首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Highly purified rat lung soluble guanylate cyclase was activated with nitric oxide or sodium nitroprusside and the degree of activation varied with incubation conditions. With Mg2+ as the action cofactor, about 2- to 8-fold activation was observed with nitric oxide or sodium nitroprusside alone. Markedly enhanced activation (20-40 fold) was observed when 1 muM hemin added to the enzyme prior to exposure to the activating agent. The activation with hemin and sodium nitroprusside was prevented in a dose-dependent manner by sodium cyanide. The level activation was also increased by the addition of 1 mM dithiothreitol, but unlike hemin which had no effect on basal enzyme activity, dithiothreitol led to a considerable increase in basal activity. Activated guanylate cyclase decayed to basal activity within one hour at 2 degrees C and the enzyme could be reactivated upon re-exposure to nitroprusside or nitric oxide. Under basal conditions, Michaelis-Menten kinetics were observed, with a Km for GTP of 140 muM with Mg2+ cofactor. Following activation with nitroprusside or nitric oxide, curvilinear Eadie-Hofstee transformations of kinetic data were observed, with Km's of 22 MuM and 100 MuM for Mg-GTP. When optimal activation (15-40 fold) was induced by the addition of hemin and nitroprusside, multiple Km's were also seen with Mg-GTP and the high affinity form was predominant (22 MuM). Similar curvilinear Eadie-Hofstee transformations were observed with Mn2+ as the cation cofactor. These data suggest that multiple GTP catalytic sites are present in activated guanylate cyclase, or alternatively, multiple populations of enzyme exist.  相似文献   

2.
3.
Activation of cerebral guanylate cyclase by nitric oxide.   总被引:15,自引:0,他引:15  
Mouse cerebral guanylate cyclase was activated by catalase in the presence of sodium azide (NaN3), which is known to form catalase-NO complex, while nitrosamines and nitric oxide (NO gas) were capable of activating cerebral guanylate cyclase in the absence of catalase. The activation of guanylate cyclase by NaN3-catalase or nitrosamines was markedly inhibited by ferrohemoglobin which has a high affinity for NO, but not by ferrihemoglobin. These data suggest that NO or NO containing compounds may activate guanylate cyclase, whereas ferrohemoglobin may exhibit an inhibitory effect on the activation of guanylate cyclase, possibly by interacting with NO or NO containing compounds.  相似文献   

4.
Three agents that activate guanylate cyclase, sodium nitroprusside, nitroglycerin and sodium axide, were examined for their effects on cyclic GMP and cyclic AMP accumulation and muscle motility with several tissues. All of these agents, except nitroglycerin with ventricle preparations, increased cyclic GMP levels and did not alter cyclic AMP in incubations of preparations of bovine tracheal smooth muscle, guinea pig tracheal chains, taenia cecum, atria and ventricle, and rat liver and cerebral cortex. Increases in cyclic GMP with these agents occurred with relaxation of smooth muscle preparations and without alteration in the contractility of atrial preparations. These observations support the hypothesis that cyclic GMP accumulation in smooth muscle may be related to relaxation rather than contraction as proposed previously. Relaxation with these agents is not associated with alterations in cyclic AMP levels. Increases in cyclic GMP levels in atrial preparations can also occur without changes in contractile force or rate of contraction.  相似文献   

