首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study demonstrates a functional twin-arginine (Tat) translocation pathway present in the tsetse fly symbiont Sodalis glossinidius and its potential to export active heterologous proteins to the periplasm. Functionality was demonstrated using green fluorescent protein (GFP) fused to the Tat signal peptide of Escherichia coli trimethylamine N-oxide reductase (TorA).  相似文献   

2.
The Escherichia coli twin-arginine protein transport (Tat) system is a molecular machine dedicated to the translocation of fully folded substrate proteins across the energy-transducing inner membrane. Complex cofactor-containing Tat substrates, such as the model (NiFe) hydrogenase-2 and trimethylamine N-oxide reductase (TorA) systems, acquire their redox cofactors prior to export from the cell and require to be correctly assembled before transport can proceed. It is likely, therefore, that cellular mechanisms exist to prevent premature export of immature substrates. Using a combination of genetic and biochemical approaches including gene knockouts, signal peptide swapping, complementation, and site-directed mutagenesis, we highlight here this crucial 'proofreading' or 'quality control' activity in operation during assembly of complex endogenous Tat substrates. Our experiments successfully uncouple the Tat transport and cofactor-insertion activities of the TorA-specific chaperone TorD and demonstrate unequivocally that TorD recognises the TorA twin-arginine signal peptide. It is proposed that some Tat signal peptides operate in tandem with cognate binding chaperones to orchestrate the assembly and transport of complex enzymes.  相似文献   

3.
All secreted proteins in Escherichia coli must be maintained in an export-competent state before translocation across the inner membrane. In the case of the Sec pathway, this function is carried out by the dedicated SecB chaperone and the general chaperones DnaK-DnaJ-GrpE and GroEL-GroES, whose job collectively is to render substrate proteins partially or entirely unfolded before engagement of the translocon. To determine whether these or other general molecular chaperones are similarly involved in the translocation of folded proteins through the twin-arginine translocation (Tat) system, we screened a collection of E. coli mutant strains for their ability to transport a green fluorescent protein (GFP) reporter through the Tat pathway. We found that the molecular chaperone DnaK was essential for cytoplasmic stability of GFP bearing an N-terminal Tat signal peptide, as well as for numerous other recombinantly expressed endogenous and heterologous Tat substrates. Interestingly, the stability conferred by DnaK did not require a fully functional Tat signal as substrates bearing translocation defective twin lysine substitutions in the consensus Tat motif were equally unstable in the absence of DnaK. These findings were corroborated by crosslinking experiments that revealed an in vivo association between DnaK and a truncated version of the Tat substrate trimethylamine N-oxide reductase (TorA502) bearing an RR or a KK signal peptide. Since TorA502 lacks nine molybdo-cofactor ligands essential for cofactor attachment, the involvement of DnaK is apparently independent of cofactor acquisition. Finally, we show that the stabilizing effects of DnaK can be exploited to increase the expression and translocation of Tat substrates under conditions where the substrate production level exceeds the capacity of the Tat translocase. This latter observation is expected to have important consequences for the use of the Tat system in biotechnology applications where high levels of periplasmic expression are desirable.  相似文献   

4.
The twin-arginine translocation (Tat) system targets cofactor-containing proteins across the Escherichia coli cytoplasmic membrane via distinct signal peptides bearing a twin-arginine motif. In this study, we have analysed the mechanism and capabilities of the E. coli Tat system using green fluorescent protein (GFP) fused to the twin-arginine signal peptide of TMAO reductase (TorA). Fractionation studies and fluorescence measurements demonstrate that GFP is exported to the periplasm where it is fully active. Export is almost totally blocked in tat deletion mutants, indicating that the observed export in wild-type cells occurs predominantly, if not exclusively, by the Tat pathway. Imaging studies reveal a halo of fluorescence in wild-type cells corresponding to the exported periplasmic form; the GFP is distributed uniformly throughout the cytoplasm in a tat mutant. Because previous work has shown GFP to be incapable of folding in the periplasm, we propose that GFP is exported in a fully folded, active state. These data also show for the first time that heterologous proteins can be exported in an active form by the Tat pathway.  相似文献   

