首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
RNA interference (RNAi) designates the multistep process by which double-stranded RNA induces the silencing of homologous endogenous genes. Some aspects of RNAi appear to be conserved throughout evolution, including the processing of trigger dsRNAs into small 21-23-bp siRNAs and their use to guide the degradation of complementary mRNAs. Two remarkable features of RNAi were uncovered in plants and Caenorhabditid elegans. First, RNA-dependent RNA polymerase activities allow the synthesis of siRNA complementary to sequences upstream of or downstream from the initial trigger region in the target mRNA, leading to a transitive RNAi with sequences that had not been initially targeted. Secondly, systemic RNAi may cause the targeting of gene silencing in one tissue to spread to other tissues. Using transgenes expressing dsRNA, we investigated whether transitive and systemic RNAi occur in DROSOPHILA: DsRNA-producing transgenes targeted RNAi to specific regions of alternative mRNA species of one gene without transitive effect directed to sequences downstream from or upstream of the initial trigger region. Moreover, specific expression of a dsRNA, using either cell-specific GAL4 drivers or random clonal activation of a GAL4 driver, mediated a cell-autonomous RNAi. Together, our results provide evidence that transitive and systemic aspects of RNAi are not conserved in Drosophila and demonstrate that dsRNA-producing transgenes allow powerful reverse genetic approaches to be conducted in this model organism, by knocking down gene functions at the resolution of a single-cell type and of a single isoform.  相似文献   

2.
Larval RNAi in Drosophila?   总被引:2,自引:0,他引:2  
RNA interference (RNAi) has become a common method of gene knockdown in many model systems. To trigger an RNAi response, double-stranded RNA (dsRNA) must enter the cell. In some organisms such as Caenorhabditis elegans, cells can take up dsRNA from the extracellular environment via a cellular uptake mechanism termed systemic RNAi. However, in the fruit fly Drosophila melanogaster, it is widely believed that cells are unable to take up dsRNA, although there is little published data to support this claim. In this study, we set out to determine whether this perception has a factual basis. We took advantage of traditional Gal4/upstream activation sequence (UAS) transgenic flies as well as the mosaic analysis with a repressible cell marker (MARCM) system to show that extracellular injection of dsRNA into Drosophila larvae cannot trigger RNAi in most Drosophila tissues (with the exception of hemocytes). Our results show that this is not due to a lack of RNAi machinery in these tissues as overexpression of dsRNA inside the cells using hairpin RNAs efficiently induces an RNAi response in the same tissues. These results suggest that, while most Drosophila tissues indeed lack the ability to uptake dsRNA from the surrounding environment, hemocytes can initiate RNAi in response to extracellular dsRNA. We also examined another insect, the red flour beetle Tribolium castaneum, which has been shown to exhibit a robust systemic RNAi response. We show that virtually all Tribolium tissues can respond to extracellular dsRNA, which is strikingly different from the situation in Drosophila. Our data provide specific information about the tissues amenable to RNAi in two different insects, which may help us understand the molecular basis of systemic RNAi.  相似文献   

3.
Double-stranded RNA (dsRNA) fragments are readily internalized and processed by Drosophila S2 cells, making these cells a widely used tool for the analysis of gene function by gene silencing through RNA interference (RNAi). The underlying mechanisms are insufficiently understood. To identify components of the RNAi pathway in S2 cells, we developed a screen based on rescue from RNAi-induced lethality. We identified Argonaute 2, a core component of the RNAi machinery, and three gene products previously unknown to be involved in RNAi in Drosophila: DEAD-box RNA helicase Belle, 26 S proteasome regulatory subunit 8 (Pros45), and clathrin heavy chain, a component of the endocytic machinery. Blocking endocytosis in S2 cells impaired RNAi, suggesting that dsRNA fragments are internalized by receptor-mediated endocytosis. Indeed, using a candidate gene approach, we identified two Drosophila scavenger receptors, SR-CI and Eater, which together accounted for more than 90% of the dsRNA uptake into S2 cells. When expressed in mammalian cells, SR-CI was sufficient to mediate internalization of dsRNA fragments. Our data provide insight into the mechanism of dsRNA internalization by Drosophila cells. These results have implications for dsRNA delivery into mammalian cells.  相似文献   

