首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
  总被引:1,自引:0,他引:1  
A plant's responses to attack from particular pathogens and herbivores may result in resistance to subsequent attack from the same species, but may also affect different species. Such a cross-resistance, called immunization or vaccination, can benefit the plant, if the fitness consequences of attack from the initial attacker are less than those from subsequent attackers. Here, we report an example of naturally occurring vaccination of the native tobacco plant, Nicotiana attenuata, against Manduca hornworms by prior attack from the mirid bug, Tupiocoris notatus (Dicyphus minimus), which results from the elicitation of two categories of induced plant responses. First, attack from both herbivore species causes the plants in nature to release predator-attracting volatile organic compounds (VOCs), and the attracted generalist predator, Geocoris pallens, preferentially attacks the less mobile hornworm larvae. Second, attack from both mirids and hornworms increases the accumulation of secondary metabolites and proteinase inhibitors (PIs) in the leaf tissue, which is correlated with the slow growth of Manduca larvae. Mirid damage does not significantly reduce the fitness of the plant in nature, whereas attack from the hornworm reduces lifetime seed production. Consequently, plants that are attacked by mirids realize a significant fitness advantage in environments with both herbivores. The combination of growth-slowing direct defenses and predator-attracting indirect defenses results in greater hornworm mortality on mirid-attacked plants and provides the mechanism of the vaccination phenomenon.  相似文献   

3.
Induced resistance to biotic attackers is thought to be mediated by responses elicited by jasmonic acid (JA), a subset of which are lipoxygenase 3 (LOX3) dependent. To understand the importance of LOX3-mediated insect resistance, we analysed the performance of Manduca sexta larvae on wild-type (WT) and on isogenic Nicotiana attenuata plants silenced in NaLOX3 expression and JA signalling, and we used Waldbauer nutritional indices to measure the pre- and post-ingestive effects. LOX3-mediated defenses reduced larval growth, consumption and frass production. These defenses reduced how efficiently late-instar larvae converted digested food to body mass (ECD). In contrast, LOX3-mediated defenses decreased approximate digestibility (AD) in early instar larvae without affecting the ECD and total food consumption. Larvae of all instars feeding on defended WT plants behaviourally compensate for their reduced body mass by consuming more food per unit of body mass gain. We suggest that larvae feeding on plants silenced in NaLOX3 expression (as-lox) initially increase their AD, which in turn enables them to consume more food in the later stages and consequently, to increase their ECD and efficiency of conversion of ingested food (ECI). We conclude that N. attenuata's oxylipin-mediated defenses are important for resisting attack from M. sexta larvae, and that Waldbauer nutritional assays reveal behavioural and physiological counter responses of insects to these plant defenses.  相似文献   

4.
5.
Lei Wang  Jianqiang Wu 《遗传学报》2013,40(12):597-606
The plant hormone jasmonic acid (JA) plays a central role in plant defense against herbivores. Herbivore damage elicits a rapid and transient JA burst in the wounded leaves and JA functions as a signal to mediate the accumulation of various secondary metabolites that confer resistance to herbivores. Nicotiana attenuata is a wild tobacco species that inhabits western North America. More than fifteen years of study and its unique interaction with the specialist herbivore insect Manduca sexta have made this plant one of the best models for studying plant-herbivore interactions. Here we review the recent progress in understanding the elicitation of JA accumulation by herbivore-specific elicitors, the regulation of JA biosynthesis, JA signaling, and the herbivore-defense traits in N. attenuata.  相似文献   

