首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The localization of gamma-aminobutyric acid transaminase (GABA-T), the degrading enzyme for γ-aminobutyric acid, was examined in the striatum and substantia nigra using biochemical techniques. Selective destruction of the nigrostriatal dopaminergic system with 6-hydroxydopamine had no effect on the activity of GABA-T in either the striatum or the substantia nigra, although striatal tyrosine hydroxylase activity was reduced by half. Intrastriatal injection of kainic acid in adult rats resulted in a significant dose-dependent decrease in GABA-T activity in both the striatum and the substantia nigra. The decrease in both of these regions was significantly correlated with the decrease in the GABA synthetic enzyme glutamate decarboxylase (GAD). The intrastriatal injection of kainic acid in ten day old rats did not affect striatal GAD or GABA-T activities, although striatal choline acetyl-transferase activity was reduced by half.It is concluded that the GABA-T activity in the striatum is predominantly localized in neuronal elements, although not, apparently, in cholinergic neurons. Some GABA-T activity is also present in the terminals of the striatonigral neurons. However, the dopaminergic nigrostriatal neurons do not appear to contain GABA-T. It is suggested that high GABA-T activity may be characteristic of GABA neurons.  相似文献   

2.
Intrastriatal injections of kainic acid are known to destroy striatal neurons including many containing choline acetyltransferase (CAT) and glutamic acid decarboxylase (GAD). Using these enzymes as indices of neuronal loss, the neurotoxicity of small doses of kainic acid was found to be influenced by injection time and volume. It was partly blocked by coninjection of some but not all glutamate antagonists or by prior lesioning of the corticostriatal tract. Other adjuvants, drugs, or lesions tested had little modifying effect, except that changes in the dopaminergic system seemed to increase the toxicity towards cholinergic but not GABAnergic systems. High-affinity glutamate accumulation by neostriatal synaptosomes was significantly increased 1–7 days following kainic acid injections. MAO and acetylcholinesterase activities were depressed in kainic acid-lesioned striata but not nearly as much as were CAT and GAD. An indirect mechanism involving glutamate release and inhibition of reuptake is suggested for kainic acid neurotoxicity.  相似文献   

3.
Injections of the neurotoxin kainic acid were made unilaterally at multiple loci in the cerebral cortex of the rat in an attempt to reproduce aspects of the central pathology of Alzheimer's disease. Neurochemical markers of cholinergic and GABAergic function in the cortex and basal forebrain, determined after various intervals, suggested that subsequent to initial destruction of cortical neuronal cell bodies, trans-synaptic retrograde degeneration of cholinergic neurons occurred in the nucleus basalis magnocellularis (NBM) projecting to the cortex.

Contrary to the situation noted after devascularizing cortical lesions, there was no spontaneous recovery from this effect of kainic acid in the ipsilateral NBM. Similarly, these retrograde effects could not be prevented by the administration of the ganglioside GM1. These observations suggest that kainic acid compromises the plastic capacity of this cholinergic projection, perhaps by affecting the production of endogenous trophic factors. This may be of relevance in developing the use of neurotoxins for models of neurodegenerative disease.  相似文献   


4.
Injection of folic acid (FA) into the nucleus substantia innominata (NSI) was found to decrease [3H]quinuclidinyl benzilate ([3H]QNB) binding in the frontal cortex, pyriform cortex, amygdala, and the NSI itself without changing the KD. Binding in the thalamus, caudate nucleus, hippocampus, and substantia nigra was not affected. [3H]Flunitrazepam binding was unchanged in all eight regions studied. Previous work indicates FA injections into the NSI produce epileptiform activity and cause loss of GABAergic and possibly other neurons in the frontal and pyriform cortices, the amygdala, and thalamus. The reductions of [3H]QNB binding in the first three of these regions are interpreted as indicating that many of the neurons lost are cholinoceptive, a finding that supports the previous hypothesis that activation of cholinergic projections from the NSI is an important part of the mechanism of cell loss in these regions.  相似文献   