4.
Knight SW  Bass BL 《Molecular cell》2002,10(4):809-817
Adenosine deaminases that act on RNA (ADARs) are RNA-editing enzymes that deaminate adenosines to create inosines in double-stranded RNA (dsRNA). Here we demonstrate that ADARs are not required for RNA interference (RNAi) and that they do not antagonize the pathway to a detectable level when RNAi is initiated by injecting dsRNA. We find, however, that transgenes expressed in the somatic tissues of wild-type animals are silenced in strains with deletions in the two genes encoding ADARs, adr-1 and adr-2. Transgene-induced gene silencing in adr-1;adr-2 mutants depends on genes required for RNAi, suggesting that a dsRNA intermediate is involved. In wild-type animals we detect edited dsRNA corresponding to transgenes, and we propose that editing of this dsRNA prevents somatic transgenes from initiating RNAi in wild-type animals.  相似文献   

5.
Heritable gene silencing in Drosophila using double-stranded RNA   总被引:50,自引:0,他引:50  
RNA-mediated interference (RNAi) is a recently discovered method to determine gene function in a number of organisms, including plants, nematodes, Drosophila, zebrafish, and mice. Injection of double-stranded RNA (dsRNA) corresponding to a single gene into organisms silences expression of the specific gene. Rapid degradation of mRNA in affected cells blocks gene expression. Despite the promise of RNAi as a tool for functional genomics, injection of dsRNA interferes with gene expression transiently and is not stably inherited. Consequently, use of RNAi to study gene function in the late stages of development has been limited. It is particularly problematic for development of disease models that reply on post-natal individuals. To circumvent this problem in Drosophila, we have developed a method to express dsRNA as an extended hairpin-loop RNA. This method has recently been successful in generating RNAi in the nematode Caenorhabditis elegans. The hairpin RNA is expressed from a transgene exhibiting dyad symmetry in a controlled temporal and spatial pattern. We report that the stably inherited transgene confers specific interference of gene expression in embryos, and tissues that give rise to adult structures such as the wings, legs, eyes, and brain. Thus, RNAi can be adapted to study late-acting gene function in Drosophila. The success of this approach in Drosophila and C. elegans suggests that a similar approach may prove useful to study gene function in higher organisms for which transgenic technology is available.  相似文献   

6.
Heritable RNA interference (RNAi), triggered from stably expressed transgenes with an inverted repeat (IR) configuration, is an important tool for reverse genetic studies. Here we report on the development of stable RNAi in Anopheles stephensi mosquitoes, the major vector of human malaria in Asia. Trans genic mosquitoes stably expressing a RNAi transgene, designed to produce intron-spliced double-stranded RNA (dsRNA) targeting the green fluorescent protein EGFP gene, were crossed to an EGFP-expressing target line. EGFP expression was dramatically reduced at both the protein and RNA levels. The levels of gene silencing depended upon the RNAi gene copy number and its site of integration. These results demonstrate that specific RNAi-mediated knockdown of gene function can be achieved with high efficiency in Anopheles. This will be invaluable to systematically unravel the function of Anopheles genes determining the vectorial capacity of the malaria parasite.  相似文献   

7.
8.
Xie W  Liang C  Birchler JA 《Genetics》2011,188(4):823-834
RNA interference (RNAi) regulates gene expression by sequence-specific destruction of RNA. It acts as a defense mechanism against viruses and represses the expression of transposable elements (TEs) and some endogenous genes. We report that mutations and transgene constructs that condition cell death suppress RNA interference in adjacent cells in Drosophila melanogaster. The reversal of RNAi is effective for both the white (w) eye color gene and green fluorescent protein (GFP), indicating the generality of the inhibition. Antiapoptotic transgenes that reverse cell death will also reverse the inhibition of RNAi. Using GFP and a low level of cell death produced by a heat shock-head involution defective (hs-hid) transgene, the inhibition appears to occur by blocking the conversion of double-stranded RNA (dsRNA) to short interfering RNA (siRNA). We also demonstrate that the mus308 gene and endogenous transposable elements, which are both regularly silenced by RNAi, are increased in expression and accompanied by a reduced level of siRNA, when cell death occurs. The finding that chronic ectopic cell death affects RNAi is critical for an understanding of the application of the technique in basic and applied studies. These results also suggest that developmental perturbations, disease states, or environmental insults that cause ectopic cell death would alter transposon and gene expression patterns in the organism by the inhibition of small RNA silencing processes.  相似文献   

