首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
FTY720, a potent immunosuppressive agent, is phosphorylated in vivo into FTY720-P, a high affinity agonist for sphingosine 1-phosphate (S1P) receptors. The effects of FTY720 on vascular cells, a major target of S1P action, have not been addressed. We now report the metabolic activation of FTY720 by sphingosine kinase-2 and potent activation of vascular endothelial cell functions in vitro and in vivo by phosphorylated FTY720 (FTY720-P). Incubation of endothelial cells with FTY720 resulted in phosphorylation by sphingosine kinase activity and formation of FTY720-P. Sphingosine kinase-2 effectively phosphorylated FTY720 in the human embryonic kidney 293T heterologous expression system. FTY720-P treatment of endothelial cells stimulated extracellular signal-activated kinase and Akt phosphorylation and adherens junction assembly and promoted cell survival. The effects of FTY720-P were inhibited by pertussis toxin, suggesting the requirement for Gi-coupled S1P receptors. Indeed, transmonolayer permeability induced by vascular endothelial cell growth factor was potently reversed by FTY720-P. Furthermore, oral FTY720 administration in mice potently blocked VEGF-induced vascular permeability in vivo. These findings suggest that FTY720 or its analogs may find utility in the therapeutic regulation of vascular permeability, an important process in angiogenesis, inflammation, and pathological conditions such as sepsis, hypoxia, and solid tumor growth.  相似文献   

2.
The bioactive lipid molecule sphingosine 1-phosphate (S1P) binds to specific cell surface receptors and regulates several cellular processes. S1P is abundant in plasma, and physiologically its most important target cells are lymphocytes and vascular endothelial cells. S1P plays a pivotal role in the immune system by regulating lymphocyte egress from the thymus and secondary lymphoid organs. The immunomodulator FTY720 impairs this egress, causing lymphopenia. Platelets had long been considered to be the major source of plasma S1P, however recent studies revealed the importance of erythrocytes as a major supply. The sphingosine analog FTY720 is a prodrug, and FTY720 phosphate (FTY720-P) its functional form. Although both erythrocytes and platelets can produce S1P, only platelets synthesize and release FTY720-P. This review will focus on the recent advances in our understanding of the metabolism and release of S1P and FTY720-P, especially in platelets and erythrocytes.  相似文献   

3.
The sphingolipid metabolite sphingosine 1-phosphate (S1P) plays an essential function in the egress of T cells from the thymus and secondary lymphoid organs. The novel immunomodulating agent FTY720 is phosphorylated in vivo to the functional form FTY720 phosphate (FTY720-P), which is structurally similar to S1P. FTY720-P inhibits the S1P-mediated T cell egress as an agonist of S1P receptors. FTY720-P is not stable in plasma and is dephosphorylated to FTY720. In the present study, we investigated activities toward FTY720-P of LPP family members (LPP1, LPP1a, LPP2, and LPP3), which exhibit broad substrate specificity. Of the four, LPP1a, the splicing isoform of LPP1, had the highest activity toward FTY720-P, and the highest affinity. Among blood-facing cells tested, only endothelial cells displayed high phosphatase activity for FTY720-P. Significant levels of LPP1a expression were found in endothelial cells, suggesting that LPP1a is important for the dephosphorylation of FTY720-P in plasma.  相似文献   

4.
FTY720 is a novel immunomodulatory drug efficacious in the treatment of multiple sclerosis. The drug is converted in vivo to the monophosphate, FTY720-P, by sphingosine kinase 2. This conversion is incomplete, suggesting opposing actions of kinase and phosphatase activities. To address which of the known lipid phosphatases might dephosphorylate FTY720-P, we overexpressed the broad specificity lipid phosphatases LPP1-3, and the specific S1P phosphatases (SPP1 and 2) in HEK293 cells, and performed in vitro assays using lysates of transfected cells. Among LPPs, only LPP3 was able to dephosphorylate FTY720-P; among SPPs, only SPP1 showed activity against FTY720-P. On intact cells, LPP3 acted as an ecto-phosphatase or FTY720-P, thus representing the major phosphatase involved in the equilibrium between FTY720 and FTY720-P observed in vivo.  相似文献   

