首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Hypertonic shrinkage of dog red cells caused rapid activation of Na/H exchange and rapid deactivation of [K-Cl] cotransport. Hypotonic swelling caused delayed deactivation of Na/H exchange and delayed activation of [K-Cl] cotransport. Okadaic acid stimulated shrinkage-induced Na/H exchange and inhibited swelling-induced [K-Cl] cotransport. The data are compatible with the kinetic model of Jennings and Al-Rohil (1990. J. Gen. Physiol. 95:1021-1040) for volume regulation of [K-Cl] cotransport in rabbit red cells and suggest that in dog red cells Na/H exchange and [K-Cl] cotransport are controlled by a common regulatory system. The proposal of Jennings and Schulz (1991. J. Gen. Physiol. 96:799-817) that activation/deactivation of volume-sensitive transport involves phosphorylation/dephosphorylation of a regulatory protein is supported by these observations.  相似文献   

2.
Chloride-dependent K transport ([K-Cl] cotransport) in dog red cells is activated by cell swelling. Whether the volume signal is generated by a change in cell configuration or by the dilution of some cytosolic constituent is not known. To differentiate between these two alternatives we prepared resealed ghosts that, compared with intact red cells, had the same surface area and similar hemoglobin concentration, but a greatly diminished volume. Swelling-induced [K-Cl] cotransport was activated in the ghosts at a volume (20 fl) well below the activation volume for intact cells (70 fl), but at a similar hemoglobin concentration (30-35 g dry solids per 100 g wet weight). Ghosts made to contain 40% albumin and 60% hemoglobin showed activation of [K-Cl] cotransport at a concentration of cell solids similar to intact cells or ghosts containing only hemoglobin. [K-Cl] cotransport in the resealed ghosts became quiescent at a dry solid concentration close to that at which shrinkage-induced Na/H exchange became activated. These results support the notion that the primary volume sensor in dog red cells is cytosolic protein concentration. We speculate that macromolecular crowding is the mechanism by which cells initiate responses to volume perturbation.  相似文献   

3.
Swelling-induced human erythrocyte K-Cl cotransport is membrane potential independent and capable of uphill transport. However, a complete thermodynamic analysis of basal and stimulated K-Cl cotransport, at constant cell volume, is missing. This study was performed in low K sheep red blood cells before and after reducing cellular free Mg into the nanomolar range with the divalent cation ionophore A23187 and a chelator, an intervention known to stimulate K- Cl cotransport. The anion exchange inhibitor 4,4''diisothiocyanato- 2,2''disulfonic stilbene was used to clamp intracellular pH and Cl or NO3 concentrations. Cell volume was maintained constant as external and internal pH differed by more than two units. K-Cl cotransport was calculated from the K effluxes and Rb (as K congener) influxes measured in Cl and NO3, at constant internal K and external anions, and variable concentrations of extracellular Rb and internal anions, respectively. The external Rb concentration at which net K-Cl cotransport is zero was defined as flux reversal point which changed with internal pH and hence Cl. Plots of the ratio of external Rb concentrations corresponding to the flux reversal points and the internal K concentration versus the ratio of the internal and external Cl concentrations (i.e., the Donnan ratio of the transported ions) yielded slopes near unity for both control and low internal Mg cells. Thus, basal as well as low internal Mg-stimulated net K-Cl cotransport depends on the electrochemical potential gradient of KCl.  相似文献   

4.
K-Cl cotransport is activated by vasodilators in erythrocytes and vascular smooth muscle cells and its regulation involves putative kinase/phosphatase cascades. N-ethylmaleimide (NEM) activates the system presumably by inhibiting a protein kinase. Nitrovasodilators relax smooth muscle via cGMP-dependent activation of protein kinase G (PKG), a regulator of membrane channels and transporters. We investigated whether PKG regulates K-Cl cotransport activity or mRNA expression in normal, PKG-deficient-vector-only-transfected (PKG-) and PKG-catalytic-domain-transfected (PKG+) rat aortic smooth muscle cells. K-Cl cotransport was calculated as the Cl-dependent Rb influx, and mRNA was determined by semiquantitative RT-PCR. Baseline K-Cl cotransport was higher in PKG+ than in PKG- cells (p <0.01). At 0.5 mM, NEM stimulated K-Cl cotransport by 5-fold in PKG- but not in PKG+ cells. However, NEM was more potent although less effective to activate K-Cl cotransport in normal (passage 1-3) and PKG+ than in PKG- cells. In PKG- cells, [(dihydroindenyl) oxy] alkanoic acid (300 mM) but not furosemide (1 mM) inhibited K-Cl cotransport. Furthermore, no difference in K-Cl cotransport mRNA expression was observed between these cells. In conclusion, this study shows that manipulation of PKG expression in vascular smooth muscle cells affects K-Cl cotransport activity and its activation by NEM.  相似文献   

