首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 205 毫秒
1.
Forty-one open reading frames (ORFs) were identified in a 32-kb DNA fragment of alkaliphilic Bacillus sp. C-125. A similarity search using the BSORF database found 37 ORFs with significant sequence similarity to B. subtilis RNA polymerase subunits, elongation factor G, elongation factor Tu, and ribosomal proteins. Each ORF product showed more than 70% identity to those of B. subtilis. Gene organization in the region of str, S10, spc, and the α cluster was highly conserved among three strains, C-125, B. subtilis, and B. stearothermophilus.  相似文献   

2.
Among alkaliphilic bacteria reported so far, Bacillus sp. C-125 is the strain most thoroughly characterized physiologically, biochemically, and genetically. A physical map of the chromosome of this strain was constructed to facilitate further genome analysis, and the genome size was revised from 3.7 to 4.25 Mb. Complete digestion of the chromosomal DNA with two rare cut restriction endonucleases, AscI and Sse8387I, each yielded 20 fragments ranging in size from 20 to 600 kb. Seventeen linking clones were isolated in each instance to join the adjacent AscI or Sse8387I fragments in the chromosomal map. All AscI linking clones isolated were sequenced and analyzed by comparison with the BSORF database to map the genes in the chromosome of strain C-125. Several ORFs showing significant similarities to those of B. subtilis in the AscI linking clones were positioned on the physical map. The oriC region of the C-125 chromosome was identified by southern blot analysis with a DNA probe containing the gyrB region. Received: May 6, 1998 / Accepted: May 26, 1998  相似文献   

3.
Bacillus species and other microbes with pH optima for growth higher than pH 9 are defined as alkaliphiles. A large number of alkaliphilic Bacillus strains producing useful enzymes, have been isolated from various environments. Some of these enzymes, such as proteases and cellulases from alkaliphilic Bacillus strains, have been commercialized and have brought great advantages to industry and domestic life. To support further development of the enzyme industry, we initiated analysis of the genome of Bacillus halodurans C-125, which is 4.25 Mb in size, and constructed a physical and genetic map for comparison with the Bacillus subtilis chromosome. Systematic sequencing of the whole genome of Bacillus halodurans C-125 has been automated since the beginning of May 1998, and sequencing of 98% of the whole genome has been done so far. Through genome analysis, it became apparent that the genome organization of alkaliphilic Bacillus halodurans C-125 is totally different from that of B. subtilis orthologues. Received: July 11, 1999 / Accepted: December 27, 1999  相似文献   

4.
Seventeen Sse8387I linking clones isolated from the chromosome of Bacillus halodurans C-125 for the purpose of constructing a physical map were sequenced and analyzed by comparison with the BSORF database and the nonredundant protein databank. The orientations of Sse8387I or AscI linking clones serving to join adjacent fragments were determined by southern blot analysis using specific DNA probes. One-third of the open reading frames (ORFs) identified in the Sse8387I linking clones showed no significant similarity to any protein so far reported. The ORFs showing significant similarities to those of Bacillus subtilis were mapped in the chromosome of strain C-125, and the locations of the putative genes on the map were not well conserved between B. halodurans C-125 and B. subtilis. Received: March 26, 1999 / Accepted: April 27, 1999  相似文献   

5.
Alkaliphiles are considered more suitable chassis than traditional neutrophiles due to their excellent resistance to microbial contamination. Alkaliphilic Bacillus sp. N16-5, an industrially interesting strain with great potential for the production of lactic acid and alkaline polysaccharide hydrolases, can only be engineered genetically by the laborious and time-consuming homologous recombination. In this study, we reported the successful development of a CRISPR/Cas9-based genome editing system with high efficiency for single-gene deletion, large gene fragment deletion and exogenous DNA chromosomal insertion. Moreover, based on a catalytically dead variant of Cas9 (dCas9), we also developed a CRISPRi system to efficiently regulate gene expression. Finally, this efficient genome editing system was successfully applied to engineer the xylose metabolic pathway for the efficient bioproduction of D -lactic acid. Compared with the wild-type Bacillus sp. N16-5, the final engineered strain with XylR deletion and AraE overexpression achieved 34.3% and 27.7% increases in xylose consumption and D -lactic acid production respectively. To our knowledge, this is the first report on the development and application of CRISPR/Cas9-based genome editing system in alkaliphilic Bacillus, and this study will significantly facilitate functional genomic studies and genome manipulation in alkaliphilic Bacillus, laying a foundation for the development of more robust microbial chassis.  相似文献   