5.
B L Waszczak  C Hume  J R Walters 《Life sciences》1981,28(21):2411-2420
Rats were given unilateral, intrastriatal injections of kainic acid in order to destroy striatal and pallidal GABAergic projections to the substantia nigra. Two to 3 weeks after the lesions were made, a population of neurons in the substantia nigra pars reticulata was found to be significantly more sensitive to the inhibitory actions of iontophoretically appled GABA, although their responsiveness to iontophoresed glycine was not significantly altered. The increased sensitivity was reflected by a 48% decrease in the IT50 value for GABA. In addition, pars reticulata cells became more sensitive to the inhibitory actions of i.v. muscimol, a GABA agonist. While the change in sensitivity was not statistically significant at 2–3 weeks, cells were markedly more sensitive to i.v. muscimol by 5–6 weeks after the lesions were made. This increased sensitivity was indicated by a 2.5 fold shift to the left in the cumulative dose-response curve and a significant decrease in the ED50 value for muscimol. These results (1) demonstrate that a population of substantia nigra pars reticulata neurons becomes “functionally” supersensitive to GABAergic agents after destruction of the striatonigral GABA pathway, and (2) support the idea that these cells lie postsynaptic to striatonigral GABAergic fibers. The implications of these findings with respect to the etiology and treatment of tardive dyskinesia are discussed.  相似文献   

6.
The occurrence of catechol-O-methyltransferase (COMT) in presynaptic neurons remains controversial. This study utilized dopaminergic and noradrenergic toxins to assess the presence of COMT in the presynaptic neurons originating from the substantia nigra, ventral tegmental area or locus coeruleus. Destruction of dopaminergic and noradrenergic neurons was assessed by measuring the dopamine and noradrenaline content in the projection areas of these neurons. Additionally, COMT protein expression and activity were examined in several projection areas to determine whether there are any changes in COMT values. Colocalization studies were done to identify COMT-containing postsynaptic neurons. Despite successful lesioning of dopaminergic and noradrenergic neurons, no changes in COMT protein expression or activity could be noted. These results strongly suggest that COMT is not present in presynaptic dopaminergic and noradrenergic neurons. There was a high colocalization of COMT with the GABAergic marker of short neurons both in the striatum and cortex but only a weak, if any, with the cholinergic marker in the cortex.  相似文献   

7.
Unilateral injection of 2 μg kainic acid into the substantia nigra of the rat results in a 45% decrease in tyrosine hydroxylase activity in the injected substantia nigra and in the ipsilateral corpus striatum. In contrast, the GABAergic nerve terminals in the substantia nigra are unaffected by this treatment. Injection of kainic acid into the striatum results in a 60% decrement in the activity of glutamate decarboxylase and of endogenous GABA levels in the ipsilateral substantia nigra whereas tyrosine hydroxylase activity remains unchanged; in addition, dopamine-sensitive adenylate cyclase activity in the ipsilateral substantia nigra decreases by 74%. These findings further support the hypothesis that intracerebral injections of kainic acid cause degeneration of neurons with cell bodies near the injection site while sparing axons passing through or terminating in the region.  相似文献   