5.
The driving forces for taurocholate transport were determined in highly purified canalicular (cLPM) and basolateral rat liver plasma membrane (LPM) vesicles. Alanine transport was also examined for comparison. Inwardly directed Na+ but not K+ gradients transiently stimulated [3H]taurocholate (1 microM) and [3H]alanine (0.2 mM) uptake into basolateral LPM 3-4- fold above their respective equilibrium values (overshoots). Na+ also stimulated [3H]taurocholate countertransport and tracer exchange in basolateral LPM whereas valinomycin-induced inside negative K+ diffusion potentials stimulated alanine uptake but had no effect on taurocholate uptake. In contrast, in the "right-side out" oriented cLPM vesicles, [3H]taurocholate countertransport and tracer exchange were not dependent on Na+. Efflux of [3H]taurocholate from cLPM was also independent of Na+ and could be trans-stimulated by extra-vesicular taurocholate. Furthermore, an inside negative valinomycin-mediated K+ diffusion potential inhibited taurocholate uptake into and stimulated taurocholate efflux from the cLPM vesicles. These studies provide direct evidence for a "carrier mediated" and potential-sensitive conductive pathway for the canalicular excretion of taurocholate. In addition, they confirm the presence of a possibly electroneutral Na+-taurocholate cotransport system in basolateral membranes of the hepatocyte.  相似文献   

6.
The cation specificity and possible exchange modes of the Na+:CO3(2-):HCO3- cotransporter were evaluated by use of basolateral membrane vesicles isolated from rabbit renal cortex. External Li+ inhibited HCO3- gradient-stimulated 22Na uptake, indicating that Li+ interacts with the Na+:CO3(2-):HCO3- cotransporter. No interaction with K+, choline, Rb+, Cs+, or NH4+ could be similarly detected. Imposing an outward Li+ gradient caused quenching of acridine orange fluorescence in the presence but not in the absence of HCO3-, suggesting that Li+:base cotransport takes place via the Na+:CO3(2-):HCO3- cotransporter. Imposing an outward gradient of unlabeled Na+ stimulated the initial rate of 22Na uptake and induced its transient uphill accumulation, indicating Na(+)-Na+ exchange. Na(+)-Na+ exchange was observed in the presence but not in the absence of HCO3- and was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), suggesting that it occurs via the Na+:CO3(2-):HCO3- cotransporter. Similarly, an outward Li+ gradient stimulated uphill 22Na accumulation, indicating Na(+)-Li+ exchange. Na(+)-Li+ exchange was observed in the presence but not in the absence of HCO3-, and was inhibited by DIDS, suggesting that it also occurs via the Na+:CO3(2-):HCO3- cotransporter. Both Na(+)-Na+ and Li(+)-Na+ exchange modes were sensitive to inhibition by harmaline but not by amiloride. We conclude that Li+ is an alternative substrate for the renal Na+:CO3(2-):HCO3- cotransporter. Transport modes of the system include cation:base cotransport and HCO3-dependent cation-cation exchange.  相似文献   

7.
Na+, K+, and Cl- transport in resting pancreatic acinar cells   总被引:2,自引:1,他引:1  
To understand the role of Na+, K+, and Cl- transporters in fluid and electrolyte secretion by pancreatic acinar cells, we studied the relationship between them in resting and stimulated cells. Measurements of [Cl-]i in resting cells showed that in HCO3(-)-buffered medium [Cl- ]i and Cl- fluxes are dominated by the Cl-/HCO3- exchanger. In the absence of HCO3-, [Cl-]i is regulated by NaCl and NaK2Cl cotransport systems. Measurements of [Na+]i showed that the Na(+)-coupled Cl- transporters contributed to the regulation of [Na+]i, but the major Na+ influx pathway in resting pancreatic acinar cells is the Na+/H+ exchanger. 86Rb influx measurements revealed that > 95% of K+ influx is mediated by the Na+ pump and the NaK2Cl cotransporter. In resting cells, the two transporters appear to be coupled through [K+]i in that inhibition of either transporter had small effect on 86Rb uptake, but inhibition of both transporters largely prevented 86Rb uptake. Another form of coupling occurs between the Na+ influx transporters and the Na+ pump. Thus, inhibition of NaK2Cl cotransport increased Na+ influx by the Na+/H+ exchanger to fuel the Na+ pump. Similarly, inhibition of Na+/H+ exchange increased the activity of the NaK2Cl cotransporter. The combined measurements of [Na+]i and 86Rb influx indicate that the Na+/H+ exchanger contributes twice more than the NaK2Cl cotransporter and three times more than the NaCl cotransporter and a tetraethylammonium-sensitive channel to Na+ influx in resting cells. These findings were used to develop a model for the relationship between the transporters in resting pancreatic acinar cells.  相似文献   

