首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
(5'R)-5'-Isobutyl-5'-[methyl (4R)-2,3-O-isopropylidene-beta-L-erythrofuranosid-4-C-yl]-imidazolidin-2',4'-dione was synthesised starting from methyl 2,3-O-isopropylidene-alpha-D-lyxo-pentodialdo-1,4-furanoside via methyl 6-deoxy-6-isopropyl-2,3-O-isopropylidene-alpha-D-lyxo-hexofuranosid-5-ulose applying the Bucherer-Bergs reaction. Its 5'-R configuration was confirmed by X-ray crystallography. Corresponding alpha-amino acid-methyl (5R)-5-amino-5-C-carboxy-5,6-dideoxy-6-isopropyl-alpha-D-lyxo-hexofuranoside (alternative name: 2-[methyl (4R)-beta-L-erythrofuranosid-4-C-yl]-D-leucine) was obtained from the above hydantoin by acid hydrolysis of the isopropylidene group followed by basic hydrolysis of the hydantoin ring. Analogous derivatives with 5S configuration, formed in a minority, were also isolated and characterised.  相似文献   

2.
The Bucherer-Bergs reaction of methyl 2,3-O-isopropylidene-alpha-d-lyxo-hexofuranosid-5-ulose gave (4'S)-4'-carbamoyl-4'-[methyl (4R)-2,3-O-isopropylidene-beta-l-erythrofuranosid-4-C-yl]-oxazolidin-2'-one instead of expected hydantoins. A mixture of hydantoins--(5'R)-triphenylmethoxymethyl-5'-[methyl (4R)-2,3-O-isopropylidene-beta-l-erythrofuranosid-4-C-yl]-imidazolidin-2',4'-dione and (5'S)-triphenylmethoxymethyl-5'-[methyl (4R)-2,3-O-isopropylidene-beta-l-erythrofuranosid-4-C-yl]-imidazolidin-2',4'-dione was obtained from the 5-ulose having protected primary OH group at C-6. The 4'-S configuration of 2 as well as 5'-S configuration of (5'S)-hydroxymethyl-5'-[methyl (4R)-2,3-O-isopropylidene-beta-l-erythrofuranosid-4-C-yl]-imidazolidin-2',4'-dione (9) was confirmed by X-ray crystallography. Corresponding alpha-amino acid--methyl (5S)-5-amino-5-C-carboxy-5-deoxy-alpha-d-lyxo-hexofuranoside (alternative name: 2-[methyl (4R)-beta-l-erythrofuranosid-4-C-yl]-l-serine) (11) was obtained from the hydantoin 9 by acid hydrolysis of the isopropylidene and trityl groups followed by basic hydrolysis of the hydantoin ring. Analogous derivatives with 5-R configuration, formed in a minority, were also isolated and characterised.  相似文献   

3.
(4R)-2,3-O-Isopropylidene-methylspiro[4,6-dideoxy-alpha-L-lyxo+ ++-hexopyranosid-4,5'-imidazolidin]-2',4'-dione and (4R)-2,3-O-isopropylidene-methylspiro[4,6-dideoxy-beta-D-ribo-h exopyranosid-4,5'-imidazolidin]-2',4'-dione were prepared under various reaction conditions starting from methyl 6-deoxy-2,3-O-isopropylidene-alpha-L-lyxo-hexopyranosid-4-++ +ulose. Corresponding alpha-amino acids methyl (4R)-4-amino-4-C-carboxy-4,6-dideoxy-alpha-L-lyxo-hexopyranosid e and methyl (4R)-4-amino-4-C-carboxy-4,6-dideoxy-beta-D-ribo-hexopyranoside were obtained from the above hydantoins by selective acid hydrolysis of the isopropylidene group, followed by basic hydrolysis of the hydantoin ring. The crystal structures of both hydantoin derivatives are also presented.  相似文献   