6.
The groEL gene of the alkaliphilic Bacillus sp. strain C-125 was cloned in Escherichia coli and sequenced. The groEL gene encoded a polypeptide of 544 amino acids and was preceded by the incomplete groES gene, lacking its 5′-end. The sequence of the derived amino acids was 87.5% identical to that of B. subtilis, 85.4% identical to that of B. stearothemophilus, and 60.9% identical to that of E. coli. The GroEL protein was expressed in E. coli. Purified GroEL protected yeast a-glucosidase from irreversible aggregation at a high temperature and the addition of Mg-ATP was essential for reactivation of the a-glucosidase. The addition of E. coli GroES increased recovery of the enzyme activity, indicating that C-125 GroEL could function in coordination with E. coli GroES.  相似文献   

7.
Forty-one open reading frames (ORFs) were identified in a 32-kb DNA fragment of alkaliphilic Bacillus sp. C-125. A similarity search using the BSORF database found 37 ORFs with significant sequence similarity to B. subtilis RNA polymerase subunits, elongation factor G, elongation factor Tu, and ribosomal proteins. Each ORF product showed more than 70% identity to those of B. subtilis. Gene organization in the region of str, S10, spc, and the alpha cluster was highly conserved among three strains, C-125, B. subtilis, and B. stearothermophilus.  相似文献   

8.
A small RNA sequence identified in an rRNA-tRNA cluster from the thermophilic Bacillus sp. strain PS3 was examined. An oligonucleotide probe specific for the RNA bound to multiple restriction fragments in Bacillus sp. strain PS3 DNA, thus several copies of this sequence occur in its genome. Similar findings were observed using DNA from B. subtilis, B. stearothermophilus, Escherichia coli, Staphylococcus aureus, Haemophilus influenzae and Thermus thermophilus. This sequence apparently is widespread in the eubacteria. Northern analysis of RNA from sporulating Bacillus sp. strain PS3 and B. subtilis cells revealed RNA species homologous to the probe in both bacteria. Expression of the small RNA in B. subtilis depended on σH.  相似文献   

9.
The gene encoding an alkaline serine protease from alkaliphilic Bacillus sp. 221 was cloned in Escherichia coli and expressed in Bacillus suhtilis. An open reading frame of 1,140 bases, identified as the protease gene was preceded by a putative Shine-Dalgarno sequence (AGGAGG) with a spacing of 7 bases. The deduced amino acid sequence had a pre-pro-peptide of 111 residues followed by the mature protease comprising 269 residues. The alkaline protease from alkaliphilic Bacillus sp. 221 had higher homology to the protease from alkaliphilic bacilli (82.1% and 99.6%) than to those from neutrophilic bacilli (60.6—61.70/0). Also Bacillus sp. 221 protease and other protease from alkaliphilic bacilli shared common amino acid changes and 4 amino acid deletions that seemed to be related to characteristics of the enzyme of alkaliphilic bacilli when compared to the proteases from neutrophilic bacilli.  相似文献   

10.
The 4 202 353 bp genome of the alkaliphilic bacterium Bacillus halodurans C-125 contains 4066 predicted protein coding sequences (CDSs), 2141 (52.7%) of which have functional assignments, 1182 (29%) of which are conserved CDSs with unknown function and 743 (18.3%) of which have no match to any protein database. Among the total CDSs, 8.8% match sequences of proteins found only in Bacillus subtilis and 66.7% are widely conserved in comparison with the proteins of various organisms, including B.subtilis. The B.halodurans genome contains 112 transposase genes, indicating that transposases have played an important evolutionary role in horizontal gene transfer and also in internal genetic rearrangement in the genome. Strain C-125 lacks some of the necessary genes for competence, such as comS, srfA and rapC, supporting the fact that competence has not been demonstrated experimentally in C-125. There is no paralog of tupA, encoding teichuronopeptide, which contributes to alkaliphily, in the C-125 genome and an ortholog of tupA cannot be found in the B.subtilis genome. Out of 11 σ factors which belong to the extracytoplasmic function family, 10 are unique to B.halodurans, suggesting that they may have a role in the special mechanism of adaptation to an alkaline environment.  相似文献   

