首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Attempts to differentiate Erwinia carotovora subsp. atroseptica (Eca) from Erwinia carotovora subsp. carotovora (Ecc) by indirect ELISA using polyclonal antisera against the former bacterium were unsuccessful. However, when bacterial cells were preincubated with an antiserum against Eca serogroup I and excess serum washed away prior to coating on micro-ELISA plates, specificity was improved. This modified indirect ELISA was able to separate Eca serogroups I, XVIII and XXII from all the Ecc serogroups tested. Cross adsorption of the antiserum with Ecc serogroup XXIX resulted in greatly reduced absorbance values for all strains/serogroups except Eca serogroups I and XXII. Cross adsorption with the homologous Eca strain reduced absorbance values for all strains/serogroups. It is suggested that the differentiation of Eca serogroups I and XXII obtained with the modified indirect ELISA could be attributed to the removal of antibodies cross reacting to soluble antigens and the retention of antibodies to specific cell surface antigens.  相似文献   

2.
The serological and biochemical characteristics of 32 Erwinia carotovora subsp. atroseptica strains from potato were compared with 48 other pectolytic Erwinia strains. Biochemical characteristics were examined by the API 20E and API 50CHE systems. Numerical analysis using the Euclidean distance coefficients and clustering by the unweighted average pair group method indicated that these E. carotovora subsp. atroseptica strains formed a distinct cluster (subphenon A1) that could be differentiated from other E. carotovora strains. Three non-potato strains also belonged to this group; two of these were from tomato and the other from Chinese cabbage. Named E. carotovora subsp. atroseptica strains from other hosts clustered into other phenons. Sixty-three per cent of subphenon A1 strains tested in this study typed into serogroup I. One potato strain in another phenon also typed into this serogroup. The subphenon A1 strains that did not type into serogroup I typed into serogroups XVIII, XX, or XXII. Many of these strains, however, expressed several different O antigens which were also expressed by E. carotovora strains in other phenons.  相似文献   

3.
The development and use of monoclonal antibodies for detection of Erwinia   总被引:2,自引:0,他引:2  
M. VERNON-SHIRLEY AND R. BURNS. 1992. Three monoclonal antibodies (McAb), which reacted specifically with Erwinia carotovora , were produced. Monoclonal antibody 14/8.6 reacted with serogroup I/3390 but not with two other serogroups of E.c. subsp. atroseptica nor with 31 serogroups of E.c. subsp. carotovora ; McAb 14/2 reacted with all 34 serogroups; and McAb 14/8.6 was as sensitive as a commercially produced polyclonal antiserum in detecting E.c. subsp. atroseptica by enzyme-linked immunosorbent assay.  相似文献   

4.
Lipopolysaccharides were purified from 51 strains of Erwinia carotovora subsp. carotovora, atroseptica and betavasculorum representing 12 different serogroups. Analysis of the lipopolysaccharides by SDS-PAGE showed that, irrespective of the strain or serogroup from which they were extracted, the lipopolysaccharides were composed of up to 30 components. The mobility of the components decreased in a regular fashion giving a ladder-like appearance on the gel. The relative mobilities of components of lipopolysaccharide from each serogroup was constant so that each serogroup gave an easily identifiable ladder profile. The potato pathogenic serogroups I, XVIII, XX and XXII were examined in detail. Of 20 strains received as serogroup I, 18 gave a pattern identical to an authentic serogroup I strain. The two strains which did not give the same pattern were shown by immunological tests not to be serogroup I. Five atroseptica strains of serogroup XXII gave a distinct pattern characteristic of the serogroup while atroseptica strains of serogroups XVIII (four strains) and XX (five strains) gave patterns that could not be distinguished from each other. Analysis of lipopolysaccharides by SDS-PAGE has been shown to be an alternative to immunological tests to identify serogroups of Erwinia carotovora associated with blackleg. It is also capable of differentiating these serogroups from erwinia serogroups not normally regarded as causing blackleg. The analysis has the advantage that, irrespective of serogroup, a positive result is always obtained.  相似文献   