5.
Dendritic cells (DCs) and lymphocytes are known to show a migratory response to the phospholipid mediator, sphingosine 1-phosphate (S1P). However, it is unclear whether the same S1P receptor subtype mediates the migration of lymphocytes and DCs toward S1P. In this study, we investigated the involvement of S1P receptor subtypes in S1P-induced migration of CD4 T cells and bone marrow-derived DCs in mice. A potent S1P receptor agonist, the (S)-enantiomer of FTY720-phosphate [(S)-FTY720-P], at 0.1 nM or higher and a selective S1P receptor type 1 (S1P(1)) agonist, SEW2871, at 0.1 muM or higher induced a dose-dependent down-regulation of S1P(1). The pretreatment with these compounds resulted in a significant inhibition of mouse CD4 T cell migration toward S1P. Thus, it is revealed that CD4 T cell migration toward S1P is highly dependent on S1P(1). Mature DCs, when compared with CD4 T cells or immature DCs, expressed a relatively higher level of S1P(3) mRNA. S1P at 10-1000 nM induced a marked migration and significantly enhanced the endocytosis of FITC-dextran in mature but not immature DCs. Pretreatment with (S)-FTY720-P at 0.1 microM or higher resulted in a significant inhibition of S1P-induced migration and endocytosis in mature DCs, whereas SEW2871 up to 100 microM did not show any clear effect. Moreover, we found that S1P-induced migration and endocytosis were at an extremely low level in mature DCs prepared from S1P(3)-knockout mice. These results indicate that S1P regulates migration and endocytosis of murine mature DCs via S1P(3) but not S1P(1).  相似文献   

6.
FTY720 is a novel immunomodulating drug that can be phosphorylated inside cells; its phosphorylated form, FTY720-P, binds to a sphingosine 1-phosphate (S1P) receptor, S1P1, and inhibits lymphocyte egress into the circulating blood. Although the importance of its pharmacological action has been well recognized, little is known about how FTY720-P is released from cells after its phosphorylation inside cells. Previously, we showed that zebrafish Spns2 can act as an S1P exporter from cells and is essential for zebrafish heart formation. Here, we demonstrate that human SPNS2 can transport several S1P analogues, including FTY720-P. Moreover, FTY720-P is transported by SPNS2 through the same pathway as S1P. This is the first identification of an FTY720-P transporter in cells; this finding is important for understanding FTY720 metabolism.  相似文献   

7.
Sphingosine 1-phosphate (S1P), a multifunctional lipid mediator, regulates lymphocyte trafficking, vascular permeability, and angiogenesis by activation of the S1P1 receptor. This receptor is activated by FTY720-P, a phosphorylated derivative of the immunosuppressant and vasoactive compound FTY720. However, in contrast to the natural ligand S1P, FTY720-P appears to act as a functional antagonist, even though the mechanisms involved are poorly understood. In this study, we investigated the fate of endogenously expressed S1P1 receptor in agonist-activated human umbilical vein endothelial cells and human embryonic kidney 293 cells expressing green fluorescent protein-tagged S1P1. We show that FTY720-P is more potent than S1P at inducing receptor degradation. Pretreatment with an antagonist of S1P1, VPC 44116, prevented receptor internalization and degradation. FTY720-P did not induce degradation of internalization-deficient S1P1 receptor mutants. Further, small interfering RNA-mediated down-regulation of G protein-coupled receptor kinase-2 and beta-arrestins abolished FTY720-P-induced S1P1 receptor degradation. These data suggest that agonist-induced phosphorylation of S1P1 and subsequent endocytosis are required for FTY720-P-induced degradation of the receptor. S1P1 degradation is blocked by MG132, a proteasomal inhibitor. Indeed, FTY720-P strongly induced polyubiquitinylation of S1P1 receptor, whereas S1P at concentrations that induced complete internalization was not as efficient, suggesting that receptor internalization is required but not sufficient for ubiquitinylation and degradation. We propose that the ability of FTY720-P to target the S1P1 receptor to the ubiquitinylation and proteasomal degradation pathway may at least in part underlie its immunosuppressive and anti-angiogenic properties.  相似文献   