9.
Double-stranded RNA (dsRNA) triggers the destruction of mRNA sharing sequence with the dsRNA, a phenomenon termed RNA interference (RNAi). The dsRNA is converted by endonucleolytic cleavage into 21- to 23-nt small interfering RNAs (siRNAs), which direct a multiprotein complex, the RNA-induced silencing complex to cleave RNA complementary to the siRNA. RNAi can be recapitulated in vitro in lysates of syncytial blastoderm Drosophila embryos. These lysates reproduce all of the known steps in the RNAi pathway in flies and mammals. Here we explain how to prepare and use Drosophila embryo lysates to dissect the mechanism of RNAi.  相似文献   

10.
利用RNAi技术研究果蝇心脏发育基因的功能   总被引:31,自引:1,他引:30  
RNAi是近两年发展起来的一种阻抑基因表达的新方法。它通过导入一段与内源基因同源的双链RNA序列(dsRNA),使内源mRNA降解,从而达到阻抑基因表达的目的。目前已在线虫、果蝇、臭虫、真菌及植物等生物中建立RNAi技术,用于研究某些特定基因或已知基因在特定发育时期的功能。对于难于获得突变体的基因或生物体,RNAi技术尤其有效。虽然果蝇心脏发育基因wingless和tinman在果蝇心脏发育的早期功能已经清楚,它们都与果蝇心脏前体细胞的形成有关,但它们在果蝇心脏发育的后期功能仍有待进一步研究。实验运用RNAi技术,分别将tinman和wingless的dsRNA注入果蝇的早期胚胎,得到了这两个基因的dsRNA干扰表型,与两个基因的突变体表型非常相似,都表现为果蝇心脏前体细胞不能形成或心脏管缺失。尤其是tinman基因的dsRNA,还引起了肠中胚胎层缺失和体壁肌肉组织的紊乱,而wingless基因的dsRNA却只影响心脏的形成,而不影响肠中胚层,说明dsRNA干扰具有非常强的特异性,因而不失为研究果蝇心脏发育基因功能的有效方法。  相似文献   

11.
RNA interference (RNAi), a sequence-specific mRNA degradation induced by double-stranded RNA (dsRNA), is a common approach employed to specifically silence genes. Experimental RNAi in plant and invertebrate models is frequently induced by long dsRNA. However, in mammals, short RNA molecules are used preferentially since long dsRNA can provoke sequence-independent type I interferon response. A notable exception are mammalian oocytes where the interferon response is suppressed and long dsRNA is a potent and specific trigger of RNAi. Transgenic RNAi is an adaptation of RNAi allowing for inducing sequence-specific silencing upon expression of dsRNA. A decade ago, we have developed a vector for oocyte-specific expression of dsRNA, which has been used to study gene function in mouse oocytes on numerous occasions. This review provides an overview and discusses benefits and drawbacks encountered by us and our colleagues while working with the oocytes-specific transgenic RNAi system.  相似文献   

12.
A transient RNA interference assay system using Arabidopsis protoplasts   总被引:1,自引:0,他引:1  
Double-stranded RNA (dsRNA) induces sequence-specific gene silencing in eukaryotes through a process known as RNA interference (RNAi). RNAi is now used as a powerful tool for functional genomics in many eukaryotes, including plants. We herein report a dsRNA-mediated transient RNAi assay system using protoplasts from Arabidopsis mesophyll cells and suspension-cultured cells (cell line T87). Introduction of dsRNA into protoplasts led to marked silencing of target transgenes. Our assay system would provide a convenient and efficient way to induce RNAi in protoplasts of the model plant Arabidopsis thaliana.  相似文献   

13.
14.
RNAi技术在昆虫功能基因研究中的应用进展   总被引:5,自引:1,他引:4  
RNA干扰(RNA interference,RNAi)是指外源或内源的双链RNA(dsRNA)特异性地引起基因表达沉默的现象,它作为一种有效的工具用来产生转录后沉默,从而抑制特定基因的表达,成为基因功能研究的一种新方法,除了在模式昆虫如果蝇Drosophila中广泛应用之外,也在非模式昆虫中得到成功应用。近年来,RNAi技术在导入方法和基因功能分析方面都取得了飞速发展,且与转基因技术相结合成功应用于害虫防治领域。本文综述了RNAi技术在导入方法、昆虫功能基因组功能分析及害虫防治等领域新近的研究成果,并展望了该技术的应用前景。  相似文献   

