首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Arabidopsis plants in which the major trimeric light harvesting complex (LHCIIb) is eliminated by antisense expression still exhibit the typical macrostructure of photosystem II in the granal membranes. Here the detailed analysis of the composition and the functional state of the light harvesting antennae of both photosystem I and II of these plants is presented. Two new populations of trimers were found, both functional in energy transfer to the PSII reaction center, a homotrimer of CP26 and a heterotrimer of CP26 and Lhcb3. These trimers possess characteristic features thought to be specific for the native LHCIIb trimers they are replacing: the long wavelength form of lutein and at least one extra chlorophyll b, but they were less stable. A new population of loosely bound LHCI was also found, contributing to an increased antenna size for photosystem I, which may in part compensate for the loss of the phosphorylated LHCIIb that can associate with this photosystem. Thus, the loss of LHCIIb has triggered concerted compensatory responses in the composition of antennae of both photosystems. These responses clearly show the importance of LHCIIb in the structure and assembly of the photosynthetic membrane and illustrate the extreme plasticity at the level of the composition of the light harvesting system.  相似文献   

2.
Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI–LHCI–LHCII supercomplex. The binding site(s) of the “additional” LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that “additional” LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.

The light-harvesting antennae of photosystem I facilitate energy transfer from trimeric light-harvesting complex II to photosystem I in the stroma lamellae membrane.  相似文献   

3.
Photosynthetic light harvesting in plants is regulated by phosphorylation-driven state transitions: functional redistributions of the major trimeric light-harvesting complex II (LHCII) to balance the relative excitation of photosystem I and photosystem II. State transitions are driven by reversible LHCII phosphorylation by the STN7 kinase and PPH1/TAP38 phosphatase. LHCII trimers are composed of Lhcb1, Lhcb2, and Lhcb3 proteins in various trimeric configurations. Here, we show that despite their nearly identical amino acid composition, the functional roles of Lhcb1 and Lhcb2 are different but complementary. Arabidopsis thaliana plants lacking only Lhcb2 contain thylakoid protein complexes similar to wild-type plants, where Lhcb2 has been replaced by Lhcb1. However, these do not perform state transitions, so phosphorylation of Lhcb2 seems to be a critical step. In contrast, plants lacking Lhcb1 had a more profound antenna remodeling due to a decrease in the amount of LHCII trimers influencing thylakoid membrane structure and, more indirectly, state transitions. Although state transitions are also found in green algae, the detailed architecture of the extant seed plant light-harvesting antenna can now be dated back to a time after the divergence of the bryophyte and spermatophyte lineages, but before the split of the angiosperm and gymnosperm lineages more than 300 million years ago.  相似文献   

4.
In order to maintain optimal photosynthetic activity under a changing light environment, plants and algae need to balance the absorbed light excitation energy between photosystem I and photosystem II through processes called state transitions. Variable light conditions lead to changes in the redox state of the plastoquinone pool which are sensed by a protein kinase closely associated with the cytochrome b 6 f complex. Preferential excitation of photosystem II leads to the activation of the kinase which phosphorylates the light-harvesting system (LHCII), a process which is subsequently followed by the release of LHCII from photosystem II and its migration to photosystem I. The process is reversible as dephosphorylation of LHCII on preferential excitation of photosystem I is followed by the return of LHCII to photosystem II. State transitions involve a considerable remodelling of the thylakoid membranes, and in the case of Chlamydomonas, they allow the cells to switch between linear and cyclic electron flow. In this alga, a major function of state transitions is to adjust the ATP level to cellular demands. Recent studies have identified the thylakoid protein kinase Stt7/STN7 as a key component of the signalling pathways of state transitions and long-term acclimation of the photosynthetic apparatus. In this article, we present a review on recent developments in the area of state transitions.  相似文献   