5.
Sodium azide, hydroxylamine, and phenylhydrazine at concentrations of 1 mM increased the activity of soluble guanylate cyclase from rat liver 2- to 20-fold. The increased accumulation of guanosine 3':5'-monophosphate in reaction mixtures with sodium azide was not due to altered levels of substrate, GTP, or altered hydrolysis of guanosine 3':5'-monophosphate by cyclic nucleotide phosphodiesterase. The activation of guanylate cyclase was dependent upon NaN3 concentration and temperature; preincubation prevented the time lag of activation observed during incubation. The concentration of NaN3 that resulted in half-maximal activation was 0.04 mM. Sodium azide increased the apparent Km for GTP from 35 to 113 muM. With NaN3 activation the enzyme was less dependent upon the concentration of free Mn2+. Activation of enzyme by NaN3 was irreversible with dilution or dialysis of reaction mixtures. The slopes of Arrhenius plots were altered with sodium azide-activated enzyme, while gel filtration of the enzyme on Sepharose 4B was unaltered by NaN3 treatment. Triton X-100 increased the activity of the enzyme, and in the presence of Triton X-100 the activation by NaN3 was not observed. Trypsin treatment decreased both basal guanylate cyclase activity and the responsiveness to NaN3. Phospholipase A, phospholipase C, and neuraminidase increased basal activity but had little effect on the responsiveness to NaN3. Both soluble and particulate guanylate cyclase from liver and kidney were stimulated with NaN3. The particulate enzyme from cerebral cortex and cerebellum was also activated with NaN3, whereas the soluble enzyme from these tissues was not. Little or no effect of NaN3 was observed with preparations from lung, heart, and several other tissues. The lack of an effect with NaN3 on soluble GUANYLATE Cyclase from heart was probably due to the presence of an inhibitor of NaN3 activation in heart preparations. The effect of NaN3 was decreased or absent when soluble guanylate cyclase from liver was purified or stored at -20degrees. The activation of guanylate cyclase by NaN3 is complex and may be the result of the nucleophilic agent acting on the enzyme directly or what may be more likely on some other factor in liver preparations.  相似文献   

6.
The principal objective of this study was to test the hypothesis that nitroprusside relaxes vascular smooth muscle via the reactive intermediate, nitric oxide (NO), and that the biologic action of NO is associated with the activation of guanylate cyclase. Nitroprusside, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and NO elicit concentration-dependent relaxation of precontraced helical strips of bovine coronary artery. Nitroprusside, MNNG and NO also markedly activate soluble guanylate cyclase from bovine coronary arterial smooth muscle and, thereby, stimulate the formation of cyclic GMP. Three heme proteins, hemoglobin, methemoglobin and myoglobin, and the oxidant, methylene blue, abolish the coronary arterial relaxation elicited by NO. Similarly, these heme proteins, methylene blue and another oxidant, ferricyanide, markedly inhibit the activation of coronary arterial guanylate cyclase by NO, nitroprusside and MNNG. The following findings support the view that certain nitroso-containing compounds liberate NO in tissue:heme proteins, which cannot permeate cells, inhibit coronary arterial relaxation elicited by NO, but not by nitroprusside or MNNG; the vital stain, methylene blue, inhibits relaxation by NO, nitroprusside and MNNG; heme proteins and oxidants inhibit guanylate cyclase activation by NO, nitroprusside and MNNG in cell-free mixtures. The findings that inhibitors of NO-induced relaxation of coronary artery also inhibit coronary arterial guanylate cyclase activation suggest that cyclic GMP formation may be associated with coronary arterial smooth muscle relaxation.  相似文献   

7.
Guanylate cyclase activities are present in both soluble and particulate fractions of rat myometrial extract. Triton, slightly stimulated the soluble (50%) while markedly increasing (1000%) the particulate activity. Both fractions appear to be regulated independently. Predominantly, the soluble form was activated by sodium nitroprusside, involving interactions with SH-groups. On the other hand, the particulate form was stimulated by a series of unsaturated fatty acids and their hydroperoxides. The latter activation appears to result from direct hydrophobic effects rather than peroxide or free radical generation.  相似文献   

8.
A potent vasodilator, sodium nitroprusside, activated rat lung soluble guanylate cyclase about 2.0-fold; this activation was potentiated by reducing agents such as ascorbic acid and thiols, 4.5 to 9-fold. In the presence of 2-mercaptoethanol and sodium nitroprusside maximal enzymatic activity in crude enzyme preparation was evident after a lag of several minutes, after which the activity declined. Hemoglobin blocked sodium nitroprusside activation of a partially purified enzyme by causing a lag in the activation, and this inhibition was reversed by 2-mercaptoethanol. Therefore, the extent of sodium nitroprusside activation measured is affected by the concentration of hemoglobin and reducing agent present, and the activation time.  相似文献   

