acid (HVA) and 3-methoxytyramine (3-MT) from dopamine (DA), respectively. The correlational relationships between HVA and 3-MT and between MHPG and NMN in primate CSF and plasma have not been described. These relationships may help to elucidate the usefulness of CSF and plasma metabolites as indices of CNS NE and DA activity. In addition, because NMN is unlikely to cross the blood-brain barrier. CSF NMN concentrations would not be confounded by contributions from plasma, which is a major issue with CSF MHPG. We have obtained repeated samples of plasma and CSF from drug-naive male squirrel monkeys and have measured the concentrations of MHPG, HVA, NMN, and 3-MT to define their correlational relationships. For the NE metabolites, significant correlations were obtained for CSF MHPG and NMN (r = 0.806, p less than 0.001), plasma MHPG and CSF NMN (r = 0.753, p less than 0.001), and plasma and CSF MHPG (r = 0.776, p less than 0.001). These results suggest that CSF and plasma MHPG and CSF NMN may reflect gross changes in whole brain steady-state noradrenergic metabolism. Only a single significant relationship was demonstrated for the DA metabolites, with CSF 3-MT correlating with plasma HVA (r = 0.301, p less than 0.025). The results for the DA metabolites probably reflect regional differences in steady-state brain dopaminergic metabolism.  相似文献   

5.
During debrisoquin administration to three monkeys there were significant reductions in excretion rates of HVA, the major dopamine metabolite, and MHPG, the major norepinephrine metabolite. Excretion rates of HVA were highly correlated to those of MHPG. The regression line relating HVA and MHPG excretion suggests that a portion of HVA (about 25%) is derived from a source independent of norepinephrine metabolites. There was a striking reduction of this portion of HVA excretion after MPTP-induced destruction of dopaminergic nigrostriatal neurons. These results support the view that the rate of HVA formation in brain dopaminergic neurons can be estimated from the relationship of urinary excretion rates of HVA and MHPG before and during debrisoquin treatment.  相似文献   

6.
Significant changes in monoamine levels and utilization were noted in certain brain regions of middle-aged Fisher 344 rats when compared with young adult controls. In the prefrontal cortex and septum, 3,4 dihydroxyphenylglycol (MHPG) and the MHPG/norepinephrine (NE) ratio were decreased. The septum also showed increases in dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) but there was a decrease in the DOPAC/DA ratio. The striatum showed an increase in the MPHG/NE ratio and an increase in DOPAC. The hippocampus and thalamus showed an increase in 5-hydroxyindoleacetic acid (5HIAA). This demonstrates that selected neurotransmitter systems in the brain are altered at an early stage of senescence. This could lead to ensuing neurological deficits.  相似文献   

7.
Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), noradrenaline (NA), 3-methoxy-4-hydroxyphenylglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) in the CSF of patients with Huntington's disease (HD) were measured by HPLC. CSF DA, DOPAC, and MHPG levels were found to be increased in HD patients. Levels of HVA, 5-HIAA, and NA in the CSF of HD patients did not differ from those of controls. Changes in CSF DA and DOPAC levels were consistent with previous findings of increased DA tissue content in some brain areas of patients with HD. These results suggest that CSF DOPAC levels could be a more reliable index of overactive dopaminergic brain systems in HD than CSF HVA levels.  相似文献   

8.
Abstract— A direct method for measuring the rate of dopamine (DA) synthesis and the DA metabolites by the brain of awake monkeys ( Macaca arctoides ) is described. The method utilizes a coupling of a measure of cerebral blood flow with the mass spectrometrically determined difference in the concentrations of the metabolite under study in plasma obtained from arterial and internal jugular bulb blood. For homovanillic acid (HVA) a consistent and highly significant veno-arterial (V-A) difference of 2.2 ± 0.4 ng/ml of plasma ( P < 0.0005) was found. When this V-A difference was coupled with a measure of cerebral blood flow it was determined that, in the awake monkey, the average output of HVA by brain was 113.4 ± 19.1ng/100g brain min−1. There were large individual variations, however, between animals (range = 38-194 ng/100g brain min−1). In contrast to HVA, no consistent V-A difference for dihydroxyphenylacetic acid (DOPAC) was found; i.e. the concentrations of DOPAC in plasma obtained from arterial and internal jugular bulb venous blood were essentially identical. These data indicate that, in contrast to the rat, in this non-human primate HVA is the major metabolic product of brain DA. Since HVA is the major metabolite of DA, production of HVA under steady state conditions gives a measure of DA synthesis by whole brain; i.e. the rate of DA synthesis by whole brain in the awake monkey is 113.4 ± 19.1ng/100g brain min−1. It is suggested that this technique may be of value in both basic and applied types of studies.  相似文献   