5.
The recently discovered bacterial twin-arginine translocation (Tat) pathway was investigated in Streptomyces lividans, a gram-positive organism with a high secretion capacity. The presence of one tatC and two hcf106 homologs in the S. lividans genome together with the several precursor proteins with a twin-arginine motif in their signal peptide suggested the presence of the twin-arginine translocation pathway in the S. lividans secretome. To demonstrate its functionality, a tatC deletion mutant was constructed. This mutation impaired the translocation of the Streptomyces antibioticus tyrosinase, a protein that forms a complex with its transactivator protein before export. Also the chimeric construct pre-TorA-23K, known to be exclusively secreted via the Tat pathway in Escherichia coli, could be translocated in wild-type S. lividans but not in the tatC mutant. In contrast, the secretion of the Sec-dependent S. lividans subtilisin inhibitor was not affected. This study therefore demonstrates that also in general in Streptomyces spp. the Tat pathway is functional. Moreover, this Tat pathway can translocate folded proteins, and the E. coli TorA signal peptide can direct Tat-dependent transport in S. lividans.  相似文献   

6.
In Escherichia coli, the SecB/SecA branch of the Sec pathway and the twin-arginine translocation (Tat) pathway represent two alternative possibilities for posttranslational translocation of proteins across the cytoplasmic membrane. Maintenance of pathway specificity was analyzed using a model precursor consisting of the mature part of the SecB-dependent maltose-binding protein (MalE) fused to the signal peptide of the Tat-dependent TorA protein. The TorA signal peptide selectively and specifically directed MalE into the Tat pathway. The characterization of a spontaneous TorA signal peptide mutant (TorA*), in which the two arginine residues in the c-region had been replaced by one leucine residue, showed that the TorA*-MalE mutant precursor had acquired the ability for efficiently using the SecB/SecA pathway. Despite the lack of the "Sec avoidance signal," the mutant precursor was still capable of using the Tat pathway, provided that the kinetically favored Sec pathway was blocked. These results show that the h-region of the TorA signal peptide is, in principle, sufficiently hydrophobic for Sec-dependent protein translocation, and therefore, the positively charged amino acid residues in the c-region represent a major determinant for Tat pathway specificity. Tat-dependent export of TorA-MalE was significantly slower in the presence of SecB than in its absence, showing that SecB can bind to this precursor despite the presence of the Sec avoidance signal in the c-region of the TorA signal peptide, strongly suggesting that the function of the Sec avoidance signal is not the prevention of SecB binding; rather, it must be exerted at a later step in the Sec pathway.  相似文献   

7.
The Tat pathway is distinct from the Sec machinery given its unusual capacity to export folded proteins, which contain a twin-arginine (RR) signal peptide, across the plasma membrane. The functionality of the Tat pathway has been demonstrated for several Gram-negative and Gram-positive mesophilic bacteria. To assess the specificity of the Tat system, and to analyze the capacity of a mesophilic bacterial Tat system to translocate cytoplasmic proteins from hyperthermophilic bacteria, we fused the Thermus thermophilus beta-glycosidase (Glc) to the twin-arginine signal peptide of the E. coli TorA protein. When expressed in E. coli, the thermophilic RR-Glc chimera was successfully synthesized and efficiently translocated into the periplasm of the wild type strain. In contrast, the beta-glycosidase accumulated within the cytoplasm of all the tat mutants analyzed. The beta-glycosidase synthesized in these strains exhibited thermophilic properties. These results demonstrated, for the first time, the capacity of the E. coli Tat system to export cytoplasmic hyperthermophilic protein, implying an important potential of the Tat system for the production of thermostable enzymes used in bioprocessing applications.  相似文献   

8.
The twin arginine translocation (Tat) pathway of bacteria and plant chloroplasts mediates translocation of essentially folded proteins across the cytoplasmic membrane. The detailed understanding of the mechanism of protein targeting to the Tat pathway has been hampered by the lack of screening or selection systems suitable for genetic analysis. We report here the development of a highly quantitative protein reporter for genetic analysis of Tat-specific export. Specifically, export via the Tat pathway rescues green fluorescent protein (GFP) fused to an SsrA peptide from degradation by the cytoplasmic proteolytic ClpXP machinery. As a result, cellular fluorescence is determined by the amount of GFP in the periplasmic space. We used the GFP-SsrA reporter to isolate gain-of-function mutants of a Tat-specific leader peptide and for the genetic analysis of the "invariant" signature RR dipeptide motif. Flow cytometric screening of trimethylamine N-oxide reductase (TorA) leader peptide libraries resulted in isolation of six gain-of function mutants that conferred significantly higher steady-state levels of export relative to the wild-type TorA leader. All the gain-of-function mutations occurred within or near the (S/T)RRXFLK consensus motif, highlighting the significance of this region in interactions with the Tat export machinery. Randomization of the consensus RR dipeptide in the TorA leader revealed that a basic side chain (R/K) is required at the first position whereas the second position can also accept Gln and Asn in addition to basic amino acids. This result indicates that twin arginine translocation does not require the presence of an arginine dipeptide within the conserved sequence motif.  相似文献   