11.
We developed a semi-automated genome analysis system called GAMBLER in order to support the current whole-genome sequencing project focusing on alkaliphilic Bacillus halodurans C-125. GAMBLER was designed to reduce the human intervention required and to reduce the complications in annotating thousands of ORFs in the microbial genome. GAMBLER automates three major routines: analyzing assembly results provided by genome assembler software, assigning ORFs, and homology searching. GAMBLER is equipped with an interface for convenience of annotation. All processes and options are manipulatable through a WWW browser that enables scientists to share their genome analysis results without choosing computer platforms.  相似文献   

12.
Plasmid pCX311, which we constructed, has two HindlU DNA fragments (2.6 kbp and 2.0 kbp) of alkalophilic Bacillus sp. strain C-125 in the HindlU site of pBR322.

These two fragments were essential not only for the xylanase production but also for the excretion of periplasmic proteins. The cloned 4.6 kbp fragment encodes some components that made the outer membrane of E. coli permeable. Some proteins such as xylanase and ²-lactamase were excreted, but alkaline phosphatase was not excreted into the culture broth.  相似文献   

13.
Extremely alkaliphilic Bacillus firmus OF4 is among the best characterized of this group of alkaliphiles. Together with alkaliphilic Bacillus C-125 and numerous non-alkaliphilic Bacillus species whose chromosomes and gene organizations are currently being studied in detail, work on B. firmus OF4 offers the opportunity to discern whether there are features of chromosome and gene organization that are associated with alkaliphily. A physical map of the B. firmus OF4 is consistent with a circular chromosome of approximately 4 Mb, with an extrachromosomal element of 110 kb also detected. The previously identified cadmium-resistance locus and transposition functions in B. firmus OF4 were localized to the extrachromosomal element, whose genes exhibit a slightly different pattern of codon usage from chromosomal genes. No clustering of genes thus far identified with roles in alkaliphily has been found. Direct repeat sequences (DRS) were previously reported upstream of a gene encoding a Na+/H+ antiporter that has a role in pH homeostasis. In the current analyses, these sequences were found to be present in multiple copies on the chromosome, most of which are present in one 920-kb fragment. Such sequences might play a role in DNA rearrangements that allow amplification of important genes in this region. Received: March 3, 1998 / Accepted May 12, 1998  相似文献   

14.
Summary Alkaliphilic Bacillus sp. no. AH-101 produces an extremely thermostable alkaline serine protease that has a high optimum pH (pH 12–13) and shows keratinolytic activity. The gene encoding this protease was cloned in Escherichia coli and expressed in B. subtilis. The cloned protease was identical to the AH-101 protease in its optimum pH and thermostability at high alkaline pH. An open reading frame of 1083 bases, identified as the protease gene, was preceded by a putative Shine-Dalgarno sequence (AAAGGAGG) with a spacing of 11 bases. The deduced amino acid sequence revealed a pre-pro-peptide of 93 residues followed by the mature protease comprising 268 residues. AH-101 protease showed slightly higher homology to alkaline proteases from alkaliphilic bacilli (61.2% and 65.3%) than to those from neutrophilic bacilli (54.9–56.7%). Also AH-101 protease and other proteases from alkaliphilic bacilli shared common amino acid changes and a four amino acid deletion when compared to the proteases from neutrophilic bacilli. AH-101 protease, however, was distinct among the proteases from alkaliphilic bacilli in showing the lowest homology to the others.Correspondence to: H. Takami  相似文献   