5.
The energetic metabolism of photosynthetic organisms is profoundly influenced by state transitions and cyclic electron flow around photosystem I. The former involve a reversible redistribution of the light-harvesting antenna between photosystem I and photosystem II and optimize light energy utilization in photosynthesis whereas the latter process modulates the photosynthetic yield. We have used the wild-type and three mutant strains of the green alga Chlamydomonas reinhardtii—locked in state I (stt7), lacking the photosystem II outer antennae (bf4) or accumulating low amounts of cytochrome b6f complex (A-AUU)—and measured electron flow though the cytochrome b6f complex, oxygen evolution rates and fluorescence emission during state transitions. The results demonstrate that the transition from state 1 to state 2 induces a switch from linear to cyclic electron flow in this alga and reveal a strict cause–effect relationship between the redistribution of antenna complexes during state transitions and the onset of cyclic electron flow.  相似文献   

6.
The non-bilayer lipid monogalactosyldiacylglycerol (MGDG) is the most abundant type of lipid in the thylakoid membrane and plays an important role in regulating the structure and function of photosynthetic membrane proteins. In this study, we have reconstituted the isolated major light-harvesting complexes of photosystem II (PSII) (LHCIIb) and a preparation consisting of PSII core complexes and minor LHCII of PSII (PSIICC) into liposomes that consisted of digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG), with or without MGDG. Transmission electron microscopy and freeze-fracture studies showed unilamellar proteoliposomes, and demonstrated that most of the MGDG is incorporated into bilayer structures. The impact of MGDG on the functional interaction between LHCIIb and PSIICC was investigated by low temperature (77 K) fluorescence emission spectra and the photochemical activity of PSII. The additional incorporation of LHCIIb into liposomes containing PSIICC markedly increased oxygen evolution of PSIICC. Excitation at 480 nm of chlorophyll (Chl) b in LHCIIb stimulated a characteristic fluorescence emission of the Chl a in PSII (684.2 nm), rather than that of the Chl a in LHCIIb (680 nm) in the LHCIIb–PSIICC proteoliposomes, which indicated that the energy was transferred from LHCIIb to PSIICC in liposome membranes. Increasing the percentage of MGDG in the PSIICC–LHCIIb proteoliposomes enhanced the photochemical activity of PSII, due to a more efficient energy transfer from LHCIIb to PSIICC and, thus, an enlarged antenna cross section of PSII.  相似文献   

7.
Two fractions of the light fragments enriched in the photosystem I (PSI) complexes were obtained from pea (Pisum sativum L.) thylakoids by digitonin treatment and subsequent differential centrifugation. The ratio of chlorophyll a to chlorophyll b, chlorophyll/P700 spectra of low-temperature fluorescence, and excitation spectra of long-wave fluorescence were measured. These characteristics were shown to be different due to variation in the size and composition of the light-harvesting antenna of PSI complexes present in the particles obtained. The larger antenna size of one of the fractions was related to the incorporation of the pool of light-harvesting complex II (LHCII). A comparison with the data available allowed us to identify these particles as fragments of intergranal thylakoids and end membranes of granal thylakoids. The suggestion that an increase in the PSI light-harvesting antenna in intergranal thylakoids is related to the attachment of phosphorylated LHCII is discussed.  相似文献   

8.
The light-harvesting chlorophyll a/b-protein complex of photosystem II (LHCII) is the most abundant membrane protein in green plants, and its degradation is a crucial process for the acclimation to high light conditions and for the recovery of nitrogen (N) and carbon (C) during senescence. However, the molecular mechanism of LHCII degradation is largely unknown. Here, we report that chlorophyll b reductase, which catalyzes the first step of chlorophyll b degradation, plays a central role in LHCII degradation. When the genes for chlorophyll b reductases NOL and NYC1 were disrupted in Arabidopsis thaliana, chlorophyll b and LHCII were not degraded during senescence, whereas other pigment complexes completely disappeared. When purified trimeric LHCII was incubated with recombinant chlorophyll b reductase (NOL), expressed in Escherichia coli, the chlorophyll b in LHCII was converted to 7-hydroxymethyl chlorophyll a. Accompanying this conversion, chlorophylls were released from LHCII apoproteins until all the chlorophyll molecules in LHCII dissociated from the complexes. Chlorophyll-depleted LHCII apoproteins did not dissociate into monomeric forms but remained in the trimeric form. Based on these results, we propose the novel hypothesis that chlorophyll b reductase catalyzes the initial step of LHCII degradation, and that trimeric LHCII is a substrate of LHCII degradation.  相似文献   