9.
To elucidate catecholamine (CA) secretory dynamics in neuroblastoma, urinary excretion of CAs and their metabolites was serially measured in 6 patients aged 3 months to 3 years before and during treatment. After tumor extirpation, increased urinary CAs were promptly normalized; the reduction reflected the amount of CA production from the tumor. Urinary dopamine (DA) showed the most prominent reduction, whereas DA content in the tumor was very small, indicating that the DA produced was immediately released from the tumor and metabolized in extra-tumor tissues. In contrast, patients receiving chemotherapy continued to excrete excess DA and homovanillic acid (HVA), which were increased further at recidivation. One patient showed an inverse correlation between DA and norepinephrine (NE) excretion; a decrease in DA was associated with an increase in NE and plasma DA-beta-hydroxylase (DBH) activity. A similar inverse correlation was also noted between NE and vanillylmandelic acid (VMA) or 3-methoxy-4-hydroxyphenylglycol (MHPG) excretion, while HVA and dihydroxyphenylacetic acid (DOPAC) were positively correlated with DA excretion. Urinary HVA and VMA were lineally correlated but in a patient excreting an enormous amount of DA, urinary VMA was markedly suppressed in terms of HVA excretion. Excessive DA induced an increase in renal water output but did not enhance Na and K excretion. These results indicate that endogenous DA overload in neuroblastoma inhibits NE production by suppressing DBH activity as well as by forming VMA and MHPG. This precursor regulation appears to be the characteristic of the CA metabolic pathway.  相似文献   

10.
In conscious animals, handling and immobilization increase plasma levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). This study examined plasma concentrations of endogenous compounds related to catecholamine synthesis and metabolism during and after exposure to these stressors in conscious rats. Plasma levels of 3,4-dihydroxyphenylalanine (DOPA), NE, EPI, and dopamine (DA), the deaminated catechol metabolites 3,4-dihydroxyphenylglycol (DHPG), and 3,4-dihydroxyphenylacetic acid (DOPAC), and their O-methylated derivatives methoxyhydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were measured using liquid chromatography with electrochemical detection at 1, 3, 5, 20, 60, and 120 min of immobilization. By 1 min of immobilization, plasma NE and EPI levels had already reached peak values, and plasma levels of DOPA, DHPG, DOPAC, and MHPG were increased significantly from baseline, whereas plasma DA and HVA levels were unchanged. During the remainder of the immobilization period, the increased levels of DOPA, NE, and EPI were maintained, whereas levels of the metabolites progressively increased. In animals immobilized briefly (5 min), elevated concentrations of the metabolites persisted after release from the restraint, whereas DOPA and catecholamine levels returned to baseline. Gentle handling for 1 min also significantly increased plasma levels of DOPA, NE, EPI, and the NE metabolites DHPG and MHPG, without increasing levels of DA or HVA. The results show that in conscious rats, immobilization or even gentle handling rapidly increases plasma levels of catecholamines, the catecholamine precursor DOPA, and metabolites of NE and DA, indicating rapid increases in the synthesis, release, reuptake, and metabolism of catecholamines.  相似文献   