6.
Many plants employ induced responses against generalist herbivores. Specialist herbivores, however, may employ several mechanisms to overcome the negative effects of induced plant defenses. Here we test how the behavior and development of specialist Manduca sexta larvae are affected by induced responses in their natural host plant Nicotiana attenuata. On a spatial scale relevant to both the plant and the herbivore, we first determined how methyl jasmonate (MeJA)-induced responses, such as increased nicotine production, affect the tendency of larvae to leave induced plants. When larvae were allowed to move between two plants planted in one pot, they left an MeJA-treated plant faster than a control plant. When both plants in the pot were MeJA-treated, the larvae developed more slowly than when both plants were uninduced, or when the larvae had the opportunity to move to an uninduced neighbor. The sooner larvae moved from an MeJA-treated plant to an untreated neighbor, the larger the body mass they attained. This demonstrates that M. sexta larvae can compensate behaviorally for the deleterious effects of induced plant responses. These effects were observed in plants grown under both low and high N supply rates, though the effects were more pronounced under high N. To examine the consequences of the timing and the direction of the host plant switching behavior for larval development, neonate larvae were fed leaves excised from induced and uninduced plants. Larvae confined to MeJA-treated leaves had higher mortality rates and grew slower than larvae fed only control leaves. This demonstrates that MeJA-induced responses decrease growth and development of specialist herbivores that do not have the behavioral option of moving to an uninduced plant. The sooner the larvae were switched to MeJA-treated leaves, the slower their development compared to larvae fed only uninduced leaves. In contrast, the sooner larvae fed MeJA-treated leaves were switched to control leaves, the faster they developed. Again the effects of MeJA treatment were stronger in plants grown under high N supply. We propose that induced plants growing in close competition with an uninduced conspecific may offset the fitness costs of these induced responses and perhaps obtain a fitness benefit by motivating herbivores to move to their neighboring competitors. Received: 25 March 1999 / Accepted: 8 October 1999  相似文献   

7.
8.
  总被引:1,自引:0,他引:1  
The attraction of natural enemies of herbivores by volatile organic compounds as an induced indirect defence has been studied in several plant systems. The evidence for their defensive function originates mainly from laboratory studies with trained parasitoids and predators; the defensive function of these emissions for plants in natural settings has been rarely demonstrated. In native populations and laboratory Y-tube choice experiments with transgenic Nicotiana attenuata plants unable to release particular volatiles, we demonstrate that predatory bugs use terpenoids and green leaf volatiles (GLVs) to locate their prey on herbivore-attacked plants. By attracting predators with volatile signals, this native plant reduces its herbivore load – demonstrating the defensive function of herbivore-induced volatile emissions. However, plants producing GLVs are also damaged more by flea beetles. The implications of these conflicting ecological effects for the evolution of induced volatile emissions and for the development of sustainable agricultural practices are discussed.  相似文献   

9.
    
Baldwin's critique raises some valid points. However, none invalidates our main findings of correlations between leaf and floral defences, and induction of nectar alkaloids. We believe our study successfully demonstrated linkages between leaf and floral traits, and we hope it inspires further research in multiple systems and settings.  相似文献   

10.
    
Different plant feeders, including insects and parasitic nematodes, can influence each other by triggering systemic changes in their shared host plants. In most cases, however, the underlying mechanisms are unclear, and the consequences for plant fitness are not well understood. We studied the interaction between leaf feeding Manduca sexta caterpillars and root parasitic nematodes in Nicotiana attenuata. Simulated M. sexta attack increased the abundance of root parasitic nematodes in the field and facilitated Meloidogyne incognita reproduction in the glasshouse. Intact jasmonate biosynthesis was found to be required for both effects. Flower counts revealed that the jasmonate‐dependent facilitation of nematode infestation following simulated leaf attack reduces the plant's reproductive potential to a greater degree than would be expected from the additive effects of the individual stresses. This work reveals that jasmonates mediate the interaction between a leaf herbivore and root parasitic nematodes and illustrates how plant‐mediated interactions can alter plant's reproductive potential. The selection pressure resulting from the demonstrated fitness effects is likely to influence the evolution of plant defense traits in nature.  相似文献   

11.
    