8.
Abstract: Apolipoprotein E (apoE)-deficient mice provide a useful system for studying the role of apoE in neuronal maintenance and repair. Previous studies revealed specific memory impairments in these mice that are associated with presynaptic derangements in projecting forebrain cholinergic neurons. In the present study we examined whether dopaminergic, noradrenergic, and serotonergic projecting pathways of apoE-deficient mice are also affected and investigated the mechanisms that render them susceptible. The densities of nerve terminals of forebrain cholinergic projections were monitored histochemically by measurements of acetylcholinesterase activity, whereas those of the dopaminergic nigrostriatal pathway, the noradrenergic locus coeruleus cortical projection, and the raphe-cortical serotonergic tract were measured autoradiographically using radioligands that bind specifically to the respective presynaptic transporters of these neuronal tracts. The results obtained revealed that synaptic densities of cholinergic, noradrenergic, and serotonergic projections in specific brain regions of apoE-deficient mice are markedly lower than those of controls. Furthermore, the extent of presynaptic derangement within each of these tracts was found to be more pronounced the further away the nerve terminal is from its cell body. In contrast, the nerve terminal density of the dopaminergic neurons that project from the substantia nigra to the striatum was unaffected and was similar to that of the controls. The rank order of these presynaptic derangements at comparable distances from the respective cell bodies was found to be septohippocampal cholinergic > nucleus basalis cholinergic > locus coeruleus adrenergic > raphe serotonergic ? nigrostriatal dopaminergic, which interestingly is similar to that observed in Alzheimer's disease. These results suggest that two complementary factors determine the susceptibility of brain projecting neurons to apoE deficiency: pathway-specific differences and the distance of the nerve terminals from their cell body.  相似文献   

9.
The turnover rate of gamma-aminobutyric acid (GABA) in the rat striatum was estimated by measuring its accumulation after inhibition of GABA-transaminase (GABA-T) with gabaculine. Intrastriatal injections of 100 micrograms gabaculine induced a rapid and complete inhibition of GABA-T. GABA accumulation was linear with time for at least 60 min (estimated turnover rate = 25 nmol/mg protein/h). The accumulation of GABA after gabaculine administration in animals that had been treated with kainic acid (5 nmol intrastriatally, 7 days) was only 40% of the control value, indicating that a major fraction of the net increase in GABA content induced by gabaculine originates in kainic acid-sensitive neurons. Intrastriatal injection of a mixture of kainic acid (5 nmol) and gabaculine caused a net increase in striatal GABA content significantly greater than that observed in controls, suggesting that neuronal death induced by kainic acid is preceded by a period of increased neuronal activity. Glutamic acid, the putative neurotransmitter for the excitatory corticostriatal pathway, also produced a significant increase in striatal GABA accumulation when injected together with gabaculine. This effect was blocked by the administration of the glutamate receptor antagonist glutamic acid diethyl ester. The interactions between GABAergic neurons and other neurotransmitters present in the striatum were also analyzed.  相似文献   

10.
We have performed intrastriatal injection of thrombin and searched for distant effects in the cell body region. In striatum, thrombin produced a slight loss of striatal neurons as demonstrated by neural nuclei immunostaining – a non-specific neuronal marker – and the expression of glutamic acid decarboxylase 67 mRNA, a specific marker for striatal GABAergic interneurons, the most abundant phenotype in this brain area. Interestingly, striatal neuropil contained many boutons immunostained for synaptic vesicle protein 2 and synaptophysin which colocalize with tyrosine hydroxylase (TH), suggesting a degenerative process with pre-synaptic accumulation of synaptic vesicles. When we studied the effects on substantia nigra, we found the disappearance of dopaminergic neurons, shown by loss of TH immunoreactivity, loss of expression of TH and dopamine transporter mRNAs, and disappearance of FluoroGold-labelled nigral neurons. The degeneration of substantia nigra dopaminergic neurons was produced through up-regulation of cFos mRNA, apoptosis and accumulation of α-synuclein shown by colocalization experiments. Thrombin effects could be mediated by protease-activated receptor 4 activation, as protease-activated receptor 4-activating peptide mimicked thrombin effects. Our results point out the possible relationship between synapse elimination and retrograde degeneration in the nigral dopaminergic system.  相似文献   