9.
Native soluble and particulate guanylate cyclase from several rat tissues preferred Mn2+ to Mg2+ as the sole cation cofactor. Wtih 4mM cation, activities with Mg2+ were less than 25% of the activities with Mn2+. The 1 mM NaN3 markedly increased the activity of soluble and particulate preparations from rat liver. Wtih NaN3 activation guanylate cyclase activities wite similar with Mn2+ and Mg2+. Co2+ was partially effective as a cofactor in the presence of NaN3, while Ca2+ was a poor cation with or without NaN3. Activities with Ba, Cu2+, or Zn2+ were not detectable without or with 1 mM NaN3. With soluble liver enzyme both manganese and magnesium activities were dependent upon excess Mn2+ or Mg2+ at a fixed MnGTP or MgGTP concentration of 0.4 mm; apparent Km values for excess Mn2+ and Mg2+ were 0.3 and 0.24 mM, respectively. After NaN3 activation, the activity was less dependent upon free Mn2+ and retained its dependence for free Mg2+, at 0.4 mM MgGTP the apparent Km for excess Mg2+ was 0.3 mM. The activity of soluble liver guanylate cyclase assayed with Mn2+ or Mg2+ was increased with Ca2+. After NaN3 activiation, Ca2+ had no effect or was somewhat inhibitory with either Mn2+. After NaN activation, Ca2+ had no effect or was somewhat inhibitory with either Mn2+ or Mg2+. The stimulatory effect of NaN2 on Mn2+-and Mg2+-dependent guanylate cyclase activity from liver or cerebral cortex supernatant fractions required the presence of the sodium azide-activator factor. With partially purified soluble liver guanylate cyclase and azide-activator factor, the concentration (1 mjM) of NaN3 that gave half-maximal activation with Mn2+ or Mg2+ was imilar. Thus, under some conditions guanylate cyclase can effectively use Mg2+ as a sole cation cofactor.  相似文献   

10.
Hydroxylamine actived guanylate cyclase in particulate fraction of cerebral cortex of rat. Activation was most remarkable in crude mitochondrial fraction. When the crude mitochondrial fraction was subjected to osmotic shock and fractionated, guanylate cyclase activity recovered in the subfractions as assayed with hydroxylamine was only one-third of the starting material. Recombination of the soluble and the particulate fractions, however, restored guanylate cyclase activity to the same level as that of the starting material. When varying quantities of the particulate and soluble fractions were combined, enzyme activity was proportional to the quantity of the soluble fraction. Heating of the soluble or particulate fraction at 55 degrees for 5 min inactivated guanylate cyclase. The heated particulate fraction markedly activated guanylate cyclase activity in the native soluble fraction, while the heated soluble fraction did not stimulate enzyme activity in the particulate. The particulate fraction preincubated with hydroxylamine at 37 degrees for 5 min followed by washing activated guanylate cyclase activity in the soluble fraction in the absence of hydroxylamine. Further fractionation of the crude mitochondrial fraction revealed that the factor(s) needed for the activation by hydroxylamine is associated with the mitochondria. The mitochondrial fraction of cerebral cortex activated guanylate cyclase in supernatant of brain, liver, or kidney in the presence of hydroxylamine. The mitochondrial fraction prepared from liver or kidney, in turn, activated soluble guanylate cyclase in brain. Activation of guanylate cyclase by hydroxylamine was compared with that of sodium azide. Azide activated guanylate cyclase in the synaptosomal soluble fraction, while hydroxylamine inhibited it. The particulate fraction preincubated with azide followed by washing did not stimulate guanylate cyclase activity in the absence of azide. The activation of guanylate cyclase by hydroxylamine is not due to a change in the concentration of the substrate GTP, Addition of hydroxylamine did not alter the apparent Km value of guanylate cyclase for GTP. Guanylate cyclase became less dependent on manganese in the presence of hydroxylamine. Thus the activation of guanylate cyclase by hydroxylamine is due to the change in the Vmax of the reaction.  相似文献   