8.
The clinical immunosuppressant FTY720 is a sphingosine analogue that, once phosphorylated by sphingosine kinase 2 (Sphk2), is an agonist of multiple receptor subtypes for sphingosine 1-phosphate. Short exposures to FTY720 afford long term protection in lymphoproliferative and autoimmune disease models, presumably by inducing apoptosis in subsets of cells essential for pathogenesis. Sphingosine itself is pro-apoptotic, and apoptosis induced with FTY720 or sphingosine is thought to proceed independently of their phosphorylation. Following chemical mutagenesis of Jurkat cells we isolated mutants that are selectively resistant to FTY720 analogue AAL(R), as well as natural sphingolipid bases, including sphingosine. Cells lacking functional Sphk2 were resistant to apoptosis induced with AAL(R), indicating that apoptosis proceeds through AAL(R) phosphorylation. Phosphorylation of AAL(R) was also required for induction of lymphocyte apoptosis in mice, as apoptosis was not induced with the non-phosphorylatable chiral analogue, AAL(S). Apoptosis was induced in the spleen but not the thymus of mice administered 1 mg/kg AAL(R), correlating with levels of AAL(R)-phosphate (AFD(R)) in organ extracts. AFD(R) did not induce apoptosis when added to the cell culture medium, indicating that it induces apoptosis through an intracellular target. NBD-labeled AAL(R) localized to the endoplasmic reticulum, and AAL(R) treatment resulted in elevated cytosolic calcium, Bax redistribution from cytosol to mitochondrial and endoplasmic reticulum membranes, and caspase-independent mitochondrial permeabilization in Jurkat cells. We therefore describe an apoptotic pathway triggered by intracellular accumulation of sphingolipid base phosphates and suggest that sphingoid base substrates for Sphk2 acting intracellularly could be useful in the treatment of lymphoproliferative diseases.  相似文献   

9.
FTY720, a sphingosine 1-phosphate (S1P) analog, acts as an immunosuppressant through trapping of T cells in secondary lymphoid tissues. FTY720 was also shown to prevent tumor growth and to inhibit vascular permeability. The MTT proliferation assay illustrated that endothelial cells are more susceptible to the anti-proliferative effect of FTY720 than Lewis lung carcinoma (LLC1) cells. In a spheroid angiogenesis model, FTY720 potently inhibited the sprouting activity of VEGF-A-stimulated endothelial cells even at concentrations that apparently had no anti-proliferative effect. Mechanistically, the anti-angiogenic effect of the general S1P receptor agonist FTY720 was mimicked by the specific S1P1 receptor agonist SEW2871. Moreover, the anti-angiogenic effect of FTY720 was abrogated in the presence of CXCR4-neutralizing antibodies. This indicates that the effect was at least in part mediated by the S1P1 receptor and involved transactivation of the CXCR4 chemokine receptor. Additionally, we could illustrate in a coculture spheroid model, employing endothelial and smooth muscle cells (SMCs), that the latter confer a strong protective effect regarding the action of FTY720 upon the endothelial cells. In a subcutaneous LLC1 tumor model, the anti-angiogenic capacity translated into a reduced tumor size in syngeneic C57BL/6 mice. Consistently, in the Matrigel plug in vivo assay, 10 mg/kg/d FTY720 resulted in a strong inhibition of angiogenesis as demonstrated by a reduced capillary density. Thus, in organ transplant patients, FTY720 may prove efficacious in preventing graft rejection as well as tumor development.  相似文献   