5.
Serological, biochemical and physiological characteristics of 81 strains of Erwinia carotovora subsp. atroseptica ( Eca ) and 67 strains of subsp. carotovora ( Ecc ) from potato, isolated in Spain and from several international collections, have been studied. Ouchterlony double diffusion (ODD), indirect immunofluorescence (IIF) and indirect enzyme-linked immunosorbent assay (ELISA) were the methods used. The antibodies were polyclonals from eight antisera prepared with Eca serogroup I and Ecc serogroup III and two monoclonal antibodies (MAbs), 4G4 from Spain and 4F6 from Canada, both prepared with Eca strains of serogroup I. Serogroup I for Eca and several serogroups for Ecc were the most commonly found in the collection studied. Serological relationships between Eca and Ecc independently of the serogroups were observed by IIF and ELISA using polyclonal antibodies. Common epitopes between all Eca and Ecc studied were detected. Both MAbs recognized epitopes in Eca strains of serogroups I and XXII in IIF and ELISA but they did not react with strains of other serogroups nor Ecc strains. The pattern of reaction against the strains assayed was rather similar but not identical indicating that they represent two different and well conserved epitopes. This study confirms the serological complexity of Ecc and Eca and gives information about the serological probes for detection of both subspecies.  相似文献   

6.
The soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi are important pathogens of potato and other crops. However, the taxonomy of these pathogens, particularly at subspecies level, is unclear. An investigation using amplified fragment length polymorphism (AFLP) fingerprinting was undertaken to determine the taxonomic relationships within this group based on their genetic relatedness. Following cluster analysis on the similarity matrices derived from the AFLP gels, four clusters (clusters 1 to 4) resulted. Cluster 1 contained Erwinia carotovora subsp. carotovora (subclusters 1a and 1b) and Erwinia carotovora subsp. odorifera (subcluster 1c) strains, while cluster 2 contained Erwinia carotovora subsp. atroseptica (subcluster 2a) and Erwinia carotovora subsp. betavasculorum (subcluster 2b) strains. Clusters 3 and 4 contained Erwinia carotovora subsp. wasabiae and E. chrysanthemi strains, respectively. While E. carotovora subsp. carotovora and E. chrysanthemi showed a high level of molecular diversity (23 to 38% mean similarity), E. carotovora subsp. odorifera, E. carotovora subsp. betavasculorum, E. carotovora subsp. atroseptica, and E. carotovora subsp. wasabiae showed considerably less (56 to 76% mean similarity), which may reflect their limited geographical distributions and/or host ranges. The species- and subspecies-specific banding profiles generated from the AFLPs allowed rapid identification of unknown isolates and the potential for future development of diagnostics. AFLP fingerprinting was also found to be more differentiating than other techniques for typing the soft rot erwinias and was applicable to all strain types, including different serogroups.  相似文献   

7.
AIMS: To determine the characteristics of bacteria associated with the blackleg disease of potato in Brazil and compare them with species and subspecies of pectolytic Erwinia. METHODS AND RESULTS: Biochemical and physiological characteristics of 16 strains from blackleg-infected potatoes in State of Rio Grande do Sul, Brazil, were determined and differentiated them from all the E. carotovora subspecies and E. chrysanthemi. Pathogenicity and maceration ability of the Brazilian strains were greater than those of E. carotovora subsp. atroseptica, the causal agent of potato blackleg in temperate zones. Analyses of serological reaction and fatty acid composition confirmed that the Brazilian strains differed from E. carotovora subsp. atroseptica, but the sequence of 16S rDNA gene and the 16S-23S intergenic spacer (IGS) region confirmed the Brazilian strains as pectolytic Erwinia. Restriction analysis of the IGS region differentiated the Brazilian strains from the subspecies of E. carotovora and from E. chrysanthemi. A unique SexAI restriction site in the IGS region was used as the basis for a primer to specifically amplify DNA from the Brazilian potato blackleg bacterium in PCR. CONCLUSIONS: The bacterium that causes the blackleg disease of potato in Brazil differs from E. carotovora subsp. atroseptica, the blackleg pathogen in temperate zones. It also differs from other subspecies of E. carotovora and from E. chrysanthemi and warrants status as a new subspecies, which would be appropriately named E. carotovora subsp. brasiliensis. SIGNIFICANCE AND IMPACT OF THE STUDY: The blackleg disease of potato is caused by a different strain of pectolytic Erwinia in Brazil than in temperate potato-growing regions. The Brazilian strain is more virulent than E. carotovora subsp. atroseptica, the usual causal agent of potato blackleg.  相似文献   