Depending on geographical location, plants are exposed to variable amounts of UVB radiation and herbivore attack. Because the role(s) of UVB in the priming and/or accumulation of plant defence metabolites against herbivores are not well understood, we used field‐grown Nicotiana attenuata plants to explore the effects of UVB on herbivore performance. Consistent with previous reports, UVB‐exposed plants accumulated higher levels of ultraviolet (UV)‐absorbing compounds (rutin, chlorogenic acid, crypto‐chlorogenic acid and dicaffeoylspermidine). Furthermore, UVB increased the accumulation of jasmonic acid, jasmonoyl‐L‐isoleucine and abscisic acid, all phytohormones which regulate plant defence against biotic and abiotic stress. In herbivore bioassays, N. attenuata plants experimentally protected from UVB were more infested by mirids in three consecutive field seasons. Among defence metabolites measured, 17‐hydroxygeranyllinalool diterpene glycosides (HGL‐DTGs) showed strongly altered accumulation patterns. While constitutive HGL‐DTGs levels were higher under UVB, N. attenuata plants exposed to mirid bugs (Tupiocoris notatus) had still more HGL‐DTGs under UVB, and mirids preferred to feed on HGL‐DTGs‐silenced plants when other UVB protecting factors were eliminated by UVB filters. We conclude that UVB exposure not only stimulates UV protective screens but also affects plant defence mechanisms, such as HGL‐DTGs accumulation, and modulates ecological interactions of N. attenuata with its herbivores in nature.  相似文献   

12.
When attacked by herbivores, plants produce toxic secondary metabolites that function as direct defenses, as well as indirect defenses that attract and reward predators of the offending herbivores. These indirect defenses include both nutritive rewards such as extra floral nectar, as well as informational rewards, such as the production and release of volatile compounds that betray the location of feeding herbivores to predators. Herbivory of Nicotiana attenuata by the tobacco hornworm (Manduca larvae) alters the volatile profiles of both the plant and larval headspace. Herbivory-elicited specific changes in the volatile profiles are detected by arthropod predators of Manduca larvae. The known predators that perceive volatile cues induced by Manduca herbivory of N. attenuata are insects that target Manduca at early developmental stages, when the larvae are still small; large, late-instar larvae may have outgrown these predation risks. However, here we offer evidence that branched chain aliphatic acids derived from the digestion of plant O-acyl sugars from trichomes may betray Manduca larvae to lizard predators during late developmental stages as well.  相似文献   

13.
14.
    
To defend themselves against herbivore attack, plants produce secondary metabolites, which are variously inducible and constitutively deployed, presumably to optimize their fitness benefits in light of their fitness costs. Three phytohormones, jasmonates (JA) and their active forms, the JA-isoleucine (JA-Ile) and ethylene (ET), are known to play central roles in the elicitation of induced defenses, but little is known about how this mediation changes over ontogeny. The Optimal Defense Theory (ODT) predicts changes in the costs and benefits of the different types of defenses and has been usefully extrapolated to their modes of deployment. Here we studied whether the herbivore-induced accumulation of JA, JA-Ile and ET changed over ontogeny in Nicotiana attenuata, a native tobacco in which inducible defenses are particularly well studied. Herbivore-elicited ET production changed dramatically during six developmental stages, from rosette through flowering, decreasing with the elongation of the first corollas during flower development. This decrease was largely recovered within a day after flower removal by decapitation. A similar pattern was found for the herbivore-induced accumulation of JA and JA-Ile. These results are consistent with ODT predictions and suggest that the last steps in floral development control the inducibility of at least three plant hormones, optimizing defense-growth tradeoffs.  相似文献   

15.
    
Herbivore species sharing a host plant often compete. In this study, we show that host plant-mediated interaction between two insect herbivores-a generalist and a specialist-results in a sex ratio shift of the specialist's offspring. We studied demographic parameters of the specialist Tupiocoris notatus(Hemiptera: Miridae)when co-infesting the host plant Nicotiana attenuata(Solanaceae) with the generalist leafhopper Empoasca sp.(Hemiptera: Cicadellidae). We show that the usually female-biased sex ratio of T. notatus shifts toward a higher male proportion in the offspring on plants coinfested by Empoasca sp. This sex ratio change did not occur after oviposition, nor is it due differential mortality of female and male nymphs. Based on pyrosequencing and PCR of bacterial 16 S rRNA amplicons, we concluded that sex ratio shifts were unlikely to be due to infection with Wolbachia or other known sex ratio-distorting endosymbionts. Finally, we used transgenic lines of N.attenuata to evaluate if the sex ratio shift could be mediated by changes in general or specialized host plant metabolites. We found that the sex ratio shift occurred on plants deficient in two cytokinin receptors(irCHK2/3).Thus, cytokinin-regulated traits can alter the offspring sex ratio of the specialist T.notatus.  相似文献   