11.
Circadian rhythms in noradrenergic (NE) and dopaminergic (DA) metabolites and in cyclic nucleotide production were measured in discrete regions of rat brain. A circadian rhythm was found in the concentration of the NE metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG), in the hippocampus. No MHPG rhythm was found in frontal, cingulate, parietal, piriform, insular or temporal cortex, or in hypothalamus. Circadian rhythms in the concentration of the NE metabolite, 3,4-dihydroxyphenylglycol (DHPG), occurred in occipital and parietal cortex and hypothalamus, with no rhythm observable in temporal or insular cortex, hippocampus, pons-medulla or cerebellum. The 24-hr mean concentration of MHPG varied 3.5-fold, highest in cingulate and lowest in parietal, temporal and occipital cortex. The 24-hr mean concentration of DHPG varied 6-fold, highest in hypothalamus and lowest in parietal cortex. Circadian rhythms in the concentration of the DA metabolite, homovanillic acid (HVA), were found in olfactory tubercle, amygdala and caudate-putamen, but not in nucleus accumbens. A circadian rhythm in the concentration of the DA metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), occurred in nucleus accumbens, but not in olfactory tubercle or caudate-putamen. The mean 24-hr concentration of HVA was highest in caudate-putamen, intermediate in nucleus accumbens, and lowest in olfactory tubercle and amygdala. The mean 24-hr concentration of DOPAC was highest in nucleus accumbens and lower in olfactory tubercle and caudate-putamen. Circadian rhythms were found in the concentration of cyclic GMP (cGMP) in all regions measured except parietal cortex. The mean 24-hr concentration varied 128-fold, highest in nucleus accumbens, frontal poles, and hypothalamus and lowest in cingulate cortex. Circadian rhythms in cyclic AMP (cAMP) concentration were found in piriform, temporal, occipital, cingulate, and parietal cortex, amygdala and nucleus accumbens. No rhythms were found in frontal or insular cortex, hypothalamus, hippocampus, caudate-putamen or olfactory tubercle. The 24-hr mean cAMP concentration varied 4-fold, highest in parietal cortex and lowest in caudate-putamen and amygdala. Norepinephrine metabolites and dopamine metabolites were rhythmic in few regions. It is, therefore, unlikely that the rhythmicity measured in adrenergic receptors is, in general, a response to rhythmic changes in adrenergic transmitter release. The putative second messenger response systems, especially cGMP, were more often rhythmic. The rhythms in cGMP are parallel in form and region to those in the alpha 1-adrenergic receptor and may act as 2nd messenger for that receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
A new approach to biochemical evaluation of brain dopamine metabolism   总被引:2,自引:0,他引:2  
1. Dopaminergic neurotransmission in brain is receiving increased attention because of its known involvement in Parkinson's disease and new methods for the treatment of this disorder and because of hypotheses relating several psychiatric disorders to abnormalities in brain dopaminergic systems. 2. Chemical assessment of brain dopamine metabolism has been attempted by measuring levels of its major metabolite, homovanillic acid (HVA), in cerebrospinal fluid, plasma, or urine. Because HVA is derived in part from dopamine formed in noradrenergic neurons, plasma levels and urinary excretion rates of HVA do not adequately reflect solely metabolism of brain dopamine. 3. Using debrisoquin, the peripheral contributions of HVA to plasma or urinary HVA can be diminished, but the extent of residual HVA formation in noradrenergic neurons is unknown. By measuring the levels of methoxy-hydroxyphenylglycol (MHPG) in plasma or of urinary norepinephrine metabolites (total MHPG in monkeys; the sum of total MHPG and vanillyl mandelic acid (VMA) in humans) along with HVA, it is possible to estimate the degree of impairment by debrisoquin of HVA formation from noradrenergic neuronal dopamine and thereby better assess brain dopamine metabolism. 4. This method was applied to a monkey before and after destruction of the nigrostriatal pathway by the administration of MPTP.  相似文献   

13.
Concentrations of dopamine (DA), its metabolites 3-methoxytyramine and homovanillic acid (HVA), noradrenaline (NA), its metabolites normetanephrine (NM) and 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxytryptamine (5-HT, serotonin), and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were measured in 14 brain regions and in CSF from the third ventricle of 27 human autopsy cases. In addition, in six cases, lumbar CSF was obtained. Monoamine concentrations were determined by reversed-phase liquid chromatography with electrochemical detection. Ventricular/lumbar CSF ratios indicated persistence of rostrocaudal gradients for HVA and 5-HIAA post mortem. Ventricular CSF concentrations of DA and HVA correlated positively with striatal DA and HVA. CSF NA correlated positively with NA in hypothalamus, and CSF MHPG with levels of MHPG in hypothalamus, temporal cortex, and pons, whereas CSF NM concentration showed positive correlations with NM in striatum, pons, cingulate cortex, and olfactory tubercle. CSF 5-HT concentrations correlated positively with 5-HT in caudate nucleus, whereas the concentration of CSF 5-HIAA correlated to 5-HIAA levels in thalamus, hypothalamus, and the cortical areas. These data suggest a specific topographic origin for monoamine neurotransmitters and their metabolites in human ventricular CSF and support the contention that CSF measurements are useful indices of central monoaminergic activity in man.  相似文献   