8.
Two methods to determine numbers of the blackleg pathogen, Erwinia carotovora subsp. atroseptica, in tuber peel extract were compared; (1) growth and cavity formation on crystal violet pectate (CVP) medium (Pérombelon, Lumb & Hyman, 1987) and (2) immunofluorescent colony (IFC) staining (Van Vuurde & Roozen, 1990) using an antiserum against the bacterium conjugated with fluorescein isothiocyanate. Detection, identification and quantification of the bacterium based on the differential effect of temperature on growth in the CVP method were severely restricted and in some cases could not be done at low peel extract dilutions containing > 106 saprophytic bacteria ml“1 and > 103 cells ml-1 of E. carotovora subsp. carotovora. In contrast, although recovery was c. 50% relative to growth of E.c. atroseptica alone on nutrient agar, numbers of the bacteria could be determined by the IFC method regardless of numbers of saprophytic bacteria and E.c. carotovora present. Moreover, the tedium of counting colonies on a UV microscope could be avoided by automation using an imaging system on photograph film negatives of the microscope fields. Readily accessible tubers from the top layer of one tonne boxes in commercial stores were c. 10 times less contaminated than those from the middle of the boxes. For the two methods of peel extract preparation examined, the estimated sample size needed with an allowable error of log1010 E.c. atroseptica cells ml“1 extract with 95% confidence, was c. five tubers per box and 14 boxes for extract prepared from individual tubers and c. three lots of 10 tubers per box and 10 boxes for extract from 10 pooled tubers. A blackleg potential index for seed stocks was proposed based on the summation of the weighted number of individually tested tubers in different classes of contamination level.  相似文献   

9.
Current identification methods for the soft rot erwinias are both imprecise and time-consuming. We have used the 16S-23S rRNA intergenic transcribed spacer (ITS) to aid in their identification. Analysis by ITS-PCR and ITS-restriction fragment length polymorphism was found to be a simple, precise, and rapid method compared to current molecular and phenotypic techniques. The ITS was amplified from Erwinia and other genera using universal PCR primers. After PCR, the banding patterns generated allowed the soft rot erwinias to be differentiated from all other Erwinia and non-Erwinia species and placed into one of three groups (I to III). Group I comprised all Erwinia carotovora subsp. atroseptica and subsp. betavasculorum isolates. Group II comprised all E. carotovora subsp. carotovora, subsp. odorifera, and subsp. wasabiae and E. cacticida isolates, and group III comprised all E. chrysanthemi isolates. To increase the level of discrimination further, the ITS-PCR products were digested with one of two restriction enzymes. Digestion with CfoI identified E. carotovora subsp. atroseptica and subsp. betavasculorum (group I) and E. chrysanthemi (group III) isolates, while digestion with RsaI identified E. carotovora subsp. wasabiae, subsp. carotovora, and subsp. odorifera/carotovora and E. cacticida isolates (group II). In the latter case, it was necessary to distinguish E. carotovora subsp. odorifera and subsp. carotovora using the alpha-methyl glucoside test. Sixty suspected soft rot erwinia isolates from Australia were identified as E. carotovora subsp. atroseptica, E. chrysanthemi, E. carotovora subsp. carotovora, and non-soft rot species. Ten "atypical" E. carotovora subsp. atroseptica isolates were identified as E. carotovora subsp. atroseptica, subsp. carotovora, and subsp. betavasculorum and non-soft rot species, and two "atypical" E. carotovora subsp. carotovora isolates were identified as E. carotovora subsp. carotovora and subsp. atroseptica.  相似文献   

10.
The 2 Erwinia carotovora var. atroseptica serogroups and 2 out of 16 E. carotovora var. carotovora serogroups previously established on the basis of diffusible somatic antigens were shown to be serologically related by agglutination procedures using whole cells. The common agglutinating antigen in serogroups I, III, V, and XVIII was heat labile and identified as the bacterial flagella by the fluorescent antibody staining procedure. A few strains in serogorups I and III apparently lacked flagella altogether. Fluorescent antibody staining of whole cells also confirmed that the cell wall antigens of serogroups I, II, and XVIII were related and that the cell wall antigens of serogroups III and V were not related to each other or to the other serogroups.  相似文献   