10.
11.
Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases   总被引:7,自引:0,他引:7  
The immunomodulatory drug FTY720 is phosphorylated in vivo, and the resulting FTY720 phosphate as a ligand for sphingosine-1-phosphate receptors is responsible for the unique biological effects of the compound. So far, phosphorylation of FTY720 by murine sphingosine kinase (SPHK) 1a had been documented. We found that, while FTY720 is also phosphorylated by human SPHK1, the human type 2 isoform phosphorylates the drug 30-fold more efficiently, because of a lower Km of FTY720 for SPHK2. Similarly, murine SPHK2 was more efficient than SPHK1a. Among splice variants of the human SPHKs, an N-terminally extended SPHK2 isoform was even more active than SPHK2 itself. Further SPHK superfamily members, namely ceramide kinase and a "SPHK-like" protein, failed to phosphorylate sphingosine and FTY720. Thus, only SPHK1 and 2 appear to be capable of phosphorylating FTY720. Using selective assay conditions, SPHK1 and 2 activities in murine tissues were measured. While activity of SPHK2 toward sphingosine was generally lower than of SPHK1, FTY720 phosphorylation was higher under conditions favoring SPHK2. In human endothelial cells, while activity of SPHK1 toward sphingosine was 2-fold higher than of SPHK2, FTY720 phosphorylation was 7-fold faster under SPHK2 assay conditions. Finally, FTY720 was poorly phosphorylated in human blood as compared with rodent blood, in line with the low activity of SPHK1 and in particular of SPHK2 in human blood. To conclude, both SPHK1 and 2 are capable of phosphorylating FTY720, but SPHK2 is quantitatively more important than SPHK1.  相似文献   

12.
Platelet-derived growth factor (PDGF) has been shown to be essential in the activation of hepatic stellate cells (HSCs), contributing to the onset and development of hepatic fibrosis. Recently, sphingosine-1-phosphate (S1P) has been shown to be a mitogen and stimulator of chemotaxis also for HSCs. Since it has been demonstrated in several cell types that cross-talk between PDGF and S1P signalling pathways occurs, our aim was to investigate the potential antifibrotic effect of FTY720, whose phosphorylated form acts as a potent S1P receptor (S1PR) modulator, on HSCs. FTY720 inhibits cell proliferation and migration after PDGF stimulation on HSCs in a concentration range between 0.1 and 1 muM. By using compounds that block S1P signalling (PTX and VPC23019), we assessed that FTY720 also acts in an S1P receptor-independent way by decreasing the level of tyrosine phosphorylation of PDGF receptor, with subsequent inhibition of the PDGF signalling pathway. In addition, inhibition of sphingosine kinase2 (SphK2), which is responsible for FTY720 phosphorylation, by DMS/siRNA unveils a mechanism of action irrespective of its phosphorylation, in particular decreasing the level of S1P(1) on the plasma membrane. These findings led us to hypothesize a potential use of FTY720 as a potential antifibrotic drug for further clinical application.  相似文献   

13.
Immunotherapeutic drugs that mimic sphingosine 1-phosphate (S1P) disrupt lymphocyte trafficking and cause T helper and T effector cells to be retained in secondary lymphoid tissue and away from sites of inflammation. The prototypical therapeutic agent, 2-alkyl-2-amino-1,3-propanediol (FTY720), stimulates S1P signaling pathways only after it is phosphorylated by one or more unknown kinases. We generated sphingosine kinase 2 (SPHK2) null mice to demonstrate that this kinase is responsible for FTY720 phosphorylation and thereby its subsequent actions on the immune system. Both systemic and lymphocyte-localized sources of SPHK2 contributed to FTY720 induced lymphopenia. Although FTY720 was selectively activated in vivo by SPHK2, other S1P pro-drugs can be phosphorylated to cause lymphopenia through the action of additional sphingosine kinases. Our results emphasize the importance of SPHK2 expression in both lymphocytes and other tissues for immune modulation and drug metabolism.  相似文献   