9.
Tat- and Sec-targeting signal peptides are specific for the cognate Tat or Sec pathways. Using two reporter proteins, the specificity and convertibility of a Tat signal peptide were assessed in vivo. The specific substitutions by RK, KR and KK for the RR motif of the TorA signal peptide had no effect on the exclusive Tat-dependent export of colicin V (ColV). By introducing multiple substitutions in a typical Tat signal peptide, altered signal peptides lacking the twin-arginine motif were obtained. Interestingly, some of these signal peptides preserved Tat-pathway targeting capacity, but resulted in a loss of exclusivity. In addition, further increasing the hydrophobicity of the n-region without modifying the h-region converted the Tat signal peptides to Sec signal peptides in the ColV transport. Replacement of positively charged residues in the c-region also abolished the Tat-exclusive targeting of ColV or green fluorescent protein (GFP), but the folded GFP could be transported only through the Tat pathway. These results strongly suggest that the overall hydrophobicity of the n-region is one of the determinants of Tat-targeting exclusivity.  相似文献   

10.
Export of complex cofactor-containing proteins by the bacterial Tat pathway   总被引:14,自引:0,他引:14  
The twin-arginine (Tat) protein translocase is a highly unusual protein transport machine that is dedicated to the movement of folded proteins across the bacterial cytoplasmic membrane. Proteins are targeted to the Tat pathway by means of N-terminal signal peptides harbouring a distinctive twin-arginine motif. In the model organism Escherichia coli, many of the Tat substrates bind redox cofactors that are inserted into apo-proteins before they engage with the Tat machinery. Here we review recent advances in understanding the events involved in the coordination of cofactor insertion with the export process. Current models for Tat protein transport are also discussed.  相似文献   

11.
The twin-arginine translocation (Tat) system mediates the transport of proteins across the bacterial plasma membrane and chloroplast thylakoid membrane. Operating in parallel with Sec-type systems in these membranes, the Tat system is completely different in both structural and mechanistic terms, and is uniquely able to catalyze the translocation of fully folded proteins across coupled membranes. TatC is an essential, multispanning component that has been proposed to form part of the binding site for substrate precursor proteins. In this study we have tested the importance of conserved residues on the periplasmic and cytoplasmic face of the Escherichia coli protein. We find that many of the mutations on the cytoplasmic face have little or no effect. However, substitution at several positions in the extreme N-terminal cytoplasmic region or the predicted first cytoplasmic loop lead to a significant or complete loss of Tat-dependent export. The mutated strains are unable to grow anaerobically on trimethylamine N-oxide minimal media and are unable to export trimethylamine-N-oxide reductase (TorA). The same mutants are completely unable to export a chimeric protein, comprising the TorA signal peptide linked to green fluorescent protein, indicating that translocation is blocked rather than cofactor insertion into the TorA mature protein. The data point to two essential cytoplasmic domains on the TatC protein that are essential for export.  相似文献   

12.
We have developed a reporter protein system for the experimental verification of twin-arginine signal peptides. This reporter system is based on the Streptomyces coelicolor agarase protein, which is secreted into the growth medium by the twin-arginine translocation (Tat) pathway and whose extracellular activity can be assayed colorimetrically in a semiquantitative manner. Replacement of the native agarase signal peptide with previously characterized twin-arginine signal peptides from other Gram-positive and Gram-negative bacteria resulted in efficient Tat-dependent export of agarase. Candidate twin-arginine signal peptides from archaeal proteins as well as plant thylakoid-targeting sequences were also demonstrated to mediate agarase translocation. A naturally occurring variant signal peptide with an arginine-glutamine motif instead of the consensus di-arginine was additionally recognized as a Tat-targeting sequence by Streptomyces. Application of the agarase assay to previously uncharacterized candidate Tat signal peptides from Bacillus subtilis identified two further probable Tat substrates in this organism. This is the first versatile reporter system for Tat signal peptide identification.  相似文献   