4.
Methyl 2,3-O-isopropylidene-alpha-D-mannofuranosidurononitrile [alternative name: methyl (5R)-5-C-cyano-2,3-O-isopropylidene-alpha-D-lyxofuranoside] (2), methyl 2,3-O-isopropylidene-alpha-D-mannofuranosiduronamide [methyl (5S)-5-C-carbamoyl-2,3-O-isopropylidene-alpha-D-lyxofuranoside; methyl (5S)-2,3-O-isopropylidene-alpha-D-lyxo-hexofuranosiduronamide] (3), methyl 2,3-O-isopropylidene-alpha-D-mannofuranosiduronic acid [methyl (5S)-2,3-O-isopropylidene-alpha-D-lyxo-hexofuranosiduronic acid] (4), methyl 5-deoxy-2,3-O-isopropylidene-5-ureido-beta-L-gulofuranosiduronamide [methyl (5R)-5-deoxy-2,3-O-isopropylidene-5-ureido-alpha-D-lyxo-hexofuranosiduronamide (5), and (4S,5S,6R)-5,6-dihydro-6-hydroxy-4,5-isopropylidenedioxy-4H-pyrido[2,1-e]imidazolidine-2',4'-dione [IUPAC name: (3aS,4R,8aS)-4-hydroxy-2,2-dimethyl-3a,8a-dihydro-4H-1,3-dioxa-4a,6-diaza-s-indacene-5,7-dione] (6), instead of the expected hydantoin derivative, were obtained from the Bucherer-Bergs reaction of methyl 2,3-O-isopropylidene-alpha-D-lyxo-pentodialdo-1,4-furanoside (1). The structure of 6 was deduced from NMR and mass spectral data and confirmed by X-ray crystallography. The configuration at C-5 in 2-5 was confirmed by establishing the 5S configuration of 3 by X-ray crystallography. Conformations of the six- and five-membered rings in 3 and 6 are also discussed.  相似文献   

5.
Methyl (5S)-5-C-amino-5-cyano-5-deoxy-2,3-O-isopropylidene-alpha-D-lyxofuranoside has been synthesised from methyl 2,3-O-isopropylidene-alpha-D-lyxo-pentodialdo-1,4-furanoside, applying the Strecker synthesis. Analogously, methyl (5S) and (5R)-5-C-amino-5-cyano-5,6-dideoxy-2,3-O-isopropylidene-alpha-D-lyxo-hexofuranosides were prepared from methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-lyxo-hexofuranosid-5-ulose. The 5-S configuration was unambiguously determined by single-crystal X-ray diffraction analysis of corresponding N-acetyl derivatives. Conformations of five-membered rings are discussed. The conversion of N-acetylated amino nitriles to N-acetylamino acid ethyl ester and amide, respectively, is also described.  相似文献   

6.
Methyl 6-C-alkyl-6-deoxy-alpha-D-mannofuranoside derivatives have been synthesized from methyl 2,3-O-isopropylidene-5,6-O-sulfuryl-alpha-D-mannofuranoside (1). In a Path A, reaction of the 5,6-cyclic sulfate 1 with 2-lithio-1,3-dithiane afforded 2-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane (2). Treatment of 2 with n-butyllithium then alkyl iodide gave the corresponding 2-(methyl 5-O-alkyl-6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl )-1,3- dithiane. Reaction of 2 with n-butyllithium and 5,6-cyclic sulfate 1 furnished 2-[methyl 6-deoxy-2,3-O-isopropylidene-5-O-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-manno-furanosid-6-yl)-alpha-D - mannofuranosid-6-yl]-1,3-dithiane. 2-(Methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid- 6-yl)-1,3-dithiane was converted into the lithiated anion, which after treatment with alkyl halide afforded the corresponding 2-alkyl-C-(methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid-6-y l)-1,3- dithiane. In a Path B, 5,6-cyclic sulfate 1 reacted with 2-alkyl-2-lithio-1,3-dithiane derivatives, which led after acidic hydrolysis to 2-alkyl-2-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane accompanied by methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-lyxo-hexofuranos-5-u loside as the by-product. This methodology was applied to synthesize 2-(methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid-6-y l)-2- (methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane.  相似文献   