14.
The sphingosine 1-phosphate (S1P) receptor agonist FTY720 is well known for its immunomodulatory activity, sequestering lymphocytes from blood and spleen into secondary lymphoid organs and thereby preventing their migration to sites of inflammation. Because inflammation is critically dependent on a balance between Ag-specific Th/effector cells and T-regulatory cells, we investigated the effect of FTY720 on T-regulatory cell trafficking and functional activity. An increased number of CD4+/CD25+ T cells was found in blood and spleens of FTY720-treated mice, and transfer of these cells resulted in a significantly more pronounced accumulation in spleens but not lymph nodes after treatment, suggesting that this compound differentially affects the homing properties of T-regulatory cells compared with other T cell subsets. Indeed, CD4+/CD25+ T cells express lower levels of S1P1 and S1P4 receptors and demonstrate a reduced chemotactic response to S1P. Moreover, analysis of the functional response of FTY720-treated CD4+/CD25+ T cells revealed an increased suppressive activity in an in vitro Ag-specific proliferation assay. This correlated with enhanced function in vivo, with T-regulatory cells obtained from FTY720-treated mice being able to suppress OVA-induced airway inflammation. Thus, FTY720 differentially affects the sequestration of T-regulatory cells and importantly, increases the functional activity of T-regulatory cells, suggesting that it may have disease-modifying potential in inflammatory disorders.  相似文献   

15.
16.
Targeting the sphingosine 1‐phosphate (S1P)/S1P receptor (S1PR) signalling axis is emerging as a promising strategy in the treatment of cancer. However, the effect of such an approach on survival of human melanoma cells remains less understood. Here, we show that the sphingosine analogue FTY720 that functionally antagonises S1PRs kills human melanoma cells through a mechanism involving the vacuolar H+‐ATPase activity. Moreover, we demonstrate that FTY720‐triggered cell death is characterized by features of necrosis and is not dependent on receptor‐interacting protein kinase 1 or lysosome cathepsins, nor was it associated with the activation of protein phosphatase 2A. Instead, it is mediated by increased production of reactive oxygen species and is antagonized by activation of autophagy. Collectively, these results suggest that FTY720 and its analogues are promising candidates for further development as new therapeutic agents in the treatment of melanoma.  相似文献   