13.
The SufI protein and the trimethylamine N-oxide reductase (TorA) are the two best-characterized prototype proteins exported by the Escherichia coli TAT system. Whereas SufI does not contain cofactors, TorA is a molybdo-enzyme and the acquisition of the molybdo-cofactor is a prerequisite for its translocation. The overproduction of each protein leads to the saturation of its translocation, but it was unknown if the overproduction of one substrate could saturate the TAT apparatus and block thus the translocation of other TAT substrates. Here, we showed that the overproduction of SufI saturated only its own translocation, but had no effect of the translocation of TorA and other TAT substrate analyzed. To dissect the saturation mechanism of TorA translocation, we shortened by about one-third of the TorA protein and removed nine consensus molybdo-cofactor-binding ligands. Like SufI, the truncated TorA (TorA502) did not contain cofactor and would not compete with the full length TorA for molybdo-cofactor acquisition. The overproduction of TorA502 completely inhibited the export of the full length TorA and dimethyl sulfoxide (DMSO) reductase, but had no effect on the translocation of SufI, nitrate-induced formate dehydrogenase and hydrogenase-2. Importantly, deletion of the twin-arginine signal peptide of TorA502 abolished the inhibitory effect. Moreover, the overproduction of the TorA signal peptide fused to the green fluorescence protein (GFP) was sufficient to block the TorA translocation. These results demonstrated that the twin-arginine signal peptide of the TorA protein specifically inhibits the translocation of a subset of TAT substrates, probably at the step of their targeting to the TAT apparatus.  相似文献   

14.
Cellular processes, such as the digestion of macromolecules, phosphate acquisition, and cell motility, require bacterial secretion systems. In Bacillus subtilis, the predominant protein export pathways are Sec (generalized secretory pathway) and Tat (twin-arginine translocase). Unlike Sec, which secretes unfolded proteins, the Tat machinery secretes fully folded proteins across the plasma membrane and into the medium. Proteins are directed for Tat-dependent export by N-terminal signal peptides that contain a conserved twin-arginine motif. Thus, utilizing the Tat secretion system by fusing a Tat signal peptide is an attractive strategy for the production and export of heterologous proteins. As a proof of concept, we expressed green fluorescent protein (GFP) fused to the PhoD Tat signal peptide in the laboratory and ancestral strains of B. subtilis. Secretion of the Tat-GFP construct, as well as secretion of proteins in general, was substantially increased in the ancestral strain. Furthermore, our results show that secreted, fluorescent GFP could be purified directly from the extracellular medium. Nonetheless, export was not dependent on the known Tat secretion components or the signal peptide twin-arginine motif. We propose that the ancestral strain contains additional Tat components and/or secretion regulators that were abrogated following domestication.  相似文献   

15.
Recently, a new protein translocation pathway, the twin-arginine translocation (TAT) pathway, has been identified in both bacteria and chloroplasts. To study the possible competition between the TAT- and the well-characterized Sec translocon-dependent pathways in Escherichia coli, we have fused the TorA TAT-targeting signal peptide to the Sec-dependent inner membrane protein leader peptidase (Lep). We find that the soluble, periplasmic P2 domain from Lep is re-routed by the TorA signal peptide into the TAT pathway. In contrast, the full-length TorA-Lep fusion protein is not re-routed into the TAT pathway, suggesting that Sec-targeting signals in Lep can override TAT-targeting information in the TorA signal peptide. We also show that the TorA signal peptide can be converted into a Sec-targeting signal peptide by increasing the hydrophobicity of its h-region. Thus, beyond the twin-arginine motif, the overall hydrophobicity of the signal peptide plays an important role in TAT versus Sec targeting. This is consistent with statistical data showing that TAT-targeting signal peptides in general have less hydrophobic h-regions than Sec-targeting signal peptides.  相似文献   

16.
The Escherichia coli Tat system serves to export folded proteins harbouring an N-terminal twin-arginine signal peptide across the cytoplasmic membrane. Previous work has demonstrated that strains mutated in genes encoding essential Tat pathway components are highly defective in the integrity of their cell envelope. Here, we report the isolation, by transposon mutagenesis, of tat mutant strains that have their outer membrane integrity restored. This outer membrane repair of the tat mutant arises as a result of upregulation of the amiB gene, which encodes a cell wall amidase. Overexpression of the genes encoding the two additional amidases, amiA and amiC, does not compensate for the outer membrane defect of the tatC strain. Analysis of the amiA and amiC coding sequences indicates that the proteins may be synthesized with plausible twin-arginine signal sequences, and we demonstrate that they are translocated to the periplasm by the Tat pathway. A Tat+ strain that has mislocalized AmiA and AmiC proteins because of deletion of their signal peptides displays an identical defective cell envelope phenotype. The presence of genes encoding amidases with twin-arginine signal sequences in the genomes of other Gram-negative bacteria suggests that a similar cell envelope defect may be a common feature of tat mutant strains.  相似文献   