11.
A major output nucleus of the basal ganglia is the substantia nigra pars reticulata, which sends GABAergic projections to brainstem and thalamic nuclei. The GABAergic (GABA) neurons are reciprocally connected with nearby dopaminergic neurons, which project mainly to the basal ganglia, a set of subcortical nuclei critical for goal-directed behaviors. Here we examined the impact of motivational states on the activity of GABA neurons in the substantia nigra pars reticulata and the neighboring dopaminergic (DA) neurons in the pars compacta. Both types of neurons show short-latency bursts to a cue predicting a food reward. As mice became sated by repeated consumption of food pellets, one class of neurons reduced cue-elicited firing, whereas another class of neurons progressively increased firing. Extinction or pre-feeding just before the test session dramatically reduced the phasic responses and their motivational modulation. These results suggest that signals related to the current motivational state bidirectionally modulate behavior and the magnitude of phasic response of both DA and GABA neurons in the substantia nigra.  相似文献   

12.
Abstract— Glutaminase activity in rat striatal tissue was not significantly decreased by lesions of the cortico-striatal tract which depressed striatal glutamate uptake by 47% but was markedly decreased following intrastriatal injections of kainic acid. There also appeared to be a linear correlation between glutaminase and glutamic acid decarboxylase activities in the substantia nigra of rats injected intrastriatally with kainic acid. The results suggest that most of the glutaminase activity in these regions is localized in GABAergic structures and provide no evidence for the occurrence of this enzyme in nerve endings of the glutamergic cortico-striatal tract.  相似文献   

13.
Huntington's chorea is a degenerative disorder of the human brain characterized by a marked loss of intrinsic neostriatal neurons. This situation can be reproduced by kainic acid injection in the caudate nucleus. Activity of pars reticulata neurons ipsilateral to the injected neostriatum was studied in normal, control (saline-injected) and lesioned rats. They were identified by electrophysiological and histological criteria (Fig. 1). Results obtained in normal and control rats were very similar (Table I). As previously described, the mean frequency of these neurons was high. An important percentage (respectively 72.5 and 73%) and these neurons presented the characteristics of a regular firing pattern (so called "organized neurons"). Results obtained in kainic acid lesioned rats were significantly different (Table I). The mean frequency was lower and only 11% of reticulata cells remained organized after neostriatal lesion. This important dysfunction may be explained in various ways: The neostriato-nigral pathway's destruction involves both the inhibitory GABAergic tract and the excitatory substance P tract (GALE et al., 1978). Other inputs arising from many structures in the brain continue to exert their own action on SN neurons, resulting in an unbalance in the SN inputs. It is well known that the nigral dopamine influences the neuronal activity of pars reticulata neurons (Ruffieux et Schultz, 1980; Waszczak et Walters, 1983). Doudet et al. (1984 b) previously reported a dysfunction of neuronal activity of dopaminergic cells after striatal lesion. A disturbance in the electrical activity may induce a similar disturbance in the intranigral dendritic release of DA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Developing neuronal populations undergo significant attrition by natural cell death. Dopaminergic neurons in the substantia nigra pars compacta undergo apoptosis during synaptogenesis. Following this time window, destruction of the anatomic target of dopaminergic neurons results in dopaminergic cell death but the morphology is no longer apoptotic. We describe ultrastructural changes that appear unique to dying embryonic dopaminergic neurons. In primary cultures of mesencephalon, death of dopaminergic neurons is triggered by activation of glutamate receptors sensitive to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and differs ultrastructurally from both neuronal apoptosis or typical excitotoxicity. AMPA causes morphological changes selectively in dopaminergic neurons, without affecting other neurons in the same culture dishes. Two hours after the onset of treatment swelling of Golgi complexes is apparent. At 3 h, dopaminergic neurons display loss of membrane asymmetry (coinciding with commitment to die), as well as nuclear membrane invagination, irregular aggregation of chromatin, and mitochondrial swelling. Nuclear changes continue to worsen until loss of cytoplasmic structures and cell death begins to occur after 12 h. These changes are different from those described in neurons undergoing either apoptosis or excitotoxic death, but are similar to ultrastructural changes observed in spontaneous death of dopaminergic neurons in the natural mutant weaver mouse.  相似文献   