8.
Resealed human red cell ghosts containing caged ATP (Kaplan et al., 1978) and [3H]ADP were irradiated at 340 nm. The photochemical release of free ATP initiated a rapid transphosphorylation reaction (ATP:ADP exchange), a component of which is inhibited by ouabain. The reaction rate was measured by following the rate of appearance of [3H]ATP. The sodium pump-mediated ATP:ADP exchange reaction showed high-affinity stimulation by Mg ions (less than 10 microM) and was inhibited at higher levels. At optimal [Mg], extracellular Na (Nao) had a biphasic effect. Nao progressively inhibited the reaction rate between 0 and 10 mM and stimulated at higher levels. Intracellular Na (Nai) activated the reaction; the rate was maximal when Nai was 1 mM and remained unaltered up to 115 mM Nai at constant Nao. Extracellular K ions (Ko) inhibited the reaction; at high Nao, half-maximal inhibition was observed with 0.9 mM Ko. Lio inhibited the exchange rate with a lower affinity than Ko; half-maximal inhibition was produced by approximately 50 mM Lio. Intracellular K ions were without dramatic effect on the reaction rate in the concentration range where Ko inhibited completely. The relationship between these observations and previous studies on porous preparations is discussed, as well as the extent to which these observations support the hypothesis that the sodium pump-mediated ATP:ADP exchange reaction accompanies the Na:Na exchange transport mode of the sodium pump.  相似文献   

9.
Lithium transport pathways in human red blood cells   总被引:9,自引:3,他引:6       下载免费PDF全文
In human red cells, Li is extruded against its own concentration gradient if the external medium contains Na as a dominant cation. This uphill net Li extrusion occurs in the presence of external Na but not K, Rb, Cs, choline, Mg, or Ca, is ouabain-insensitive, inhibited by phloretin, and does not require the presence of cellular ATP. Li influx into human red cells has a ouabain-sensitive and a ouabain-insensitive but phloretin-sensitive component. Ouabain-sensitive Li influx is competitively inhibited by external K and Na and probably involves the site on which the Na-K pump normally transports K into red cells. Ouabain does not inhibit Li efflux from red cells containing Li concentrations below 10 mM in the presence of high internal Na or K, whereas a ouabain-sensitive Li efflux can be measured in cells loaded to contain 140 mM Li in the presence of little or no internal Na or K. Ouabain-insensitive Li efflux is stimulated by external Na and not by K, Rb, Cs, choline, Mg, or Ca ions. Na-dependent Li efflux does not require the presence of cellular ATP and is inhibited by phloretin, furosemide, quinine, and quinidine. Experiments carried out in cells loaded in the presence of nystatin to contain either only K or only Na show that the ouabain-insensitive, phloretin-inhibited Li movements into or out of human red cells are stimulated by Na on the trans side and inhibited by Na on the cis side of the red cell membrane. The characteristics of the Na-dependent unidirectional Li fluxes and uphill Li extrusion are similar, suggesting that they are mediated by the same Na-Li countertransport system.  相似文献   