11.
12.
Soluble guanylate cyclase (sGC) is the target of nitric oxide (NO) released by nitric-oxide synthase in endothelial cells, inducing an increase of cGMP synthesis in response. This heterodimeric protein possesses a regulatory subunit carrying a heme where NO binding occurs, while the second subunit harbors the catalytic site. The binding of NO and the subsequent breaking of the bond between the proximal histidine and the heme-Fe(2+) are assumed to induce conformational changes, which are the origin of the catalytic activation. At the molecular level, the activation and deactivation mechanisms are unknown, as is the dynamics of NO once in the heme pocket. Using ultrafast time-resolved absorption spectroscopy, we measured the kinetics of NO rebinding to sGC after photodissociation. The main spectral transient in the Soret band does not match the equilibrium difference spectrum of NO-liganded minus unliganded sGC, and the geminate rebinding was found to be monoexponential and ultrafast (tau = 7.5 ps), with a relative amplitude close to unity (0.97). These characteristics, so far not observed in other hemoproteins, indicate that NO encounters a high energy barrier for escaping from the heme pocket once the His-Fe(2+) bond has been cleaved; this bond does not reform before NO recombination. The deactivation of isolated sGC cannot occur by only simple diffusion of NO from the heme; therefore, several allosteric states may be inferred, including a desensitized one, to induce NO release. Thus, besides the structural change leading to activation, a consequence of the decoupling of the proximal histidine may also be to induce a change of the heme pocket distal geometry, which raises the energy barrier for NO escape, optimizing the efficiency of NO trapping. The non-single exponential character of the NO picosecond rebinding coexists only with the presence of the protein structure surrounding the heme, and the single exponential rate observed in sGC is very likely to be due to a closed conformation of the heme pocket. Our results emphasize the physiological importance of NO geminate recombination in hemoproteins like nitric-oxide synthase and sGC and show that the protein structure controls NO dynamics in a manner adapted to their function. This control of ligand dynamics provides a regulation at molecular level in the function of these enzymes.  相似文献   

13.
Purification of soluble guanylate cyclase from rat liver resulted in an apparent loss of enzyme activation by nitric oxide that could be restored by dithiothreitol. methemoglobin, bovine serum albumin, or sucrose. Although hemoglobin also permitted some activation with nitric oxide, the effect of other agents to restore enzyme activation was prevented with hemoglobin. As a result of enzyme purification, there is an alteration of the dose-response relationship for nitric oxide activation. After partial enzyme purification, relatively high concentrations of nitric oxide that were stimulatory in crude enzyme preparations had no effect on enzyme activity. However, partially purified or homogeneous enzyme was activated by lower concentrations of nitric oxide. The bell-shaped dose-response curve for nitric oxide was shifted to the left with guanylate cyclase purification. The addition of dithiothreitol, methemoglobin, bovine serum albumin, or sucrose to enzyme markedly broadens the dose-response curve for nitric oxide. Thus, the apparent loss of responsiveness to nitric oxide with purification is a function of increased sensitivity of guanylate cyclase to nitric oxide. Increased sensitivity to nitric oxide with enzyme purification probably results from the removal of heme, proteins, and small molecules that can serve as scavengers or sinks for nitric oxide and prevent excessive oxidation of the enzyme.  相似文献   

14.
Sodium nitroprusside, a potent activator of soluble guanylate cyclase, potentiated mixed disulfide formation between cystine, a potent inhibitor of the cyclase, and enzyme purified from rat lung. Incubation of soluble guanylate cyclase with nitroprusside and [35S]cystine resulted in a twofold increase in protein-bound radioactivity compared to incubations in the absence of nitroprusside. Purified enzyme preincubated with nitroprusside and then gel filtered (activated enzyme) was activated 10- to 20-fold compared to guanylate cyclase preincubated in the absence of nitroprusside and similarly processed (nonactivated enzyme). This activation was completely reversed by subsequent incubation at 37 degrees C (activation-reversed enzyme). Incorporation of [35S]cystine into guanylate cyclase was increased twofold with activated enzyme, while no difference was observed with activation-reversed enzyme, compared to nonactivated enzyme. Cystine decreased the activity of nonactivated and activation-reversed enzyme about 40% while it completely inhibited activated guanylate cyclase. Mg+2- or Mn+2-GTP inhibited the incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. Also, diamide, a potent thiol oxidant that converts juxtaposed sulfhydryls to disulfides, completely blocked incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. These data indicate that activation of soluble guanylate cyclase by nitroprusside results in an increased availability of protein sulfhydryl groups for mixed disulfide formation with cystine. Protection against mixed disulfide formation with diamide or substrate suggests that these groups exist as two or more juxtaposed sulfhydryl groups at the active site or a site on the enzyme that regulates catalytic activity. Differential inhibition by mixed disulfide formation of nonactivated and activated enzyme suggests a mechanism for amplification of the on-off signal for soluble guanylate cyclase within cells.  相似文献   