7.
Methyl 4,6-dideoxy-3-C-methyl-4-(N-methyl-N-phenylsulfonylamino)-alpha-L- mannopyranoside and methyl 4-amino-4,6-dideoxy-3-C-methyl-alpha-L-mannopyranoside, derivatives of the branched-chain amino sugars sibirosamine and kansosamine, respectively, were synthesized by nucleophilic ring-opening of methyl 3,4-anhydro-6-deoxy-3-C-methyl-alpha-L-talopyranoside. Catalytic reduction of methyl 6-deoxy-2,3-O-isopropylidene-3-C-methyl-alpha-L-lyxo-hexopyrano sid-4-ulose gave the axial alcohol methyl 6-deoxy-2,3-O-isopropylidene-3-C-methyl-alpha-L-talopyranoside, a known precursor to vinelose.  相似文献   

8.
Covalently cross-linked proteins are among the major modifications caused by the advanced Maillard reaction. So far, the chemical nature of these aggregates is largely unknown. L-dehydroascorbic acid (DHA, 5), the oxidation product of L-ascorbic acid (vitamin C), is known as a potent glycation agent. Identification is reported for the lysine-arginine cross-links N6-[2-[(4-amino-4-carboxybutyl)amino]-5-(2-hydroxyethyl)-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (9), N6-[2-[(4-amino-4-carboxybutyl)amino]-5-(1,2-dihydroxyethyl)-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (11), and N6-[2-[(4-amino-4-carboxybutyl)amino]-5-[(1S,2S)-1,2,3-trihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (13). The formation pathways could be established starting from dehydroascorbic acid (5), the degradation products 1,3,4-trihydroxybutan-2-one (7, L-erythrulose), 3,4-dihydroxy-2-oxobutanal (10, L-threosone), and L-threo-pentos-2-ulose (12, L-xylosone) were proven as precursors of the lysine-arginine cross-links 9, 11, and 13. Products 9 and 11 were synthesized starting from DHA 5, compound N6-[2-[(4-amino-4-carboxybutyl)amino]-5-[(1S,2R)-1,2,3-trihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (16) via the precursor D-erythro-pentos-2-ulose (15). The present study revealed that the modification of lysine and arginine side chains by DHA 5 is a complex process and could involve a number of reactive carbonyl species.  相似文献   

9.
Methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-beta-D-ribofuranoside (3) was obtained in three steps from D-ribose. Exchange of the isopropylidene group for benzoate groups and acetolysis gave 1-O-acetyl-2,3-di-O-benzoyl-5-deoxy-5-iodo-D-ribofuranose which was coupled with 6-benzamidochloromercuripurine by the titanium tetrachloride method to afford the blocked nucleoside. Treatment with 1,5-diazabicyclo[5.4.0]undec-5-ene in N,N-dimethylformamide and removal of the blocking groups have 9-(5-deoxy-beta-D-erythro-pent-4-enofuranosyl)adenine (9). A similar route starting from methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-alpha-D-lyxofuranoside (14) afforded the enantiomeric nucleoside, 9-(5-deoxy-beta-L-erythro-pent-4-enofuranosyl)adenine (20). Methyl 2,3-O-isopropylidene-alpha-D-mannofuranoside was treated with sodium periodate and then with sodium borohydride to give methyl 2,3-O-isopropylidene-alpha-D-lyxofuranoside (11). Acid hydrolysis afforded D-lyxose. Tosylation of 11 gave methyl 2,3-O-isopropylidene-5-O-p-tolylsulfonyl-alpha dp-lyxofuranoside (12) which was converted into 14 with sodium iodide in acetone. Reduction of 12 gave methyl 5-deoxy-2,3-O-isopropylidene-alpha-D-lyxofuranoside which was hydrolyzed to give 5-deoxy-D-lyxose.  相似文献   