9.
The main chlorophyll a/b light-harvesting complex of photosystem II, LHCIIb, has earlier been shown to be capable of undergoing light-induced reversible structural changes and chlorophyll a fluorescence quenching in a way resembling those observed in granal thylakoids when exposed to excess light [Barzda, V., et al. (1996) Biochemistry 35, 8981-8985]. The nature and mechanism of this unexpected structural flexibility has not been elucidated. In this work, by using density gradient centrifugation and nondenaturing green gel electrophoresis, as well as absorbance and circular dichroic spectroscopy, we show that light induces a significant degree of monomerization, which is in contrast with the preferentially trimeric organization of the isolated complexes in the dark. Monomerization is accompanied by a reversible release of Mg ions, most likely from the outer loop of the complexes. These data, as well as the built-in thermal and light instability of the trimeric organization, are explained in terms of a simple theoretical model of thermo-optic mechanism, effect of fast thermal transients (local T-jumps) due to dissipated photon energies in the vicinity of the cation binding sites, which lead to thermally assisted elementary structural transitions. Disruption of trimers to monomers by excess light is not confined to isolated trimers and lamellar aggregates of LHCII but occurs in photosystem II-enriched grana membranes, intact thylakoid membranes, and whole plants. As indicated by differences in the quenching capability of trimers and monomers, the appearance of monomers could facilitate the nonphotochemical quenching of the singlet excited state of chlorophyll a. The light-induced formation of monomers may also be important in regulated proteolytic degradation of the complexes. Structural changes driven by thermo-optic mechanisms may therefore provide plants with a novel mechanism for regulation of light harvesting in excess light.  相似文献   

10.
The maximum chlorophyll fluorescence lifetime in isolated photosystem II (PSII) light-harvesting complex (LHCII) antenna is 4 ns; however, it is quenched to 2 ns in intact thylakoid membranes when PSII reaction centers (RCIIs) are closed (Fm). It has been proposed that the closed state of RCIIs is responsible for the quenching. We investigated this proposal using a new, to our knowledge, model system in which the concentration of RCIIs was highly reduced within the thylakoid membrane. The system was developed in Arabidopsis thaliana plants under long-term treatment with lincomycin, a chloroplast protein synthesis inhibitor. The treatment led to 1), a decreased concentration of RCIIs to 10% of the control level and, interestingly, an increased antenna component; 2), an average reduction in the yield of photochemistry to 0.2; and 3), an increased nonphotochemical chlorophyll fluorescence quenching (NPQ). Despite these changes, the average fluorescence lifetimes measured in Fm and Fm' (with NPQ) states were nearly identical to those obtained from the control. A 77 K fluorescence spectrum analysis of treated PSII membranes showed the typical features of preaggregation of LHCII, indicating that the state of LHCII antenna in the dark-adapted photosynthetic membrane is sufficient to determine the 2 ns Fm lifetime. Therefore, we conclude that the closed RCs do not cause quenching of excitation in the PSII antenna, and play no role in the formation of NPQ.  相似文献   

11.
The data on the organization and function of the photosystem I pigment-protein complexes of the cyanobacterium Spirulina and the characteristics of pigment antenna of the photosystem I monomeric and trimeric core complexes are presented and discussed. We proved that the photosystem I complexes in the cyanobacterial membrane pre-exist mainly as trimers, though both types of complexes contribute to the photosynthetic electron transport. In contrast to monomers, the antenna of the photosystem I trimeric complexes of Spirulina contains the extreme long-wave chlorophyll form absorbing at 735 nm and emitting at 760 nm (77 K). The intensity of fluorescence at 760 nm depends strongly on the P700 redox state: it is maximum with the reduced P700 and strongly decreased with the oxidized P700 which is the most efficient quencher of fluorescence at 760 nm. The energy absorbed by the extreme long-wave chlorophyll form is active in the photooxidation of P700 in the trimeric complex. The data obtained indicate that the long-wave form of chlorophyll originates from interaction of the chlorophyll molecules localized on monomeric subunits forming the photosystem I trimer. Kinetic analysis of the P700 photooxidation and light-induced quenching of fluorescence at 760 nm (77 K) allows the suggestion that the excess energy absorbed by the antenna monomeric subunits within the trimer migrates via the extreme long-wave chlorophyll to the P700 cation radical and is quenched, which prevents the photodestruction of the pigment-protein complex.  相似文献   