15.
Double-stranded RNA (dsRNA) induces sequence-specific gene silencing in eukaryotes through a process known as RNA interference (RNAi). RNAi is now used as a powerful tool for functional genomics in many eukaryotes, including plants. We herein report a dsRNA-mediated transient RNAi assay system using protoplasts from Arabidopsis mesophyll cells and suspension-cultured cells (cell line T87). Introduction of dsRNA into protoplasts led to marked silencing of target transgenes. Our assay system would provide a convenient and efficient way to induce RNAi in protoplasts of the model plant Arabidopsis thaliana.  相似文献   

16.
17.
Double-stranded RNA (dsRNA) triggers the destruction of mRNA sharing sequence with the dsRNA, a phenomenon termed RNA interference (RNAi). The dsRNA is converted by endonucleolytic cleavage into 21- to 23-nt small interfering RNAs (siRNAs), which direct a multiprotein complex, the RNA-induced silencing complex to cleave RNA complementary to the siRNA. RNAi can be recapitulated in vitro in lysates of syncytial blastoderm Drosophila embryos. These lysates reproduce all of the known steps in the RNAi pathway in flies and mammals. Here we explain how to prepare and use Drosophila embryo lysates to dissect the mechanism of RNAi.  相似文献   

18.
Drosophila melanogaster has a robust and efficient innate immune system, which reacts to infections ranging from bacteria to fungi and, as discovered recently, viruses as well. The known Drosophila immune responses rely on humoral and cellular activities, similar to those found in the innate immune system of other animals. Recently, RNAi or 'RNA silencing' has arisen as a possible means by which Drosophila can react to a specific pathogens, transposons and retroviral elements, in a fashion similar to that of a traditional mammalian adaptive immune system instead of in a more generalized and genome encoded innate immune-based response. RNAi is a highly conserved regulation and defence mechanism, which suppresses gene expression via targeted RNA degradation directed by either exogenous dsRNA (cleaved into siRNAs) or endogenous miRNAs. In plants, RNAi has been found to act as an antiviral immune response system. Here we show that RNAi is an antiviral response used by Drosophila to combat infection by Drosophila X Virus, a birnavirus, as well. Additionally, we identify multiple core RNAi pathway genes, including piwi, vasa intronic gene (vig), aubergine (aub), armitage (armi), Rm62, r2d2 and Argonaute2 (AGO2) as having vital roles in this response in whole organisms. Our findings establish Drosophila as an ideal model for the study of antiviral RNAi responses in animals.  相似文献   

19.
The genome project of the blacklegged tick, Ixodes scapularis, provides sequence data for testing gene function and regulation in this important pathogen vector. We tested Sleeping Beauty (SB), a Tc1/mariner group transposable element, and cationic lipid-based transfection reagents for delivery and genomic integration of transgenes into I. scapularis cell line ISE6. Plasmid DNA and dsRNA were effectively transfected into ISE6 cells and they were successfully transformed to express a red fluorescent protein (DsRed2) and a selectable marker, neomycin phosphotransferase (NEO). Frequency of transformation was estimated as 1 transformant per 5000-10,000 cells and cultures were incubated for 2-3months in medium containing the neomycin analog G418 in order to isolate transformants. Genomic integration of the DsRed2 transgene was confirmed by inverse PCR and sequencing that demonstrated a TA nucleotide pair inserted between SB inverted/direct repeat sequences and tick genomic sequences, indicating that insertion of the DsRed2 gene into the tick cell genome occurred through the activity of SB transposase. RNAi using dsRNA transcribed from the DsRed2 gene silenced expression of red fluorescent protein in transformed ISE6 cells. SB transposition in cell line ISE6 provides an effective means to explore the functional genomics of I. scapularis.  相似文献   

20.
Drosophila melanogaster has been a premier genetic model system for nearly 100 years, yet lacks a simple method to disrupt gene expression. Here, we show genomic cDNA fusions predicted to form double-stranded RNA (dsRNA) following splicing, effectively silencing expression of target genes in adult transgenic animals. We targeted three Drosophila genes: lush, white, and dGq(alpha). In each case, target gene expression is dramatically reduced, and the white RNAi phenotype is indistinguishable from a deletion mutant. This technique efficiently targets genes expressed in neurons, a tissue refractory to RNAi in C. elegans. These results demonstrate a simple strategy to knock out gene function in specific cells in living adult Drosophila that can be applied to define the biological function of hundreds of orphan genes and open reading frames.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号