14.
Cocaine   总被引:1,自引:0,他引:1  
Cocaine HCl (0, 10, or 50 mg/kg) was injected into adult male ICR mice ip. Thirty minutes later, the brains were removed, and nine regions were isolated: olfactory bulbs, olfactory tubercles, prefrontal cortex, septum, striatum, amygdala, hypothalamus, hippocampus, and thalamus. Using high-performance liquid chromatography, concentrations of norepinephrine, dopamine, serotonin, and their major metabolites and the metabolite/neurotransmitter ratios were determined as an indicator of utilization. Serotonergic systems responded most dramatically. 5HIAA/5-HT decreases were seen in all the brain regions, except the septum, hippocampus, and olfactory bulbs. In most instances, the alterations were dose-dependent. The most profound changes were seen in the amygdala, prefrontal cortex, hypothalamus, and thalamus. For noradrenergic systems, significant responses were seen only in the amygdala, prefrontal cortex, and hypothalamus, but then only at the lower dose. The dopaminergic responses were more complex and not always dose-dependent. The DOPAC/DA ratio was decreased only in the amygdala and striatum at the lower dose, and the olfactory tubercles at the higher dose. It was increased in the septum. The HVA/DA ratios were decreased in the amygdala, prefrontal cortex, and hypothalamus, but only at the lower dose (like MHPG/NE). The 3MT/DA ratio was decreased in the thalamus at the lower dose and in the olfactory tubercles at the higher dose, whereas it was increased in the prefrontal cortex at the lower dose. The HVA and DOPAC routes of degradation were both utilized only by the amygdala. Thus, cocaine produced its most comprehensive effects in this nucleus, as well as the greatest absolute percentage changes for all three of the monoamine systems studied.  相似文献   

15.
J A Nielsen  C A Johnston 《Life sciences》1982,31(25):2847-2856
Assays capable of measuring picomole quantities of dopamine (DA), 5-hydroxytryptamine (5-HT), several of their precursors and metabolites concurrently within 25 minutes were developed utilizing high performance liquid chromatography with electrochemical detection (LCEC). Several parameters of the LCEC were altered in order to separate the compounds while maintaining a short assay time. The final LCEC systems demonstrated biological utility in that the DA metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the 5-HT metabolite 5-hydroxy-3-indoleacetic acid (5-HIAA) were detected in rat cerebrospinal fluid; in addition to these compounds, DA and 5-HT were measurable in the striatum, hypothalamus and median eminence of the rat brain. Pargyline decreased the concentrations of DOPAC, HVA and 5-HIAA and increased the 5-HT concentration in all three brain regions, and increased the DA concentration in the striatum. Probenecid increased all three acid metabolite concentrations in the hypothalamus and median eminence, while only the HVA and 5-HIAA concentrations were increased in the striatum. The DA and 5-HT concentrations were unaltered. The LCEC methods described in this paper should be useful in elucidating the mechanisms and roles of 5-HT and DA neurons in experimental paradigms of biological interest.  相似文献   

16.
Nicotine, one of the most widespread drugs of abuse, has long been shown to impact areas of the brain involved in addiction and reward. Recent research, however, has begun to explore the positive effects that nicotine may have on learning and memory. The mechanisms by which nicotine interacts with areas of cognitive function are relatively unknown. Therefore, this paper is part of an ongoing study to evaluate regional effects of nicotine enhancement of cognitive function. Nicotine-induced changes in the levels of three neurotransmitters, dopamine (DA), serotonin (5-HT), norepinepherine (NE), their metabolites, homovanillic acid (HVA), dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA), and their precursor, L-DOPA, were evaluated in the ventral and dorsal hippocampus (VH and DH), prefrontal and medial temporal cortex (PFC and MTC), and the ventral tegmental area (VTA) using in vivo microdialysis in awake, freely moving, male Sprague-Dawley rats. The animals were treated with acute nicotine (0.5 mg/kg, s.c.) halfway through the 300-min experimental period. The reuptake blockers, desipramine (100 microM) and fluoxetine (30 microM), were given to increase the levels of NE and 5-HT so that they could be detected. Overall, a nicotine-induced DA increase was found in some areas, and this increase was potentiated by desipramine and fluoxetine. The two DA metabolites, HVA and DOPAC, increased in all the areas throughout the experiments, both with and without the inhibitors, indicating a rapid metabolism of the released DA. The increase in these metabolites was greater than the increase in DA. 5-HT was increased in the DH, MTC, and VTA in the presence of fluoxetine; its metabolite, 5-HIAA, was increased in the presence and absence of fluoxetine. Except in the VTA, NE levels increased to a similar extent with desipramine and fluoxetine. Overall, nicotine appeared to increase the release and turnover of these three neurotransmitters, which was indicated by significant increases in their metabolites. Furthermore, DA, and especially HVA and DOPAC, increased for the 150 min following nicotine administration; 5-HT and NE changes were shorter in duration. As gas chromatography experiments showed that nicotine levels in the brain decreased by 75% after 150 min, this may indicate that DA is more susceptible to lower levels of nicotine than 5-HT or NE. In conclusion, acute nicotine administration caused alterations in the levels of DA, 5-HT, and NE, and in the metabolism of DA and 5-HT, in brain areas that are involved in cognitive processes.  相似文献   