17.
Novel immunomodulatory molecule FTY720 is a synthetic analog of myriocin, but unlike myriocin FTY720 does not inhibit serine palmitoyltransferase. Although many of the effects of FTY720 are ascribed to its phosphorylation and subsequent sphingosine 1-phosphate (S1P)-like action through S1P1,3–5 receptors, studies on modulation of intracellular balance of signaling sphingolipids by FTY720 are limited. In this study, we used stable isotope pulse labeling of human pulmonary artery endothelial cells with l-[U-13C, 15N]serine as well as in vitro enzymatic assays and liquid chromatography-tandem mass spectrometry methodology to characterize FTY720 interference with sphingolipid de novo biosynthesis. In human pulmonary artery endothelial cells, FTY720 inhibited ceramide synthases, resulting in decreased cellular levels of dihydroceramides, ceramides, sphingosine, and S1P but increased levels of dihydrosphingosine and dihydrosphingosine 1-phosphate (DHS1P). The FTY720-induced modulation of sphingolipid de novo biosynthesis was similar to that of fumonisin B1, a classical inhibitor of ceramide synthases, but differed in the efficiency to inhibit biosynthesis of short-chain versus long-chain ceramides. In vitro kinetic studies revealed that FTY720 is a competitive inhibitor of ceramide synthase 2 toward dihydrosphingosine with an apparent Ki of 2.15 μm. FTY720-induced up-regulation of DHS1P level was mediated by sphingosine kinase (SphK) 1, but not SphK2, as confirmed by experiments using SphK1/2 silencing with small interfering RNA. Our data demonstrate for the first time the ability of FTY720 to inhibit ceramide synthases and modulate the intracellular balance of signaling sphingolipids. These findings open a novel direction for therapeutic applications of FTY720 that focuses on inhibition of ceramide biosynthesis, ceramide-dependent signaling, and the up-regulation of DHS1P generation in cells.FTY7202 is a synthetic analog of sphingosine and is currently being studied as a potent immunosuppressive and immunomodulatory agent (13). FTY720-induced immunosuppression is ascribed, in part, to its protective effect on endothelial cell barrier function that results in inhibition of lymphocyte egress from lymph nodes and down-regulation of innate and adaptive immune responses (4). As endothelial cells predominantly express the sphingosine 1-phosphate 1 (S1P1) receptor and its activation initiates signaling that results in the assembly of VE-cadherin-based adherens junctions (5), it is thought that the phosphorylation of FTY720 and the binding of FTY720-P to the S1P1 receptor determine its effect on vasculature (1). Recently it became evident that the action of FTY720 is more complex as several other direct protein targets were identified. Thus, FTY720 was found to bind to and inhibit the cannabinoid CB1 receptor (6), to inhibit cytosolic phospholipase A2 (cPLA2), and to counteract ceramide 1-phosphate-induced cPLA2 activation (7). Additionally FTY720 but not FTY720-P was shown to inhibit S1P lyase (8), which degrades S1P to ethanolamine phosphate and (E)-2-hexadecenal and regulates the removal of sphingoid bases from the cumulative pool of sphingolipids. These findings characterize FTY720 as a molecule with a multitargeted mode of action whose cellular effects are complicated by its metabolic transformation to FTY720-P, a structural and functional analog of S1P.Phosphorylation of FTY720 to FTY720-P by sphingosine kinases (SphKs) is the only reported metabolic transformation of FTY720 and has been actively explored because of its link to S1P-mediated signaling (1, 2, 9, 10). Recent studies suggest that the endogenous balance between S1P and ceramide molecules regulates prosurvival and proapoptotic signaling cascades, which determine the outcome of cellular response to different stress conditions (11, 12) or the efficiency of anticancer therapy (1214). However, despite the fact that FTY720 resembles sphingosine (Sph) and is a substrate of SphK2 (1517), there are no reported studies on the effect of FTY720 on the intrinsic balance of signaling sphingolipids. Metabolic interconnections between proapoptotic (ceramides) and prosurvival (dihydrosphingosine 1-phosphate (DHS1P)) molecules are expected because it is known that fumonisin B1 (FB1), an inhibitor of (dihydro)ceramide synthases, not only blocks the formation of ceramides and up-regulates the intracellular content of dihydrosphingosine (DHSph) but also increases the cellular level of DHS1P (19, 20).In view of these considerations, it is important to know how compounds with a potential ability to interfere with the sphingolipidome turnover affect the DHS1P-S1P/ceramide balance in cells. To address this question we have investigated the effect of FTY720 on metabolic pathways leading to ceramide and sphingoid base 1-phosphate generation in human pulmonary artery endothelial cells (HPAECs) by using a stable isotope pulse labeling approach and quantitative liquid chromatography-tandem mass spectrometry of signaling sphingolipids. We demonstrate that treatment of HPAECs with FTY720 results in the inhibition of de novo ceramide formation with a concomitant increase in DHSph and DHS1P content in cells. Moreover FTY720 showed a direct inhibition of ceramide synthases in an in vitro assay, albeit it was less efficient compared with the classical inhibitor of ceramide synthases, FB1. Our present findings have identified ceramide synthase isozymes as a novel molecular target for FTY720 action, opening a new direction for its potential therapeutic application through the inhibition of ceramide biosynthesis, ceramide-dependent signaling, and the up-regulation of DHS1P generation in cells.  相似文献   