16.
  总被引:2,自引:0,他引:2  
Correlations between traits may constrain ecological and evolutionary responses to multispecies interactions. Many plants produce defensive compounds in nectar and leaves that could influence interactions with pollinators and herbivores, but the relationship between nectar and leaf defences is entirely unexplored. Correlations between leaf and nectar traits may be mediated by resources and prior damage. We determined the effect of nutrients and leaf herbivory by Manduca sexta on Nicotiana tabacum nectar and leaf alkaloids, floral traits and moth oviposition. We found a positive phenotypic correlation between nectar and leaf alkaloids. Herbivory induced alkaloids in nectar but not in leaves, while nutrients increased alkaloids in both tissues. Moths laid the most eggs on damaged, fertilized plants, suggesting a preference for high alkaloids. Induced nectar alkaloids via leaf herbivory indicate that species interactions involving leaf and floral tissues are linked and should not be treated as independent phenomena in plant ecology or evolution.  相似文献   

17.
18.
19.
    
Various subspecies of the gram-positive bacterium Bacillus thuringiensis are known to produce a wide array of insecticidal crystal proteins (ICPs) upon sporulation. These ICPs act primarily on the brush border of midgut epithelial cells of susceptible larvae. Recently, a protein of 210 kDa, isolated from the midgut of Manduca sexta, has been demonstrated to bind the Cry1Ab toxin produced by B. thuringiensis subsp. berliner and is therefore postulated to be involved in mediating the toxicity of Cry1Ab. The cDNA encoding the 210 kDa protein, termed BT-R1 (Bacillus thuringiensis receptor-1), was recently cloned, and shows limited homology to the cadherin superfamily of proteins. Quite naturally, there is a great deal of interest in the characterization of BT-R 1 , the gene encoding the 210 kDa Cry1Ab binding protein. The studies presented here involve the use of various restriction fragments prepared from the cDNA encoding BT-R1 as probes of Southern blots bearing M. sexta genomic DNA cleaved with a variety of restriction endonucleases. These Southern blot data reveal that there are two discrete regions within the M. sexta genome which encode sequences homologous to BT-R1. On the basis of the signal intensities seen on Southern blots, it appears that only one of these genes encodes BT-R1, whereas the other is a closely related homologue. Received: 27 March 1997 / Accepted: 30 June 1997  相似文献   

20.
Insect resistance of transgenic tobacco expressing an insect chitinase gene   总被引:24,自引:0,他引:24  
Chitinase expression in the insect gut normally occurs only during moulting, where the chitin of the peritrophic membrane is presumably degraded. Thus, insects feeding on plants that constitutively express an insect chitinase gene might be adversely affected, owing to an inappropriately timed exposure to chitinase. This hypothesis was tested by introducing a cDNA encoding a tobacco hornworm (Manduca sexta) chitinase (EC 3.2.1.14) into tobacco via Agrobacterium tumefaciens-mediated transformation. A truncated but enzymatically active chitinase was present in plants expressing the gene. Segregating progeny of high-expressing plants were compared for their ability to support growth of tobacco budworm (Heliothis virescens) larvae and for feeding damage. Both parameters were significantly reduced when budworms fed on transgenic tobacco plants expressing high levels of the chitinase gene. In contrast, hornworm larvae showed no significant growth reduction when fed on the chitinase-expressing transgenics. However, both budworm and hornworm larvae, when fed on chitinase-expressing transgenic plants coated with sublethal concentrations of a Bacillus thuringiensis toxin, were significantly stunted relative to larvae fed on toxin-treated non-transgenic controls. Foliar damage was also reduced. Plants expressing an insect chitinase gene may have agronomic potential for insect control  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号