10.
Cation coupling to melibiose transport in Salmonella typhimurium.   总被引:2,自引:2,他引:0       下载免费PDF全文
Melibiose transport in Salmonella typhimurium was investigated. Radioactive melibiose was prepared and the melibiose transport system was characterized. Na+ and Li+ stimulated transport of melibiose by lowering the Km value without affecting the Vmax value; Km values were 0.50 mM in the absence of Na+ or Li+ and 0.12 mM in the presence of 10 mM NaCl or 10 mM LiCl. The Vmax value was 140 nmol/min per mg of protein. Melibiose was a much more effective substrate than methyl-beta-thiogalactoside. An Na+-melibiose cotransport mechanism was suggested by three types of experiments. First, the influx of Na+ induced by melibiose influx was observed with melibiose-induced cells. Second, the efflux of H+ induced by melibiose influx was observed only in the presence of Na+ or Li+, demonstrating the absence of H+-melibiose cotransport. Third, either an artificially imposed Na+ gradient or membrane potential could drive melibiose uptake in cells. Formation of an Na+ gradient in S. typhimurium was shown to be coupled to H+ by three methods. First, uncoupler-sensitive extrusion of Na+ was energized by respiration or glycolysis. Second, efflux of H+ induced by Na+ influx was detected. Third, a change in the pH gradient was elicited by imposing an Na+ gradient in energized membrane vesicles. Thus, it is concluded that the mechanism for Na+ extrusion is an Na+/H+ antiport. The Na+/H+ antiporter is a transformer which converts an electrochemical H+ gradient to an Na+ gradient, which then drives melibiose transport. Li+ was inhibitory for the growth of cells when melibiose was the sole carbon source, even though Li+ stimulated melibiose transport. This suggests that high intracellular Li+ may be harmful.  相似文献   

11.
K-Cl cotransport plays a crucial role in regulatory volume decrease of erythrocytes. K-Cl cotransport activities in dog erythrocytes with an inherited high Na-K pump activity (HK) and normal erythrocytes (LK) were compared. Nitrite (NO(2)) stimulated K-Cl cotransport activity in HK cells around 14-fold at 2.4 mM, and it also increased the Km value of this cotransporter. Real-time PCR and western blot analysis revealed that K-Cl cotransporter 1 was dominant, and that the quantity of K-Cl cotransporter 1 protein was comparable between HK and LK erythrocytes. These results suggest that the difference in cotransport activity was not caused by the amount of K-Cl cotransport protein but by a difference in the regulation system, which is susceptible to oxidant.  相似文献   

12.
The molecular basis for Na/Li exchange is unknown. Li can be transported by the Na pump, anion exchanger (AE1), a background leak, and the Na/Li exchanger. In vivo the intraerythrocyte concentration of Li results from the balance of passive entry, mostly on AE1, and the active extrusion on the Na/Li exchanger. Here we show that erythrocytes have Li-activated PO4 transport that behaves as if it is mediated by the Na-PO4 cotransporter (hBNP1) and provide evidence that this Na/Li-PO4 cotransporter is also the mechanism for Na/Li exchange. First, external Li (>20 mM) activated PO4 influx severalfold. Li activation of PO4 influx was potentiated by the presence of external Na. Second, the ouabain-insensitive 22Na efflux was stimulated by external Li and then inhibited by external PO4. Third, phloretin inhibited Na- and Li-activated PO4 flux with the same Ki, 0.25 mM. Fourth, external PO4 (0.1–1.0 mM) inhibited ouabain-insensitive Li efflux only if external Na was present. Fifth, arsenate, a phosphate congener, inhibited both Na-PO4 cotransport and Li-activated PO4 flux with similar kinetics when Na or Li concentration was high but did not inhibit Liout/Nain exchange when Liout concentration was low. The collective results suggest that both Na and Li are substrates for at least two sites on the same PO4 cotransporter and that Na/Li exchange behaves as if it is mediated by this Na/Li-PO4 cotransporter when only one cation is bound. Plasma and intracellular PO4 concentrations may be important regulators of Li transport and its therapeutic effects. sodium/lithium exchange; sodium,lithium-phosphate cotransport; human erythrocytes; kinetic model  相似文献   