17.
Abstract— Noradrenaline (NA), dopamine (DA). 5-hydroxytryptamine (5-HT), 4-hydroxy, 3-methoxy-phenylethylene glycol (MHPG), homovanillic acid (HVA), 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindolylacetic acid (5-HIAA) were measured in twenty areas of post-mortem brain from ten psychiatrically and neurologically normal patients. There was a marked difference, which did not appear to be related to sex, medication, cause of death or time between death and dissection, in amine and metabolite concentrations between brains. In the cortex, 5-HT, MHPG, HVA. DOPAC and S-HIAA were approximately even in their distribution; NA and DA could not be detected. In sub-cortical areas there were clear differences in the distribution of the three amines accompanied by less marked differences in the distribution of their respective metabolites.  相似文献   

18.
A procedure is described for the rapid determination of the major indoles and catechols. Analysis with picogram detection limits was done by high-pressure liquid chromatography on a C18 reverse-phase column using electrochemical detection (LCEC). This method provides a comprehensive list of compounds which can be simultaneously determined in brain samples and for which there is no necessity of derivatization or pre-column purification. The regional distribution of 9 neurochemicals from rat brain and the levels of 10 neurochemicals from human brain are presented. DOPA, TYR, NE, MHPG, DOPAC, 5-HIAA, TRP, DA, HVA, 3-MT and 5-HT were detected in the caudate nucleus and putamen. The levels of neurochemicals from the caudate and putamen of a demented patient with Parkinson's disease were variably decreased; catechol and indole losses were greatest in the putamen. The levels of neurochemicals in the caudate and putamen of patients with Alzheimer's disease (SDAT) were also variably decreased; loss of NE was seen only in putamen and losses of DA, HVA and 5-HT were uniform across both caudate and putamen. The CSF of SDAT patients showed changes in NE only.  相似文献   

19.
Effect of aging on monoamines and their metabolites in the rat brain   总被引:3,自引:0,他引:3  
Concentrations of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their acid merabolites were assayed in specific brain areas of Wistar rats of various ages. DA and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were significantly lower in striatum and mesolimbic areas of old (24 mos) rats than young adult (3 mos), but not mature (12 mos) rats. The decrease of homovanillic acid (HVA) was significant in mesolimbic areas but not in striatum. Neither cortical NE nor its metabolite methoxydroxyphenylglycol sulphate (MHPG-SO4) were significantly changed by aging. 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in the brainstem showed a tendency to a decrease and increase respectively in aged animals compared with young adults, but the differences were not statistically significant. However, the ratio of 5-HIAA to 5-HT concentrations was significantly higher in aged animals. The conclusion can be drawn that, in these brain areas, DA is more vulnerable to aging than NE and 5-HT, the metabolism of the latter being even enhanced.  相似文献   

20.
The three-spined stickleback Gasterosteus aculeatus is an intermediate host of the tapeworm Schistocephalus solidus. Changes in predator avoidance, foraging and shoaling behaviour have been reported in sticklebacks infested with S. solidus, but the mechanisms underlying parasite-induced behavioural changes are not understood. Monoamine neurotransmitters are involved in the control of behaviour and central monoaminergic systems are sensitive to various stressors. Thus, the behavioural effects of S. solidus infestation might be a reflection of changes in brain monoaminergic activity in the stickleback host. The concentrations of 5-hydroxytryptamine (5-HT), dopamine (DA), norepinephrine (NE) and their metabolites 5-hydroxy-indoleacetic acid (5-HIAA), homovanilic acid (HVA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) were measured in the telencephalons, hypothalami and brainstems of parasitized and non-parasitized female sticklebacks held in the laboratory. The ratios of 5-HIAA:5-HT were significantly elevated in both the hypothalami and brainstems of infected sticklebacks. The concentrations of 5-HT and NE were significantly reduced in the telencephalons of infected fish as compared with controls, but there was no elevation of metabolite concentrations. The results are consistent with chronic stress in infected fish, but may also reflect other alterations of neuroendocrine status resulting from parasite infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号