15.
Non cell-autonomous processes are thought to play critical roles in the cellular maintenance of the healthy and diseased brain but mechanistic details remain unclear. We report that the interruption of a non cell-autonomous mode of sonic hedgehog (Shh) signaling originating from dopaminergic neurons causes progressive, adult-onset degeneration of dopaminergic, cholinergic, and fast spiking GABAergic neurons of the mesostriatal circuit, imbalance of cholinergic and dopaminergic neurotransmission, and motor deficits reminiscent of Parkinson's disease. Variable Shh signaling results in graded inhibition of muscarinic autoreceptor- and glial cell line-derived neurotrophic factor (GDNF)-expression in the striatum. Reciprocally, graded signals that emanate from striatal cholinergic neurons and engage the canonical GDNF receptor Ret inhibit Shh expression in dopaminergic neurons. Thus, we discovered a mechanism for neuronal subtype specific and reciprocal communication that is essential for neurochemical and structural homeostasis in the nigrostriatal circuit. These results provide integrative insights into non cell-autonomous processes likely at play in neurodegenerative conditions such as Parkinson's disease.  相似文献   

16.

Background

The etiology of Parkinson disease (PD) has yet to be fully elucidated. We examined the consequences of injections of 3,4-dihydroxyphenylacetaldehyde (DOPAL), a toxic metabolite of dopamine, into the substantia nigra of rats on motor behavior and neuronal survival.

Methods/Principal Findings

A total of 800 nl/rat of DOPAL (1 µg/200 nl) was injected stereotaxically into the substantia nigra over three sites while control animals received similar injections of phosphate buffered saline. Rotational behavior of these rats was analyzed, optical density of striatal tyrosine hydroxylase was calculated, and unbiased stereological counts of the substantia nigra were made. The rats showed significant rotational asymmetry ipsilateral to the lesion, supporting disruption of dopaminergic nigrostriatal projections. Such disruption was verified since the density of striatal tyrosine hydroxylase decreased significantly (p<0.001) on the side ipsilateral to the DOPAL injections when compared to the non-injected side. Stereological counts of neurons stained for Nissl in pars compacta of the substantia nigra significantly decreased (p<0.001) from control values, while counts of those in pars reticulata were unchanged after DOPAL injections. Counts of neurons immunostained for tyrosine hydroxylase also showed a significant (p = 0.032) loss of dopaminergic neurons. In spite of significant loss of dopaminergic neurons, DOPAL injections did not induce significant glial reaction in the substantia nigra.

Conclusions

The present study provides the first in vivo quantification of substantia nigra pars compacta neuronal loss after injection of the endogenous toxin DOPAL. The results demonstrate that injections of DOPAL selectively kills SN DA neurons, suggests loss of striatal DA terminals, spares non-dopaminergic neurons of the pars reticulata, and triggers a behavioral phenotype (rotational asymmetry) consistent with other PD animal models. This study supports the “catecholaldehyde hypothesis” as an important link for the etiology of sporadic PD.  相似文献   

17.
DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein of Mr = 32,000) and phosphatase inhibitor-1, two previously characterized inhibitors of protein phosphatase-1, were identified in both the neostriatum and the substantia nigra. Phosphatase inhibitor-1 was partially purified from bovine caudate nucleus and found to be distinct from DARPP-32 in some of its biochemical properties. The neuronal localization of DARPP-32 and phosphatase inhibitor-1 within the rat neostriatum and substantia nigra was investigated by studying the effects of kainic acid. Injection into the neostriatum of kainic acid, which destroys striatonigral neurons and striatonigral fibers, decreased the amounts of DARPP-32 and phosphatase inhibitor-1 to the same extent, both in the lesioned neostriatum and in the ipsilateral substantia nigra. The specific activity of protein phosphatase-1 in the neostriatum was unaffected by kainic acid. The results indicate that, in rat brain, DARPP-32 and phosphatase inhibitor-1 are both present in striatal neurons and in striatonigral fibers, and that they probably coexist in at least a subpopulation of striatonigral neurons. In contrast, protein phosphatase-1 does not appear to be enriched in any specific neuronal subpopulation in the neostriatum.  相似文献   