13.
K-Cl cotransport, theelectroneutral-coupled movement of K and Cl ions, plays an importantrole in regulatory volume decrease. We recently reported that nitrite,a nitric oxide derivative possessing potent vasodilation properties,stimulates K-Cl cotransport in low-K sheep red blood cells (LK SRBCs).We hypothesized that activation of vascular smooth muscle (VSM) K-Clcotransport by vasodilators decreases VSM tension. Here we tested thishypothesis by comparing the effects of commonly used vasodilators,hydralazine (HYZ), sodium nitroprusside, isosorbide mononitrate, andpentaerythritol, on K-Cl cotransport in LK SRBCs and in primarycultures of rat VSM cells (VSMCs) and of HYZ-induced K-Clcotransport activation on relaxation of isolated porcine coronaryrings. K-Cl cotransport was measured as the Cl-dependent K efflux or Rbinflux in the presence and absence of inhibitors for other K/Rbtransport pathways. All vasodilators activated K-Cl cotransport in LKSRBCs and HYZ in VSMCs, and this activation was inhibited by calyculinand genistein, two inhibitors of K-Cl cotransport. KT-5823, a specificinhibitor of protein kinase G, abolished the sodiumnitroprusside-stimulated K-Cl cotransport in LK SRBCs, suggestinginvolvement of the cGMP pathway in K-Cl cotransport activation.Hydralazine, in a dose-dependent manner, and sodium nitroprussiderelaxed (independently of the endothelium) precontractedarteries when only K-Cl cotransport was operating and other pathwaysfor K/Rb transport, including the Ca-activated K channel, wereinhibited. Our findings suggest that K-Cl cotransport may be involvedin vasodilation.

  相似文献   

14.
An Na+-stimulated Mg2+-transport system in human red blood cells   总被引:5,自引:0,他引:5  
The initial rate of net Mg2+ efflux was measured in human red blood cells by atomic absorption. In fresh erythrocytes incubated in Na+,K+-Ringer's medium this rate was 7.3 +/- 2.8 mumol/l cells per h (mean +/- S.D. of 14 subjects) with an energy of activation of 13 200 cal/mol. Cells with total Mg2+ contents ([ Mg]i) ranging from 1.8 to 24 mmol/l cells were prepared by using a modified p-chloromercuribenzenesulphonate method. Mg2+ efflux was strongly stimulated by increases in [Mg]i and in external Na+ concentrations ([ Na]o). A kinetic analysis of Mg2+ efflux as a function of [Mg]i and [Na]o revealed the existence of two components: an Na+-stimulated Mg2+ efflux, which exhibited a Michaelian-like dependence of free internal Mg2+ content (apparent dissociation constant = 2.6 +/- 1.4 mmol/l cells; mean +/- S.D. of six subjects) and on external Na+ concentration (apparent dissociation constant = 20.5 +/- 1.9 mM; mean +/- S.D. of four subjects) and a variable maximal rate ranging from 35 to 370 mumol/l cells per h, and an Na+-independent Mg2+ efflux, which showed a linear dependence on internal Mg2+ content with a rate constant of (6.6 +/- 0.7) X 10(-3) h-1. Fluxes catalyzed by the Na+-stimulated Mg2+ carrier were partially dependent on the ATP content of the cells and completely inhibited by quinidine (IC50 = 50 microM) and by Mn2+ (IC50 = 0.5-1.0 mM).  相似文献   

15.
We studied the interactions of Na+, Li+, and amiloride on the Na+/H+ antiporter in brush-border membrane vesicles from rabbit renal cortex. Cation-mediated collapse of an outwardly directed proton gradient (pHin = 6.0; pHout = 7.5) was monitored with the fluorescent amine, acridine orange. Proton efflux resulting from external addition of Na+ or Li+ exhibited simple saturation kinetics with Hill coefficients of 1.0. However, kinetic parameters for Na+ and Li+ differed (Km for Li+ = 1.2 +/- 0.1 mM; Km for Na+ = 14.3 +/- 0.8 mM; Vmax for Li+ = 2.40 +/- 0.07 fluorescence units/s/mg of protein; Vmax for Na+ = 7.10 +/- 0.24 fluorescence units/s/mg of protein). Inhibition of Na+/H+ exchange by Li+ and amiloride was also studied. Li+ inhibited the Na+/H+ antiporter by two mechanisms. Na+ and Li+ competed with each other at the cation transport site. However, when [Na+] was markedly higher than [Li+], [( Na+] = 90 mM; [Li+] less than 1 mM), we observed noncompetitive inhibition (Vmax for Na+/H+ exchange reduced by 25%). The apparent Ki for this noncompetitive inhibition was congruent to 50 microM. In addition, 2-30 mM intravesicular Li+, but not Na+, resulted in trans inhibition of Na+/H+ exchange. Amiloride was a mixed inhibitor of Na+/H+ exchange (Ki = 30 microM, Ki' = 90 microM) but was only a simple competitive inhibitor of Li+/H+ exchange (Ki = 10 microM). At [Li] = 1 mM and [amiloride] less than 100 microM, inhibition of Na+/H+ exchange by a combination of the two inhibitors was always less than additive. These results suggest the presence of a cation-binding site (separate from the cation-transport site) which could be a modifier site of the Na+/H+ antiporter.  相似文献   