10.
Z Szendi  F Sweet 《Steroids》1991,56(9):458-463
Pregnenolone 3-(2'-tetrahydropyranyl) ether (1) was condensed with 3,4-[2H]dihydropyran to mainly give (20R)-[6'-(3',4'-[2'H]dihydropyranyl)]-pregn-5-ene-3 beta,20-diol 3-(2'-tetrahydropyranyl) ether (20R-3), according to nuclear magnetic resonance (NMR). Cold, dilute HCl in ethanol removed the tetrahydropyranyl group at C-3 and also opened the dihydropyranyl ring at the C-20 position of 20R-3 to give (20R)-27-norcholest-5-en-22-one-3 beta,20,26-triol (20R-5). Analogous results were obtained by condensing pregnenolone 3-acetate with 3,4-[2H]dihydropyran to provide (20R)-[6'-(3',4'-[2'H]dihydropyranyl)]-pregn-5-ene-3 beta,20-diol 3-acetate (20R-4). Acid-catalyzed opening of the dihydropyranyl ring at C-20 in 20R-4 yielded 20R-7, which, on acetylation followed by crystallization, provided (20R)-27-norcholest-5-en-22-one-3 beta,20,26-triol 3,26-diacetate (20R-8), identical to the diacetate made from 20R-5. Varying the reaction sequence beginning with 20(R,S)-4 gave an 84:16 ratio of 20R to 20S in a mixture of 20(R,S)-8, according to NMR analysis. Crystallization of the mixture from methanol provided pure 20R-8. Condensing 2,3-dihydrofuran and 1 for producing (20R)-[5'-(2',3'-dihydrofuranyl)]-pregn-5-ene-3 beta,20-diol 3-(2'-tetrahydropyranyl) ether (6) gave instead (20R)-26,27-bisnorcholest-5-en-22-one-3 beta,20,25-triol 3-(2'-tetrahydropyranyl) ether (20R-9) by partial hydrolysis during workup. Treating 20R-9 briefly with dilute HCl produced (20R)-26,27-bisnorcholest-5-en-22-one-3 beta,20,25-triol (20R-10).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Methyl 5,6-dideoxy-2,3-O-isopropylidene-alpha-D-lyxo-hex-5-enofuranoside, prepared from methyl 2,3-O-isopropylidene-5,6-di-O-methylsulfonyl-alpha-D-mannofuranoside with sodium iodide in 2-butanone, was acetolyzed and the product coupled with 6-benzamidochloromercuripurine by the titanium tetrachloride method. Removal of the N-benzoyl group with pictic acid afforded 9-(2,3-di-O-acetyl-5,6-dideoxy-beta-D-xylo-hex-5-enofuranosyl)adenine. In a similar manner, methyl 5,6-dideoxy-2,3-O-isopropylidene-alpha-L-lyxo-hex-5-enofuranoside was prepared from L-mannose and converted into 9-(2,3-di-O-acetyl-5,6-dideoxy-beta-L-xylo-hex-5-enofuranosyl)adenine, further de-esterified to give the free nucleoside. 2,3:5,6-Di-O-isopropylidene-alpha-L-mannofuranosyl chloride, prepared from L-mannose, gave 9-(2,3-O-isopropylidene-alpha-L-mannofuranosyl)adenine, hydrolyzed into 9-alpha-L-mannofuranosyladenine. Treatment with methanesulfonyl chloride gave the 5',6'-dimethanesulfonate, which gave with sodium iodide in acetone the 5',6'-unsaturated nucleoside, further hydrolyzed into 9-(5,6-dideoxy-alpha-L-lyxo-hex-5-enofuranosyl)adenine.  相似文献   

12.
1-O-Acetyl-2,3-dideoxy-3-C-(hydroxymethyl)-4-thiofuranose derivative was synthesized from (S,S)-1,4-bis(benzyloxy)-2,3-epoxybutane derived from (+)-diethyl L-tartrate and the enantiomerically pure (E)-5-(2-bromovinyl)-1-[2',3'-dideoxy-3'-C-(hydroxymethyl)-beta-D-4'- thiopentofuranosyl]uracil 4 was obtained via coupling of silylated uracil followed by palladium-mediated coupling of methyl acrylate.  相似文献   