11.
Strains of phytopathogenic soft rot Erwinia spp. were examined for haemagglutinin (HA) production. Mannose-sensitive HA was found only in five of 15 strains of E. carotovora subsp. carotovora. Mannose-resistant HA (MRHA) was found in 12 of 15 strains of E.c. carotovora, ten of 13 strains of E.c. subsp. atroseptica and the single strain of E.c. subsp. betavasculorum, as well as all seven strains of E. chrysanthemi. MRHA, detectable only in a microtitre tray HA assay was of either broad- or narrow-spectrum activity when examined against blood of seven different animal species and could be inhibited by the beta-galactoside asialofetuin. Fimbriae of ca 10 nm diameter were found on MRHA(+) bacteria E.c. carotovora and E.c. atroseptica.  相似文献   

12.
The soft rot coliform bacteria Erwinia carotovora subsp. carotovora and E. carotovora subsp. atroseptica were isolated by an enrichment method from the rhizosphere of many weed species and crop plants, collected in commercial potato fields either currently in potatoes or in a different crop as part of the rotation. Erwinia carotovora was isolated from 24 plant species in Colorado and 47 species in Scotland. Weeds contaminated with E. carotovora were found in fields growing other crops in which potatoes had not been grown for 1–2 and sometimes much longer. Weeds collected from virgin land in Colorado were not contaminated with E. carotovora but in Scotland virgin soils containing weed roots yielded E. carotovora subsp. carotovora . In general, the numbers of contaminated weeds rose from nil or low levels in spring and early summer to considerably higher levels during mid-season, and fell to progressively lower levels later. Erwinia carotovora subsp. carotovora was the predominant organism recovered from the rhizosphere, but E. carotovora subsp. atroseptica was less common, especially in Scotland, and its incidence varied in different seasons depending on factors such as temperature and moisture conditions. The bacteria could apparently persist in the root zone for an extended period of time and may be a source of inoculum to contaminate soft rot erwinia-free seed potato stocks; the origin of the bacteria was uncertain.  相似文献   

13.
Haemagglutinins and fimbriae of soft rot Erwinias   总被引:1,自引:1,他引:0  
A. WALLACE AND M.C.M. PÉROMBELON. 1992. Strains of phytopathogenic soft rot Erwinia spp. were examined for haemagglutinin (HA) production. Mannose-sensitive HA was found only in five of 15 strains of E. carotovora subsp. carotovora. Mannose-resistant HA (MRHA) was found in 12 of 15 strains of E.c. carotovora, ten of 13 strains of E.c. subsp. atroseptica and the single strain of E.c. subsp. betavasculorum, as well as all seven strains of E. chrysanthemi. MRHA, detectable only in a microtitre tray HA assay was of either broad- or narrow-spectrum activity when examined against blood of seven different animal species and could be inhibited by the β-galactoside asialofetuin. Fimbriae of ca 10 nm diameter were found on MRHA+ bacteria of E.c. carotovora and E.c. atroseptica.  相似文献   

14.
Erwinia carotovora subsp. atroseptica is responsible for potato blackleg disease in the field and tuber soft rot during crop storage. The process leading to the disease occurs in two phases: a primary invasion step followed by a maceration step. Bacteria-to-bacteria communication is associated with a quorum-sensing (QS) process based on the production of N-acylhomoserine lactones (HSL). The role of HSL throughout plant infection was analyzed. To this purpose, HSL produced by a specific E. carotovora subsp. atroseptica wild-type strain, which was particularly virulent on potato, were identified. A derivative of this strain that expressed an HSL lactonase gene and produced low amounts of HSL was generated. The comparison of these strains allowed the evaluation of the role of HSL and QS in disease establishment and development. Bacterial growth and motility; activity of proteins secreted by type I, II, and III systems; and hypersensitive and maceration reactions were evaluated. Results indicated that HSL production and QS regulate only those traits involved in the second stage of the host plant infection (i.e., tissue maceration) and hypersensitive response in nonhost tobacco plants. Therefore, the use of QS quenching strategies for biological control in E. carotovora subsp. atroseptica cannot prevent initial infection and multiplication of this pathogen.  相似文献   