12.
The main light harvesting complex of photosystem II in plants, LHCII, exists in a trimeric state. To understand the biological significance of trimerization, a comparison has been made been LHCII trimers and LHCII monomers prepared by treatment with phospholipase. The treatment used caused no loss of chlorophyll, but there was a difference in carotenoid composition, together with the previously observed alterations in absorption spectrum. It was found that, when compared to monomers, LHCII trimers showed increased thermal stability and a reduced structural flexibility as determined by the decreased rate and amplitude of fluorescence quenching in low-detergent concentration. It is suggested that LHCII should be considered as having two interacting domains: the lutein 1 domain, the site of fluorescence quenching [Wentworth et al. (2003) J. Biol. Chem. 278, 21845-21850], and the lutein 2 domain. The lutein 2 domain faces the interior of the trimer, the differences in absorption spectrum and carotenoid binding in trimers compared to monomers indicating that the trimeric state modulates the conformation of this domain. It is suggested that the lutein 2 domain controls the conformation of the lutein 1 domain, thereby providing allosteric control of fluorescence quenching in LHCII. Thus, the pigment configuration and protein conformation in trimers is adapted for efficient light harvesting and enhanced protein stability. Furthermore, trimers exhibit the optimum level of control of energy dissipation by modulating the development of the quenched state of the complex.  相似文献   

13.
Nonphotochemical quenching (NPQ) is a mechanism of regulating light harvesting that protects the photosynthetic apparatus from photodamage by dissipating excess absorbed excitation energy as heat. In higher plants, the major light-harvesting antenna complex (LHCII) of photosystem (PS) II is directly involved in NPQ. The aggregation of LHCII is proposed to be involved in quenching. However, the lack of success in isolating native LHCII aggregates has limited the direct interrogation of this process. The isolation of LHCII in its native state from thylakoid membranes has been problematic because of the use of detergent, which tends to dissociate loosely bound proteins, and the abundance of pigment–protein complexes (e.g. PSI and PSII) embedded in the photosynthetic membrane, which hinders the preparation of aggregated LHCII. Here, we used a novel purification method employing detergent and amphipols to entrap LHCII in its natural states. To enrich the photosynthetic membrane with the major LHCII, we used Arabidopsis thaliana plants lacking the PSII minor antenna complexes (NoM), treated with lincomycin to inhibit the synthesis of PSI and PSII core proteins. Using sucrose density gradients, we succeeded in isolating the trimeric and aggregated forms of LHCII antenna. Violaxanthin- and zeaxanthin-enriched complexes were investigated in dark-adapted, NPQ, and dark recovery states. Zeaxanthin-enriched antenna complexes showed the greatest amount of aggregated LHCII. Notably, the amount of aggregated LHCII decreased upon relaxation of NPQ. Employing this novel preparative method, we obtained a direct evidence for the role of in vivo LHCII aggregation in NPQ.  相似文献   

14.
Cells of the cyanobacterium Synechococcus 6301 were grown in yellow light absorbed primarily by the phycobilisome (PBS) light-harvesting antenna of photosystem II (PS II), and in red light absorbed primarily by chlorophyll and, therefore, by photosystem I (PS I). Chromatic acclimation of the cells produced a higher phycocyanin/chlorophyll ratio and higher PBS-PS II/PS I ratio in cells grown under PS I-light. State 1-state 2 transitions were demonstrated as changes in the yield of chlorophyll fluorescence in both cell types. The amplitude of state transitions was substantially lower in the PS II-light grown cells, suggesting a specific attenuation of fluorescence yield by a superimposed non-photochemical quenching of excitation. 77 K fluorescence emission spectra of each cell type in state 1 and in state 2 suggested that state transitions regulate excitation energy transfer from the phycobilisome antenna to the reaction centre of PS II and are distinct from photosystem stoichiometry adjustments. The kinetics of photosystem stoichiometry adjustment and the kinetics of the appearance of the non-photochemical quenching process were measured upon switching PS I-light grown cells to PS II-light, and vice versa. Photosystem stoichiometry adjustment was complete within about 48 h, while the non-photochemical quenching occurred within about 25 h. It is proposed that there are at least three distinct phenomena exerting specific effects on the rate of light absorption and light utilization by the two photoreactions: state transitions; photosystem stoichiometry adjustment; and non-photochemical excitation quenching. The relationship between these three distinct processes is discussed.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F relative fluorescence intensity at emission wavelength nm - F o fluorescence intensity when all PS II traps are open - light 1 light absorbed preferentially by PS I - light 2 light absorbed preferentially by PS II - PBS phycobilisome - PS photosystem  相似文献   