13.
Besides the formation of the aminotriazine N6-[4-(3-amino-1,2,4-triazin-5-yl)-2,3-dihydroxybutyl]-L-lysine, the reaction of [1-13C]D-glucose with lysine and aminoguanidine leads to the generation of 6-[2-([[amino(imino)methyl]hydrazono]methyl)pyridinium-1-yl]-L-norleucine (14-13C1). The dideoxyosone N6-(2,3-dihydroxy-5,6-dioxohexyl)-L-lysine was shown to be a precursor in the formation of 14-13C1, which proceeds via the reactive carbonyl intermediate 6-(2-formylpyridinium-1-yl)-L-norleucine (13-13C1). In order to study the reactivity of 13-13C1, the model compound 1-butyl-2-formylpyridinium (18) was prepared in a two-step procedure starting from 2-pyridinemethanol. The reaction of the pyridinium-carbaldehyde 18 with L-lysine yielded the Strecker analogous degradation product 2-(aminomethyl)-1-butylpyridinium and another compound, which was shown to be as 1-butyl-2-[(2-oxopiperidin-3-ylidene)methyl]pyridinium. Reaction of 18 with the C-H acidic 4-hydroxy-5-methylfuran-3(2H)-one leads to the formation of the condensation product 1-butyl-2-[hydroxy-(4-hydroxy-5-methyl-3-oxofuran-2(3H)-ylidene)methyl]-pyridinium.  相似文献   

14.
The synthesis of some branched-chain-sugar nucleoside analogues.   总被引:1,自引:1,他引:0       下载免费PDF全文
1-(2,3-Epoxy-5-O-trityl-beta-D-lyxofuranosyl)uracil was treated with a number of carbon nucleophiles. Ethynyl lithium gave 3'-deoxy-3'-ethynyl-5'-O-trityl-ara-uridine, which was reduced to the corresponding 3'-ethenyl compound. Sodium cyanide gave 3'-cyano-3'-deoxy-5'-O-trityl-ara-uridine which upon alkaline hydrolysis gave the corresponding 3'-carboxamido compound. 1,3-Dithian-2-yl lithium gave 3'-deoxy-3'-(1,3-dithian-2-yl)-5'-O-trityl-ara-uridine. The trityl group was removed from each of these compounds by mild acidic hydrolysis. Treatment of 2 with 0.1M H2sO4 and mercury (II) acetate afforded 3'-acetyl-3'-deoxy-ara-uridine which upon reduction with NaBH4 gave 3'-deoxy-3'-(1-hydroxyethan-1-yl)-ara-uridine. Acetylation of 6 yielded 5'-O-acetyl-3'-acetyl-2',3'-didehydro-2',3'-dideoxyuridine which upon reduction with NaBH4 produced a mixture of 5'-O-acetyl-2',3'-didehydro-2',3'-dideoxy-3'-(1-hydroxyethan -1-yl)uridine and 1-(R)[5-(S)-acetoxymethyl-4-(1-hydroxyethan-1-yl)-tetrahydrofuran- 2-yl]- uracil. Reduction of 14 with Raney nickel followed by removal of the trityl group gave 3'-deoxy-3'-methyl-ara-uridine.  相似文献   

15.
A synthesis of the C-nucleoside, 2-amino-7-(2-deoxy-beta-D-erythro- pentofuranosyl)-3H,5H-pyrrolo[3,2-d]pyrimidin-4-one (9-deaza-2'-deoxyguanosine) was achieved starting from 2-amino-6-methyl-3H-pyrimidin-4-one (5) and methyl 2-deoxy-3,5-di-O-(p-nitrobenzoyl)-D-erythro-pento-furanoside (11). The anomeric configuration of the C-nucleoside was established by 1H NMR, NOEDS and ROESY. This C-nucleoside did not inhibit the growth of T-cell lymphoma cells.  相似文献   