18.
19.
Growth arrest-specific 1 (Gas1) is a pleiotropic protein that induces apoptosis of tumor cells and has important roles during development. Recently, the presence of two forms of Gas1 was reported: one attached to the cell membrane by a GPI anchor; and a soluble extracellular form shed by cells. Previously, we showed that Gas1 is expressed in different areas of the adult mouse CNS. Here, we report the levels of Gas1 mRNA protein in different regions and analyzed its expressions in glutamatergic, GABAergic, and dopaminergic neurons. We found that Gas1 is expressed in GABAergic and glutamatergic neurons in the Purkinje-molecular layer of the cerebellum, hippocampus, thalamus, and fastigial nucleus, as well as in dopaminergic neurons of the substantia nigra. In all cases, Gas1 was found in the cell bodies, but not in the neuropil. The Purkinje and the molecular layers show the highest levels of Gas1, whereas the granule cell layer has low levels. Moreover, we detected the expression and release of Gas1 from primary cultures of Purkinje cells and from hippocampal neurons as well as from neuronal cell lines, but not from cerebellar granular cells. In addition, using SH-SY5Y cells differentiated with retinoic acid as a neuronal model, we found that extracellular Gas1 promotes neurite outgrowth, increases the levels of tyrosine hydroxylase, and stimulates the inhibition of GSK3β. These findings demonstrate that Gas1 is expressed and released by neurons and promotes differentiation, suggesting an important role for Gas1 in cellular signaling in the CNS.  相似文献   

20.
Pedunculopontine tegmental nucleus (PPN) contributes to the control muscle tone by modulating the activities of pontomedullary reticulospinal systems during wakefulness and rapid eye movement (REM) sleep. The PPN receives GABAergic projection from the substantia nigra pars reticulata (SNr), an output nucleus of the basal ganglia. Here we examined how GABAergic SNr-PPN projection controls the activity of the pontomedullary reticulospinal tract that constitutes muscle tone inhibitory system. Intracellular recording was made from 121 motoneurons in the lumbosacral segments in decerebrate cats (n=14). Short train pulses of stimuli (3 pulses with 5 ms intervals, 10-40 mA) applied to the PPN, where cholinergic neurons were densely distributed, evoked eye movements toward to the contralateral direction and bilaterally suppressed extensor muscle activities. The identical PPN stimulation induced IPSPs, which had a peak latency of 40-50 ms with a duration of 40-50 ms, in extensor and flexor motoneurons. The late-latency IPSPs were mediated by chloride ions. Microinjection of atropine sulfate (20 mM, 0.25 ml) into the pontine reticular formation (PRF) reduced the amplitude of the IPSPs. Although conditioning stimuli applied to the SNr (40-60 mA and 100 Hz) alone did not induce any postsynaptic effects on motoneurons, it reduced the amplitude of the PPN-induced IPSPs. Subsequent injection of bicuculline (5 mM, 0.25 ml) into the PPN blocked the SNr effects. Microinjections of NMDA (5 mM, 0.25 ml) and muscimol (5 mM, 0.25 ml) into the SNr reduced and increased the amplitude of the PPN-induced IPSPs, respectively. These results suggest that GABAergic basal ganglia output controls postural muscle tone by modulating the activity of cholinergic PPN neurons which activate the muscle tone inhibitory system. The SNr-PPN projection may contribute to not only control of muscle tone during movements in wakefulness but also modulation of muscular atonia of REM sleep. Dysfunction of the SNr-PPN projection may therefore be involved in sleep disturbances in basal ganglia disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号