15.
State transitions represent a photoacclimation process that regulates the light‐driven photosynthetic reactions in response to changes in light quality/quantity. It balances the excitation between photosystem I (PSI) and II (PSII) by shuttling LHCII, the main light‐harvesting complex of green algae and plants, between them. This process is particularly important in Chlamydomonas reinhardtii in which it is suggested to induce a large reorganization in the thylakoid membrane. Phosphorylation has been shown to be necessary for state transitions and the LHCII kinase has been identified. However, the consequences of state transitions on the structural organization and the functionality of the photosystems have not yet been elucidated. This situation is mainly because the purification of the supercomplexes has proved to be particularly difficult, thus preventing structural and functional studies. Here, we have purified and analysed PSI and PSII supercomplexes of C. reinhardtii in states 1 and 2, and have studied them using biochemical, spectroscopic and structural methods. It is shown that PSI in state 2 is able to bind two LHCII trimers that contain all four LHCII types, and one monomer, most likely CP29, in addition to its nine Lhcas. This structure is the largest PSI complex ever observed, having an antenna size of 340 Chls/P700. Moreover, all PSI‐bound Lhcs are efficient in transferring energy to PSI. A projection map at 20 Å resolution reveals the structural organization of the complex. Surprisingly, only LHCII type I, II and IV are phosphorylated when associated with PSI, while LHCII type III and CP29 are not, but CP29 is phosphorylated when associated with PSII in state2.  相似文献   

16.
The chlorophyll b-containing alga Mantoniella squamata was analyzed with respect to its capacity to balance the energy distribution from the light-harvesting antenna to photosystem I or photosystem II. It was shown, that this alga is unable to alter the absorption cross section of the two photosystems in terms of short-time regulations (state transitions). The energy absorbed by the LHC, which contains 60% of total photosynthetic pigments, is transferred to both photosystems without any preference. The stoichiometry of the two photosystems is found to be extremely unequal and variable during light adaptation. In high light, the molar ratio of P-680 per P-700 is found to be two, whereas under low light conditions this ratio accounts to nearly four. This very unbalanced stoichiometry of the reaction centers gives some new insights into the concept of the photosynthetic unit as well as in the importance of the regulation of the energy distribution. It is assumed that the high concentration of photosystem II can be understood as a mechanism to prevent the overexcitation of photosystem I. In addition, the changes im membrane protein pattern are not accompanied by variations in the ratio of appressed to nonappressed membranes as probed by ultrastructural analysis. It is suggested that the thylakoids are organized like a homogenous pigment bed. The lack of state transitions can be interpreted as a consequence of this unusual membrane morphology.Abbreviations Chl chlorophyll - CPa chlorophyll a-protein of PSII - CPl P-700 chlorophyll a-protein - CPD Chlorophyll packing density index - cyt f cytochrome f - FP free pigments - LHC light-harvesting complex - Pmax light saturated photosynthetic rates per chlorophyll - n number of experiments - PQ plastoquinone - PS photosystem - PSU photosynthetic unit - QE non-photochemical quenching - QQ photochemical quenching  相似文献   

17.
Red algae contain two types of light‐harvesting antenna systems, the phycobilisomes and chlorophyll a binding polypeptides (termed Lhcr), which expand the light‐harvesting capacity of the photosynthetic reaction centers. In this study, photosystem I (PSI) and its associated light‐harvesting proteins were isolated from the red alga Cyanidioschyzon merolae. The structural and functional properties of the largest PSI particles observed were investigated by biochemical characterization, mass spectrometry, fluorescence emission and excitation spectroscopy, and transmission electron microscopy. Our data provide strong evidence for a stable PSI complex in red algae that possesses two distinct types of functional peripheral light‐harvesting antenna complex, comprising both Lhcr and a PSI‐linked phycobilisome sub‐complex. We conclude that the PSI antennae system of red algae represents an evolutionary intermediate between the prokaryotic cyanobacteria and other eukaryotes, such as green algae and vascular plants.  相似文献   