15.
Seven monoclonal antibodies (MAbs) to Erwinia carotovora subsp. atroseptica have been produced. One, called 4G4, reacted with high specificity for serogroup I of E. carotovora subsp. atroseptica, the most common serogroup on potato tubers in different serological assays. Eighty-six strains belonging to different E. carotovora subsp. atroseptica serogroups were assayed. Some strains of serogroup XXII also reacted positively. No cross-reactions were observed against other species of plant pathogenic bacteria or 162 saprophytic bacteria from potato tubers. Only one strain of E. chrysanthemi from potato cross-reacted. A comparison of several serological techniques to detect E. carotovora subsp. atroseptica on potato tubers was performed with MAb 4G4 or polyclonal antibodies. The organism was extracted directly from potato peels of artificially inoculated tubers by soaking or selective enrichment under anaerobiosis in a medium with polypectate. MAb 4G4 was able to detect specifically 240 E. carotovora subsp. atroseptica cells per ml by indirect immunofluorescence and immunofluorescence colony staining and after soaking by ELISA-DAS (double-antibody sandwich enzyme-linked immunosorbent assay) after enrichment. The same amount of cells was detected by using immunolectrotransfer with polyclonal antibodies, and E. carotovora subsp. atroseptica and subsp. carotovora were distinguished by the latter technique. ELISA-DAS using MAb 4G4 with an enrichment step also efficiently detected E. carotovora subsp. atroseptica in naturally infected tubers and plants.  相似文献   

16.
Four synthetic cationic peptides, pep6, pep7, pep11 and pep20, were tested alone and in combinations for their antimicrobial activities against economically important plant pathogenic fungi (Phytophthora infestans and Alternaria solani) and bacteria (Erwinia carotovora subsp. carotovora and E. carotovora subsp. atroseptica). In in vitro studies, P. infestans and A. solani were inhibited by all four peptides, while E. carotovora subsp. carotovora and E. carotovora subsp. atroseptica were inhibited only by pep11 and pep20. All peptides completely inhibited P. infestans and A. solani on potato leaves and P. infestans on tubers at concentrations comparable to the in vitro IC50 (effective concentration for 50% growth inhibition) values, suggesting that these peptides are more potent in preventing infection than in inhibiting hyphal growth in vitro. Microscopic observations of P. infestans and A. solani when treated with these peptides revealed hyphal anomalies. In tuber-infectivity assays, pep11 and pep20 reduced bacterial softrot symptoms by 50% at 2.0 to 2.30 microM and by 100% at 20 microM. In assays involving two-way combinations of these peptides, growth inhibitions of fungi and bacteria by the combinations were no more than the sum of growth inhibitions by each peptide when used alone, indicating that they act additively. pep11 and pep20 are not phytotoxic to potato plants at 200 microM. With strong and broad-spectrum antimicrobial activities of pep11 and pep20 against fungi and bacteria, and with no antagonistic activities, the expression of these peptides in transgenic potato plants could lead to enhanced disease resistance against these pathogens.  相似文献   

17.
Erwinia carotovora subsp. atroseptica is a pathogen of potatoes in Europe because of its ability to induce blackleg symptoms early in the growing season. However, E. carotovora subsp. carotovora is not able to produce such severe symptoms under the same conditions. On the basis of the technique described by Straus and Ausubel (Proc. Natl. Acad. Sci. USA 87:1889-1893, 1990), we isolated DNA sequences of E. carotovora subsp. atroseptica 86.20 that were absent from the genomic DNA of E. carotovora subsp. carotovora CH26. Six DNA fragments ranging from ca. 180 to 400 bp were isolated, cloned, and sequenced. Each fragment was further hybridized with 130 microorganisms including 87 E. carotovora strains. One probe was specific for typical E. carotovora subsp. atroseptica strains, two probes hybridized with all E. carotovora subsp. atroseptica strains and with a few E. carotovora subsp. carotovora strains, and two probes recognized only a subset of E. carotovora subsp. atroseptica strains. The last probe was absent from the genomic DNA of E. carotovora subsp. carotovora CH26 but was present in the genomes of many strains, including those of other species and genera. This probe is homologous to the putP gene of Escherichia coli, which encodes a proline carrier. Further use of the probes is discussed.  相似文献   