15.
The effects of alpha-rat atrial natriuretic peptide (alpha-rANP) and sodium nitroprusside on the activity of rat lung particulate guanylate cyclase were examined. The particulate guanylate cyclase in partially purified rat lung membranes was stimulated by both alpha-rANP and nitroprusside. The effects of alpha-rANP and nitroprusside were, however, not additive. Diamide and N-ethylmaleimide almost completely abolished the nitroprusside-mediated stimulation, while they had only moderate effects on the alpha-rANP-mediated stimulation of the enzyme activity. ATP potentiated the enzyme stimulation by alpha-rANP, whereas it had no effect on the nitroprusside-mediated stimulation. These findings suggest that the stimulation of lung particulate guanylate cyclase activity by alpha-rANP and nitroprusside is mediated by different mechanisms.  相似文献   

16.
Hyperammonemia is the main responsible for the neurological alterations in hepatic encephalopathy in patients with liver failure. We studied the function of the glutamate-nitric oxide (NO)-cGMP pathway in brain in animal models of hyperammonemia and liver failure and in patients died with liver cirrhosis. Activation of glutamate receptors increases intracellular calcium that binds to calmodulin and activates neuronal nitric oxide synthase, increasing nitric oxide, which activates soluble guanylate cyclase (sGC), increasing cGMP. This glutamate-NO-cGMP pathway modulates cerebral processes such as circadian rhythms, the sleep-waking cycle, and some forms of learning and memory. These processes are impaired in patients with hepatic encephalopathy. Activation of sGC by NO is significantly increased in cerebral cortex and significantly reduced in cerebellum from cirrhotic patients died in hepatic coma. Portacaval anastomosis in rats, an animal model of liver failure, reproduces the effects of liver failure on modulation of sGC by NO both in cerebral cortex and cerebellum. In vivo brain microdialisis studies showed that sGC activation by NO is also reduced in vivo in cerebellum in hyperammonemic rats with or without liver failure. The content of alpha but not beta subunits of sGC are increased both in frontal cortex and cerebellum from patients died due to liver disease and from rats with portacaval anastomosis. We assessed whether determination of activation of sGC by NO-generating agent SNAP in lymphocytes could serve as a peripheral marker for the impairment of sGC activation by NO in brain. Chronic hyperammonemia and liver failure also alter sGC activation by NO in lymphocytes from rats or patients. These findings show that the content and modulation by NO of sGC are strongly altered in brain of patients with liver disease. These alterations could be responsible for some of the neurological alterations in hepatic encephalopathy such as sleep disturbances and cognitive impairment.  相似文献   

17.
Guanylate cyclase of plasma membrane of isolated rat fat cells was activated 7 to 11 fold by oleic acid, linoleic acid, linolenic acid or arachidonic acid. The activation of the enzyme by linoleic acid or oleic acid was influenced by the concentration of enzyme protein and that of the fatty acid. At 158 μg/ml of enzyme protein, 0.6 mM linoleic acid produced maximal activation of 12 fold which was partially reversed by washing. Particulate guanylate cyclase of cerebral cortex and liver was also activated by linoleic acid.  相似文献   