16.
Reinvestigation of the reaction of methyl 2,3-O-isopropylidene-4-O-toluene-p-sulphonyl-α-d-lyxopyranoside (4) with azide ion has shown that methyl 4-deoxy-2,3-O-isopropylidene-β-l-erythro-pent-4-enopyranoside (8, ~51.5%) is formed, as well as the azido sugar 7 (~48.5%) of an SN2 displacement. The unsaturated sugar 8 was more conveniently prepared by heating the sulphonate 4 with 1,5-diazabicyclo-[5.4.0]undec-5-ene. An azide displacement on methyl 2,3-O-isopropylidene-4-O-toluene-p-sulphonyl-β-l-ribopyranoside (12) furnished methyl 4-azido-4-deoxy-2,3-O-isopropylidene-α-d-lyxopyranoside (13, ~66%) and the unsaturated sugar 14 (~28.5%), which was also prepared by heating the sulphonate with 1,5-diazabicyclo[5.4.0]undec-5-ene. Deamination of methyl 4-amino-4-deoxy-2,3-O-isopropylidene-α-d-lyxopyranoside (5), prepared by reduction of 13, with sodium nitrite in 90% acetic acid at ~0°, yielded methyl 2,3-O-isopropylidene-α-d-lyxopyranoside (10a, 26.2%), methyl 2,3-O-isopropylidene-β-l-ribofuranoside (21a, 18.4%), and the corresponding acetates 10b (34.5%) and 21b (21.3%). These products are considered to arise by solvolysis of the bicyclic oxonium ion 29, formed as a consequence of participation by the ring-oxygen atom in the deamination reaction. Similar deamination of methyl 4-amino-4-deoxy-2,3-O-isopropylidene-β-l-ribopyranoside (6) afforded, exclusively, the products 10a (34.4%) and 10b (65.6%) of inverted configuration. Deamination of methyl 5-amino-5-deoxy-2,3-O-isopropylidene-β-d-ribofuranoside (20) gave 22ab, but no other products. An alternative synthesis of the amino sugars 5 and 6 is available by conversion of 10a into methyl 2,3-O-isopropylidene-β-l-erythro-pentopyranosid-4-ulose (11), followed by reduction of the derived oxime 15 with lithium aluminium hydride.  相似文献   

17.
Indolizidin-2-one amino acids (I2aas, 6S- and 6R-1) possessing 6S- and 6R-ring-fusion stereochemistry were introduced into the antimicrobial peptide gramicidin S (GS) to explore the relationships between configuration, peptide conformation and biological activity. Solution-phase and solid-phase techniques were used to synthesize three analogs with I2aa residues in place of the d-Phe-Pro residues at the turn regions of GS: [(6S)-I2aa4-5,4'-5']GS (2), [Lys2,2',(6S)-I2aa4-5,4'-5']GS (3) and [(6R)-I2aa4-5,4'-5']GS (4). Although conformational analysis of [I2aa4-5,4'-5']GS analogs 2-4 indicated that both ring-fusion stereoisomers of I2aa gave peptides with CD and NMR spectral data characteristic of GS, the (6S)-I2aa analogs 2 and 3 exhibited more intense CD curve shapes, as well as greater numbers of nonsequential NOE between opposing Val and Leu residues, relative to the (6R)-I2aa analog 4, suggesting a greater propensity for the (6S)-diastereomer to adopt the beta-turn/antiparallel beta-pleated sheet conformation. In measurements of antibacterial and antifungal activity, the (6S)-I2aa analog 2 exhibited significantly better potency than the (6R)-I2aa diastereomer 4. Relative to GS, [(6S)-I2aa4-5,4'-5']GS (2) exhibited usually 1/2 to 1/4 antimicrobial activity as well as 1/4 hemolytic activity. In certain cases, antimicrobial and hemolytic activities of GS were shown to be dissociated through modification at the peptide turn regions with the (6S)-I2aa diastereomer. The synthesis and evaluation of GS analogs 2-4 has furnished new insight into the importance of ring-fusion stereochemistry for turn mimicry by indolizidin-2-one amino acids as well as novel antimicrobial peptides.  相似文献   