18.
State transitions allow for the balancing of the light excitation energy between photosystem I and photosystem II and for optimal photosynthetic activity when photosynthetic organisms are subjected to changing light conditions. This process is regulated by the redox state of the plastoquinone pool through the Stt7/STN7 protein kinase required for phosphorylation of the light-harvesting complex LHCII and for the reversible displacement of the mobile LHCII between the photosystems. We show that Stt7 is associated with photosynthetic complexes including LHCII, photosystem I, and the cytochrome b6f complex. Our data reveal that Stt7 acts in catalytic amounts. We also provide evidence that Stt7 contains a transmembrane region that separates its catalytic kinase domain on the stromal side from its N-terminal end in the thylakoid lumen with two conserved Cys that are critical for its activity and state transitions. On the basis of these data, we propose that the activity of Stt7 is regulated through its transmembrane domain and that a disulfide bond between the two lumen Cys is essential for its activity. The high-light–induced reduction of this bond may occur through a transthylakoid thiol–reducing pathway driven by the ferredoxin-thioredoxin system which is also required for cytochrome b6f assembly and heme biogenesis.  相似文献   

19.
Cyanobacteria are oxygenic phototrophic prokaryotes and are considered to be the ancestors of chloroplasts. Their photosynthetic machinery is functionally equivalent in terms of primary photochemistry and photosynthetic electron transport. Fluorescence measurements and other techniques indicate that cyanobacteria, like plants, are capable of redirecting pathways of excitation energy transfer from light harvesting antennae to both photosystems. Cyanobacterial cells can reach two energetically different states, which are defined as “State 1” (obtained after preferential excitation of photosystem I) and “State 2” (preferential excitation of photosystem II). These states can be distinguished by static and time resolved fluorescence techniques. One of the most important conclusions reached so far is that the presence of both photosystems, as well as certain antenna components, are necessary for state transitions to occur. Spectroscopic evidence suggests that changes in the coupling state of the light harvesting antenna complexes (the phycobilisomes) to both photosystems occur during state transitions. The finding that the phycobilisome complexes are highly mobile on the surface of the thylakoid membrane (the mode of interaction with the thylakoid membrane is essentially unknown), has led to the proposal that they are in dynamic equilibrium with both photosystems and regulation of energy transfer is mediated by changes in affinity for either photosystem.  相似文献   

20.
《BBA》2020,1861(4):148035
Proper assembly of plant photosystem II, in the appressed region of thylakoids, allows for both efficient light harvesting and the dissipation of excitation energy absorbed in excess. The core moiety of wild type supercomplex is associated with monomeric antennae that, in turn, bind peripheral trimeric LHCII complexes. Acclimation to light environment dynamics involves structural plasticity within PSII-LHCs supercomplexes, including depletion in LHCII and CP24. Here, we report on the acclimation of NoM, an Arabidopsis mutant lacking monomeric LHCs but retaining LHCII trimer. Lack of monomeric LHCs impaired the operation of both photosynthetic electron transport and state transitions, despite the fact that NoM underwent a compensatory over-accumulation of the LHCII complement compared to the wild type. Mutant plants displayed stunted growth compared to the wild type when probed over a range of light conditions. When exposed to short-term excess light, NoM showed higher photosensitivity and enhanced singlet oxygen release than the wild type, whereas long-term acclimation under stress conditions was unaffected. Analysis of pigment-binding supercomplexes showed that the absence of monomeric LHCs did affect the macro-organisation of photosystems: large PSI-LHCII megacomplexes were more abundant in NoM, whereas the assembly of PSII-LHCs supercomplexes was impaired. Observation by electron microscopy (EM) and image analysis of thylakoids highlighted impaired granal stacking and membrane organisation, with a heterogeneous distribution of PSII and LHCII compared to the wild type. It is concluded that monomeric LHCs are critical for the structural and functional optimisation of the photosynthetic apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号