18.
Analysis of purified soybean and rabbit reticulocyte 15-lipoxygenase (15-LOX) and PA317 cells transfected with human 15-LOX revealed a rapid rate of linoleate-dependent nitric oxide (.NO) uptake that coincided with reversible inhibition of product ((13S)-hydroperoxyoctadecadienoic acid, or (13S)-HPODE) formation. No reaction of .NO (up to 2 microM) with either native (Ered) or ferric LOXs (0.2 microM) metal centers to form nitrosyl complexes occurred at these .NO concentrations. During HPODE-dependent activation of 15-LOX, there was consumption of 2 mol of .NO/mol of 15-LOX. Stopped flow fluorescence spectroscopy showed that.NO (2.2 microM) did not alter the rate or extent of (13S)-HPODE-induced tryptophan fluorescence quenching associated with 15-LOX activation. Additionally, .NO does not inhibit the anaerobic peroxidase activity of 15-LOX, inferring that the inhibitory actions of .NO are due to reaction with the enzyme-bound lipid peroxyl radical, rather than impairment of (13S)-HPODE-dependent enzyme activation. From this, a mechanism of 15-LOX inhibition by .NO is proposed whereby reaction of .NO with EredLOO. generates Ered and LOONO, which hydrolyzes to (13S)-HPODE and nitrite (NO2-). Reactivation of Ered, considerably slower than dioxygenase activity, is then required to complete the catalytic cycle and leads to a net inhibition of rates of (13S)-HPODE formation. This reaction of .NO with 15-LOX inhibited. NO-dependent activation of soluble guanylate cyclase and consequent cGMP production. Since accelerated .NO production, enhanced 15-LOX gene expression, and 15-LOX product formation occurs in diverse inflammatory conditions, these observations indicate that reactions of .NO with lipoxygenase peroxyl radical intermediates will result in modulation of both .NO bioavailability and rates of production of lipid signaling mediators.  相似文献   

19.
Guanylate cyclase from human platelets was over 90% soluble, even when assayed in the presence of Triton X-100. A time-dependent increase in activity occurred when the enzyme was incubated at 37 degrees and this spontaneous activation was prevented by dithiothreitol. Arachidonic acid stimulated the soluble enzyme activity approximately 2- to 3-fold. Linear double reciprocal plots of guanylate cyclase activation as a function of arachidonic acid concentration were obtained with a Ka value of 2.1 muM. A Hill coefficient of 0.98 was obtained indicating that one fatty acid binding site is present for each catalytic site. Concentrations of arachidonic acid in excess of 10 muM caused less than maximal stimulation. Dihomo-gamma-linolenic acid and two polyunsaturated 22 carbon fatty acids stimulated the activity of guanylate cyclase to the same degree as did arachidonic acid. The methyl ester of arachidonic acid was much less effective. Diene, monoene, and saturated fatty acids of various carbon chain lengths as well as prostaglandins E1, E2, and F2alpha, had little or no effect. These data indicate that the structural determined required for stimulation by fatty acids of soluble platelet guanylate cyclase is a 1,4,7-octatriene group with its first double bond in the omega6 position. This structural group is similar to the substrate specificity determinants of fatty acid cyclooxygenase, the first enzyme of the prostaglandin synthetase complex. However, conversion of arachidonic acid to a metabolite of the cyclooxygenase pathway did not appear to be required for activation of the cyclase since activation occurred in the 105,000 X g supernatant fraction and pretreatment of this fraction with aspirin did not alter the ability of arachidonic acid to activate guanylate cyclase. Kinetic studies showed that the stimulation of guanylate cyclase by arachidonic acid is primarily an effect on maximal velocity. Arachidonic acid did not alter the concentration of free Mn2+ required for optimal activity. It is concluded that the activity of the soluble form of guanylate cyclase in cell-free preparations of human platelets can be increased by a lipid-protein interaction involving specific polyunsaturated fatty acids.  相似文献   

20.
Particulate guanylate cyclase from rat lung was stimulated less than 2-fold by agents capable of activating the soluble guanylate cyclase, including sodium nitroprusside, MNNG, azide and hydroxylamine. The action of the first two agents was potentiated by 10 mM 2-mercaptoethanol, and that of the last two by catalase. Pretreatment of the particulate enzyme with the polyene antibiotic, filipin, potentiated the stimulatory effects of the activators, activity with 1 mM nitroprusside in the presence of 2-mercaptoethanol being increased 10.4-fold over basal. The enzyme treated with filipin and nitroprusside showed less specificity for Mn2+, as it was able to use Mg2+ as sole cation more efficiently than the untreated enzyme. Since filipin is known to alter membrane fluidity by interacting with membrane cholesterol, it is proposed that the activity of membrane bound guanylate cylase may be regulated in part by the fluid state of the phospholipid matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号