17.
The twin-arginine translocation (Tat) system is a bacterial protein targeting pathway. Tat-targeted proteins display signal peptides containing a distinctive SRRxFLK ‘twin-arginine’ motif. The Escherichia coli trimethylamine N-oxide reductase (TorA) bears a bifunctional Tat signal peptide, which directs protein export and serves as a binding site for the TorD biosynthetic chaperone. Here, the physical interaction between TorD and the TorA signal peptide was investigated. A single substitution within the TorA signal peptide (L31Q) was sufficient to impair TorD binding. Screening of a random torD mutant library identified a variant TorD protein (Q7L) that displayed increased binding affinity for the TorA signal peptide.

Structured summary

MINT-6796225, MINT-6796279, MINT-6796298, MINT-6796315, MINT-6796332, MINT-6796350, MINT-6796371, MINT-6796391, MINT-6796410, MINT-6796429, MINT-6796446, MINT-6796460:
TorD (uniprotkb:P36662) physically interacts (MI:0218) with TorA (uniprotkb:P33225) by two-hybrid (MI:0018)
MINT-6796515, MINT-6796563, MINT-6796589, MINT-6796624, MINT-6796648, MINT-6796666, MINT-6796770, MINT-6796750:
TorA (uniprotkb:P33225) binds (MI:0407) to TorD (uniprotkb:P36662) by isothermal titration calorimetry (MI:0065)
  相似文献   

18.
In Escherichia coli, transmembrane translocation of proteins can proceed by a number of routes. A subset of periplasmic proteins are exported via the Tat pathway to which proteins are directed by N-terminal "transfer peptides" bearing the consensus (S/T)RRXFLK "twin-arginine" motif. The Tat system involves the integral membrane proteins TatA, TatB, TatC, and TatE. Of these, TatA, TatB, and TatE are homologues of the Hcf106 component of the DeltapH-dependent protein import system of plant thylakoids. Deletion of the tatB gene alone is sufficient to block the export of seven endogenous Tat substrates, including hydrogenase-2. Complementation analysis indicates that while TatA and TatE are functionally interchangeable, the TatB protein is functionally distinct. This conclusion is supported by the observation that Helicobacter pylori tatA will complement an E. coli tatA mutant, but not a tatB mutant. Analysis of Tat component stability in various tat deletion backgrounds shows that TatC is rapidly degraded in the absence of TatB suggesting that TatC complexes, and is stabilized by, TatB.  相似文献   

19.
The Tat protein export pathway   总被引:20,自引:0,他引:20  
The Tat (twin-arginine translocation) system is a bacterial protein export pathway with the remarkable ability to transport folded proteins across the cytoplasmic membrane. Preproteins are directed to the Tat pathway by signal peptides that bear a characteristic sequence motif, which includes consecutive arginine residues. Here, we review recent progress on the characterization of the Tat system and critically discuss the structure and operation of this major new bacterial protein export pathway.  相似文献   

20.
The Tat system transports folded proteins across bacterial and thylakoid membranes. In Gram-negative organisms, it is encoded by tatABC genes and the system recognizes substrates bearing signal peptides with a conserved twin-arginine motif. Most Gram-positive organisms lack a tatB gene, indicating major differences in organisation and/or mechanism. Here, we have characterized the essential targeting determinants that are recognized by a Bacillus subtilis TatAC-type system, TatAdCd. Substitution by lysine of either of the twin-arginine residues in the TorA signal peptide can be tolerated, but the presence of twin-lysine residues blocks export completely. We show that additional determinants can be as important as the twin-arginine motif. Replacement of the −1 serine by alanine, in either the TorA or DmsA signal peptide, almost blocks export by either the B. subtilis TatAdCd or Escherichia coli TatABC systems, firmly establishing the importance of this −1 residue in these signal peptides. Surprisingly, the +2 leucine in the DmsA signal peptide (sequence SRRGLV) appears to play an equally important role and substitution by alanine or phenylalanine blocks export by both the B. subtilis and E. coli systems. These data identify three distinct determinants, whose importance varies depending on the signal peptide in question. The data also show that the B. subtilis TatAdCd and E. coli TatABC systems recognize very similar determinants within their target peptides, and exhibit surprisingly similar responses to mutations within these determinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号