16.
Stimulation of Na:H exchange by insulin   总被引:11,自引:0,他引:11       下载免费PDF全文
In frog skeletal muscle, the increase of intracellular pH (pHi) induced by insulin is correlated with an increase in intracellular Na+ when the sodium pump is inhibited by ouabain. Reversing the Na+ free energy gradient by substituting either Mg2+ or choline for extracellular Na+ converts the effect of insulin to a decrease in pHi, indicating that the action of insulin upon pHi is determined by the Na+ free energy gradient. Moreover, estimates of the Na+ free energy gradient indicate that both the direction and magnitude satisfy the hypothesis that this is the source of energy for the observed changes in pHi. Both the increase in intracellular pH induced by insulin and the associated increase in intracellular Na+ produced by this hormone in the presence of ouabain are blocked by amiloride. This drug also blocks the decrease in pHi by insulin when Mg2+ is substituted for Na+ in the Ringer. In Ringer containing Na+, the increase in pHi by insulin occurs when both metabolic and atmospheric sources of CO2 are eliminated by using a 100% N2 atmosphere. Thus, the mechanism stimulated by insulin is not a Na+-CO3(2-) cotransport system, but is either an Na:H exchange or a Na+-OH- cotransport system which can be inhibited by amiloride. The suggestion is advanced that the Na:H exchange mechanism is part of the membrane transduction system for insulin.  相似文献   

17.
The effect of alteration in the concentration of internal Mg on the rate of ouabain binding to reconstituted human red blood cell ghosts has been evaluated as well as the effect of Mgi on Na:Na compared to Na:K exchange. It was found that the dependence of the rate of ATP-promoted ouabain binding on the combined presence of Nai and Ko which occurs at high [Mg]i is lost when the concentration of Mgi is lowered. The sensitivity of the external surface for Ko is also changed since Ko can now inhibit the ouabain binding rate in the absence of Nai; on the other hand Nao at low [Mg]i can stimulate ouabain binding indicating that the relative affinity of the outside surface for Nao has either increased or that for Ko has decreased or both. Thus the effects of changes in [Mg]i result in a change in the side-dependent actions of Na and K and emphasize the possible difficulties of interpreting results obtained on systems lacking sidedness. Mgi was found to be required for Pi-promoted ouabain binding and that the inhibitory action of Nai increased as [Mg]i was increased. In addition, Ca was found to be most effective in inhibiting the rate of ATP-promoted ouabain binding when Na and K were present together than when either was present alone. Na:K exchange was found to be more sensitive to the concentration of Mgi than Na:Na exchange; at low [Mg]i Na:K exchange could be stimulated without changing the extent of Na:Na exchange. These results are consistent with the idea that conformational states of the pump complex are directly influenced by [Mg]i.  相似文献   