18.
Three pyrones and a 2(5H)-furanone, designated pectinolides D-G, have been isolated from the dichloromethane extract of Hyptis pectinata. The metabolites were characterized on the basis of 1D and 2D NMR spectroscopic techniques. The pyrones were identified as 6S-[3S,6S-(diacetoxy)-5R-hydroxy-1Z-heptenyl]-5S-hydroxy-5,6-dihydro-2H-pyran-2-one (1)- pectinolide D, 6S-[3S,5R,6S-(triacetoxy)-1Z-heptenyl]-5S-acetoxy-5,6-dihydro-2H-pyran-2-one (2)- pectinolide E and 6S-[3S,5R,6S-(triacetoxy)-1Z-heptenyl]-5S-acetoxy-4R-methoxy-3,4,5,6-tetrahydro-4H pyran-2-one (3)- pectinolide F. The furanone was identified as [2'Z,5(1')Z] 5-(4'S,6'R,7'S-triacetoxy-2-octenylidene)-2(5H)-furanone (4)-pectinolide G.  相似文献   

19.
l-1-Deoxy-1-fluoro-6-O-methyl-myo-inositol was epimerized by chloral/DCC in boiling 1,2-dichloroethane yielding D-1-O-cyclohexylcarbamoyl-2-deoxy-2-fluoro-3-O-methyl-5,6-O-[(R/S)-2,2,2-trichloroethylidene]-chiro-inositol. The latter and l-4-O-benzyl-3-O-cyclohexylcarbamoyl-5-O-methyl-1,2-O-(2,2,2-trichloroethylidene)-muco-inositol, l-4-O-benzyl-3-O-cyclohexylcarbamoyl-1,2-O-ethylidene-5-O-methyl-muco-inositol, d-1-O-cyclohexylcarbamoyl-2-deoxy-5,6-O-ethylidene-2-fluoro-3-O-methyl-chiro-inositol, as well as D-5-O-benzyl-4-O-cyclohexylcarbamoyl-3-deoxy-3-(N,N'-dicyclohexylureido)-6-O-methyl-1,2-O-(2,2,2-trichloroethylidene)-chiro-inositol were deprotected with boiling 57% aq hydrogen iodide. Ether, urethane and ethylidene acetal functions were simultaneously cleaved by the reagent, whereas the trichloroethylidene groups were still intact or were only removed in small quantities. Especially, the urea function of D-5-O-benzyl-4-O-cyclohexylcarbamoyl-3-deoxy-3-(N,N'-dicyclohexylureido)-6-O-methyl-1,2-O-(2,2,2-trichloroethylidene)-chiro-inositol was decomposed to a cyclohexylamino group. The hydrodechlorination of D-1-O-cyclohexylcarbamoyl-2-deoxy-2-fluoro-3-O-methyl-5,6-O-[(R/S)-2,2,2-trichloroethylidene]-chiro-inositol using Raney-Nickel yielded a mixture of the corresponding 5,6-O-ethylidene- and 5,6-O-chloroethylidene derivatives. The three synthetic steps-hydrodehalogenation, HI-deprotection and peracylation- were combined without purification of the intermediates.  相似文献   

20.
Novel methyl 4,6-O-benzylidenespiro[2-deoxy-α-d-arabino-hexopyranoside-2,2′-imidazolidine] and its homologue methyl 4,6-O-benzylidene-3′,4′,5′,6′-tetrahydro-1′H-spiro[2-deoxy-α-d-arabino-hexopyranoside-2,2′-pyrimidine] have been synthesized in good yields by reaction of methyl 4,6-O-benzylidene-α-d-arabino-hexopyranosid-2-ulose with 1,2-diaminoethane and 1,3-diaminopropane. The results are completely different from the reaction with arylamines or alkylamines. One-pot synthesis of novel (E)-methyl 4-[hydroxy (methoxy)methylene]-5-oxo-1-alkyl-(4,6-O-benzylidene-2-deoxy-α-d-glucopyranosido)[3,2-b]pyrrolidines has been achieved by the reaction of alkylamines with the butenolide-containing sugar, derived from the aldol condensation of methyl 4,6-O-benzylidene-α-d-arabino-hexopyranosid-2-ulose with diethyl malonate. These sugar-γ-butyrolactam derivatives are potential GABA receptor ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号