18.
Sphingosine-1-phosphate receptor 1 (S1P1) mediated regulation of lymphocyte egress from lymphoid organs is recognized as the mechanism of FTY720 (Fingolimod, Gilenya) efficacy in relapsing-remitting forms of multiple sclerosis (RRMS). In this study we describe a novel S1P1 agonist AKP-11, next generation of S1P1 agonist, with immunomodulatory activities in cell culture model and for therapeutic efficacy against an animal model of MS, i.e. experimental autoimmune encephalomyelitis (EAE) but without the adverse effects observed with FTY720. Like FTY720, AKP-11 bound to S1P1 is internalized and activates intracellular AKT and ERKs cellular signaling pathways. In contrast to FTY720, AKP-11 mediated S1P1 downregulation is independent of sphingosine kinase activity indicating it to be a direct agonist of S1P1. The S1P1 loss and inhibition of lymphocyte egress by FTY720 leads to lymphopenia. In comparison with FTY720, oral administration of AKP-11 caused milder and reversible lymphopenia while providing a similar degree of therapeutic efficacy in the EAE animal model. Consistent with the observed reversible lymphopenia with AKP-11, the S1P1 recycled back to cell membrane in AKP-11 treated cells following its withdrawal, but not with withdrawal of FTY720. Accordingly, a smaller degree of ubiquitination and proteolysis of S1P1 was observed in AKP-11 treated cells as compared to FTY720. Consistent with previous observations, FTY720 treatment is associated with adverse effects of bradycardia and lung vascular leaks in rodents, whereas AKP-11 treatment had undetectable effects on bradycardia and reduced lung vascular leaks as compared to FTY720. Taken together, the data documents that AKP-11 treatment cause milder and reversible lymphopenia with milder adverse effects while maintaining therapeutic efficacy similar to that observed with FTY720, thus indicating therapeutic potential of AKP-11 for treatment of MS and related autoimmune disorders.  相似文献   

19.
Sphingosine kinase (SphK) has emerged as an attractive target for cancer therapeutics due to its role in cell survival. SphK phosphorylates sphingosine to form sphingosine 1-phosphate (S1P), which has been implicated in cancer growth and survival. SphK exists as two different isotypes, namely SphK1 and SphK2, which play different roles inside the cell. In this report, we describe SphK inhibitors based on the immunomodulatory drug, FTY720, which is phosphorylated by SphK2 to generate a S1P mimic. Structural modification of FTY720 provided a template for synthesizing new inhibitors. A diversity-oriented synthesis generated a library of SphK inhibitors with a novel scaffold and headgroup. We have discovered subtype selective inhibitors with K(i)'s in the low micromolar range. This is the first report describing quaternary ammonium salts as SphK inhibitors.  相似文献   

20.
Synthetic sphingosine 1-phosphate receptor 1 modulators constitute a new class of drugs for the treatment of autoimmune diseases. Sphingosine 1-phosphate (S1P) signaling, however, is also involved in the development of fibrosis. Using normal human lung fibroblasts, we investigated the induction of fibrotic responses by the S1P receptor (S1PR) agonists S1P, FTY720-P, ponesimod, and SEW2871 and compared them with the responses induced by the known fibrotic mediator TGF-β1. In contrast to TGF-β1, S1PR agonists did not induce expression of the myofibroblast marker α-smooth muscle actin. However, TGF-β1, S1P, and FTY720-P caused robust stimulation of extracellular matrix (ECM) synthesis and increased pro-fibrotic marker gene expression including connective tissue growth factor. Ponesimod showed limited and SEW2871 showed no pro-fibrotic potential in these readouts. Analysis of pro-fibrotic signaling pathways showed that in contrast to TGF-β1, S1PR agonists did not activate Smad2/3 signaling but rather activated PI3K/Akt and ERK1/2 signaling to induce ECM synthesis. The strong induction of ECM synthesis by the nonselective agonists S1P and FTY720-P was due to the stimulation of S1P2 and S1P3 receptors, whereas the weaker induction of ECM synthesis at high concentrations of ponesimod was due to a low potency activation of S1P3 receptors. Finally, in normal human lung fibroblast-derived myofibroblasts that were generated by TGF-β1 pretreatment, S1P and FTY720-P were effective stimulators of ECM synthesis, whereas ponesimod was inactive, because of the down-regulation of S1P3R expression in myofibroblasts. These data demonstrate that S1PR agonists are pro-fibrotic via S1P2R and S1P3R stimulation using Smad-independent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号