18.
The effects of mono- and di-valent cations and the nonhydrolyzable guanyl nucleotide derivative 5'-guanylimidodiphosphate (Gpp(NH)p) on the binding of the selective, high affinity mu-opiate receptor agonist, [3H]DAGO ([3H]Tyr-D-Ala-Gly-Mephe-Gly-ol), to rat brain membranes were studied in a low ionic strength 5 mM Tris-HCl buffer. Na+ and Li+ (50 mM) maximally increased [3H]DAGO binding (EC50 values for Na+, 2.9 mM and Li+, 6.2 mM) by revealing a population of low affinity binding sites. The density of high affinity [3H]DAGO binding sites was unaffected by Na+ and Li+, but was maximally increased by 50 mM K+ and Rb+ (EC50 values for K+, 8.5 mM and Rb+, 12.9 mM). Divalent cations (Ca2+, Mg2+; 50 mM) inhibited [3H]DAGO binding. Gpp(NH)p decreased the affinity of [3H]DAGO binding, an effect that was enhanced by Na+ but not by K+. The binding of the mu-agonist [3H]dihydromorphine was unaffected by 50 mM Na+ in 5 mM Tris-HCl. In 50 mM Tris-HCl, Na+ (50 mM) inhibited [3H]DAGO binding by decreasing the density of high affinity binding sites and promoting low affinity binding. The effects of Na+ in 5 mM and 50 mM Tris-HCl were also investigated on the binding of other opiate receptor agonists and antagonists. [3H]D-Ala-D-Leu-enkephalin binding was increased and inhibited. [3H]etorphine binding increased and was unchanged, and both [3H]bremazocine and [3H]naloxone binding increased by 50 mM Na+ in 5 mM and 50 mM Tris-HCl, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We examined the effects of quinidine, amiloride and Li+ on the kinetics of Na+-H+ exchange in microvillus membrane vesicles isolated from the rabbit renal cortex. Quinidine reversibly inhibited the initial rate of Na+-H+ exchange (I50 200 microM). The plot of 1/V versus [quinidine] was curvilinear, with Hill coefficient greater than 1.0, indicating that the drug interacts at two or more inhibitory sites or at a single site on at least two different conformations of the transporter. Quinidine decreased the Vmax for Na+-H+ exchange and increased the Km for Na+, indicating a mixed-type mechanism of inhibition. In contrast, plots of 1/V versus [amiloride] and 1/V versus [Li+] were linear, indicating single inhibitory sites; amiloride and Li+ each increased the Km for Na+ with no effect on Vmax, indicating a competitive mechanism of inhibition. Addition of Li+ increased the intercept with no change in slope of the 1/V versus [amiloride] plot, indicating that Li+ and amiloride are mutually exclusive inhibitors of Na+-H+ exchange. Addition of quinidine increased the slopes of the plots of 1/V versus [amiloride] and 1/V versus [Li+], indicating that the binding of quinidine is not mutually exclusive with the binding of amiloride and Li+. Results from this and previous studies are consistent with the concept that the inhibitor amiloride and the transportable substrates Na+, H+, Li+, and NH+4 all mutually compete for binding to a single site, the external transport site of the renal Na+-H+ exchanger. However, our findings indicate that quinidine interacts with the Na+-H+ exchanger on at least one additional site that is not shared by Na+, Li+, or amiloride.  相似文献   

20.
The Na/K/2Cl cotransport system in the avian erythrocyte can be activated by agents that raise intracellular cAMP suggesting the involvement of cAMP-dependent protein kinase (cAMP-PK) in its regulation. Another group of stimuli including fluoride and hypertonicity stimulate cotransport via cAMP-independent means. To further investigate the role of phosphorylation in these processes, we examined the effects of protein kinase inhibitors of 8 (p-Cl-phenylthio)-cAMP (cpt-cAMP), fluoride and hypertonic activation of cotransport in duck red cells, and [3H]bumetanide binding to isolated membranes. Preincubation of cells with the kinase inhibitors K-252a (Ki approximately 1.6 microM) and H-9 (Ki approximately 100 microM) blocked cpt-cAMP activation of bumetanide-sensitive 86Rb influx and bumetanide binding. These inhibitors also led to a rapid deactivation of cotransport and decrease in bumetanide binding when added to cells maximally stimulated by cpt-cAMP. K-252a and H-9 inhibited cotransport activation by cAMP-independent stimuli, but 10-fold higher concentrations were required, implying the involvement of a cAMP-independent phosphorylation process in the mechanism of action of these agents. Removal of stimuli that elevate cAMP leads to a rapid reversal of cotransport indicating the presence of active protein phosphatases in these cells. The protein phosphatase inhibitor okadaic acid (OA, EC50: 630 nM) stimulated both Na/K/2Cl cotransport and bumetanide binding to membranes. As with fluoride and hypertonic stimulation, the OA effect was inhibited only at relatively high concentrations of K-252a. Phosphorylation of the membrane skeletal protein goblin (Mr 230,000) at specific cAMP-dependent sites was used as an in situ marker for the state of activation of cAMP-PK. Goblin phosphorylation at these sites was increased by norepinephrine and cpt-cAMP and rapidly reversed by K-252a and H-9, confirming that both inhibitors do block cAMP-PK activity. While OA markedly increased overall phosphorylation of many erythrocyte membrane proteins, including goblin, it did not affect goblin phosphorylation at specific cAMP-dependent sites. These results implicate a cAMP-independent protein kinase in the mediation of the OA effect on cotransport and bumetanide binding. The bumetanide-binding component of the avian erythrocyte cotransporter, an Mr approximately 150,000 protein that can be photolabeled with the bumetanide analog [3H]4-benzoyl-5-sulfamoyl-3-(3-thenyloxy)-benzoic acid was found to be a phosphoprotein. These results strongly support the hypothesis that phosphorylation and dephosphorylation, possibly of the Na/K/2Cl cotransporter itself, regulates the activity of  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号