18.
Seven new genes controlled by the quorum-sensing signal molecule N-(3-oxohexanoyl)-L-homoserine lactone (OHHL) have been identified in Erwinia carotovora subsp. carotovora. Using TnphoA as a mutagen, we enriched for mutants defective in proteins that could play a role in the interaction between E. carotovora subsp. carotovora and its plant hosts, and identified NipEcc and its counterpart in E. carotovora subsp. atroseptica. These are members of a growing family of proteins related to Nep1 from Fusarium oxysporum which can induce necrotic responses in a variety of dicotyledonous plants. NipEcc produced necrosis in tobacco, NipEca affected potato stem rot, and both affected virulence in potato tubers. In E. carotovora subsp. carotovora, nip was shown to be subject to weak repression by the LuxR family regulator, EccR, and may be regulated by the negative global regulator RsmA.  相似文献   

19.
The RP4::mini-Mu plasmid pULB113, transferred from Escherichia coli strain MXR, was stable and transfer proficient in Erwinia amylovora strain EA303, E. carotovora subsp. atroseptica strain ECA12, E. carotovora subsp. carotovora strain ECC193, and E. chrysanthemi strain EC183. The plasmid mobilized an array of Erwinia sp. chromosomal markers (E. amylovora: his+,ilv+,rbs+,ser+,thr+;E. chrysanthemi:arg+,his+,ilv+,leu+; E. carotovora subsp. atroseptica: arg+,gua+,leu+,lys+,pur+,trp+; E. carotovora subsp. carotovora: arg+,gua+,leu+,lys+,out+[export of enzymes],pur+,trp+), suggesting random interactions of the plasmid with the chromosomes. In E. carotovora subsp. carotovora, pULB113-mediated two-factor crosses revealed linkage between three auxotrophic markers and the out loci. The export of pectate lyase, polygalacturonase, and cellulase and the maceration of potato tuber tissue occurred with Out+, but not Out-, strains of E. carotovora subsp. carotovora, indicating the importance of enzyme export in plant tissue maceration. Erwinia sp. donors harboring pULB113 complemented mutations in various biosynthetic and catabolic genes (arg, gal, his, leu, met, pro, pur, thy) in Escherichia coli recA strains. Escherichia coli transconjugants harbored pULB113 primes as indicated by the cotransfer of Erwinia genes and pULB113 markers and a change in plasmid mass. Moreover, the PstI and SmaI cleavage patterns of selected pULB113 primes were different from those of pULB113. pULB113 primes carried DNA insertions ranging from 3 to about 160 kilobases. These findings indicate that pULB113 is useful for in vivo gene cloning and genetic analysis of various enterobacterial phytopathogens.  相似文献   

20.
The RP4::mini-Mu plasmid pULB113, transferred from Escherichia coli strain MXR, was stable and transfer proficient in Erwinia amylovora strain EA303, E. carotovora subsp. atroseptica strain ECA12, E. carotovora subsp. carotovora strain ECC193, and E. chrysanthemi strain EC183. The plasmid mobilized an array of Erwinia sp. chromosomal markers (E. amylovora: his+,ilv+,rbs+,ser+,thr+;E. chrysanthemi:arg+,his+,ilv+,leu+; E. carotovora subsp. atroseptica: arg+,gua+,leu+,lys+,pur+,trp+; E. carotovora subsp. carotovora: arg+,gua+,leu+,lys+,out+[export of enzymes],pur+,trp+), suggesting random interactions of the plasmid with the chromosomes. In E. carotovora subsp. carotovora, pULB113-mediated two-factor crosses revealed linkage between three auxotrophic markers and the out loci. The export of pectate lyase, polygalacturonase, and cellulase and the maceration of potato tuber tissue occurred with Out+, but not Out-, strains of E. carotovora subsp. carotovora, indicating the importance of enzyme export in plant tissue maceration. Erwinia sp. donors harboring pULB113 complemented mutations in various biosynthetic and catabolic genes (arg, gal, his, leu, met, pro, pur, thy) in Escherichia coli recA strains. Escherichia coli transconjugants harbored pULB113 primes as indicated by the cotransfer of Erwinia genes and pULB113 markers and a change in plasmid mass. Moreover, the PstI and SmaI cleavage patterns of selected pULB113 primes were different from those of pULB113. pULB113 primes carried DNA insertions ranging from 3 to about 160 kilobases. These findings indicate that pULB113 is useful for in vivo gene cloning and genetic analysis of various enterobacterial phytopathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号