15.
A 14.1-kb DNA fragment was cloned from a lambda library containing inserts of DNA from alkaliphilic Bacillus firmus OF4 on the basis of its hybridization to a probe from a previously sequenced alkaliphile homolog of the natA gene from Bacillus subtilis. Sequence analysis of the entire fragment revealed that, as in B. subtilis, the natA gene was part of a putative gene locus encoding an ABC-type transporter. In the alkaliphile, the transporter involved three genes, designated natCAB, that are part of a larger operon of unknown function. This is in contrast to the two-gene natAB operon and to another homolog from B. subtilis, the yhaQP genes. Like natAB, however, the alkaliphile natCAB catalyzes Na+ extrusion as assessed in a mutant of Escherichia coli that is deficient in Na+ extrusion. The full 14.1-kb fragment of alkaliphile DNA sequenced in this study contained several probable operons as well as likely monocistronic units. Among the 17 predicted ORFs apart from natCAB were acsA, a homolog of a halobacterial gene encoding acetylCoA synthetase; sspA, a homolog of a small acid-soluble spore protein; and malK, an ATP-binding component that was unaccompanied by candidates for other mal transport genes but was able to complement a malK-deficient mutant of E. coli. No strong candidates for genes encoding a secondary Na+/H+ antiporter were found in the fragment, either from the sequence analysis or from analyses of complementation of E. coli mutants by subclones of the 14.1-kb piece. There were a total of 12 ORFs whose closest and significant homologs were genes from B. subtilis; of these, one-third were in apparently different contexts, as assessed by the sequence of the neighboring genes, than the B. subtilis homologs. Received: August 30, 1998 / Accepted: November 13, 1998  相似文献   

16.
The Na+/H+ antiporter of alkaliphilic Bacillus sp.   总被引:1,自引:0,他引:1  
The Na+/H+ antiporter, which appears to predominantly contribute to the alkaliphily of Bacillus halodurans C-125, was studied in an alkali-sensitive mutant of this strain and a transformant with restored alkaliphily. The alkali-sensitive mutant, strain 38154, which has lost the ability to grow above pH 9.5, was found to lack electro-genic Na+/H+ antiport activity driven by ΔΨ (membrane potential, interior negative), and it showed defective regulation of intracellular pH under alkaline conditions. On the other hand, a transformant carrying a 2.0-kb DNA fragment from the parental genome that complemented this defect was able to maintain an intracellular pH lower than that of the external milieu, and it was found to have recovered the Na+/H+ antiport activity driven by ΔΨ. Sequence analyses found that a 5.1-kb DNA region contained four open reading frames (ORF-1 to ORF-4). Direct sequencing of the corresponding region in mutant 38154 revealed a G-to-A substitution, which resulted in an amino acid substitution from Gly-393 to Arg in the putative ORF-1 product. It has been recently found that a region homologous to the DNA fragment responsible for the alkaliphily of strain C-125 exists in the genomes of Bacillus subtilis, Sinorhizobium (Rhizobium) meliloti, and Staphylococcus aureus. These homologues are present as a cluster of seven ORFs in each case. The shaA gene product of B. subtilis shows significant similarity to the ORF-1 product of strain C-125. Disruption of the shaA gene resulted in a decrease in Na+/H+ antiport activity, and growth of the shaA-disrupted strain was impaired when the external Na+ concentration was increased. We conclude that the shaA gene encodes a Na+/H+ antiporter, which plays an important role in extrusion of cytotoxic Na+. Received: May 29, 2000 / Accepted: July 18, 2000  相似文献   

17.
The presence of 11 genes encoding subtilisin-like serine proteases was demonstrated by cloning from the genome of alkaliphilic Bacillus sp. strain KSM-LD1. This strain exoproduces the oxidatively stable alkaline protease LD-1 (Saeki et al. Curr Microbiol, 47:337–340, 2003). Among the 11 genes, six genes encoding alkaline proteases (SA, SB, SC, SD, SE, and LD-1) were expressed in Bacillus hosts. However, the other five genes for subtilisin-like proteases (SF, SG, SH, SI, and SJ) were expressed in neither Bacillus hosts nor Escherichia coli. The deduced amino acid sequences of SA, SB, SC, SF, SG, SH, SI, and SJ showed similarity to those of other subtilisin-like proteases from Bacillus strains with only 38 to 86% identity. The deduced amino acid sequence of SD was completely identical to that of an oxidatively stable alkaline protease from Bacillus sp. strain SD521, and that of SE was almost identical to that of a high-molecular mass subtilisin from Bacillus sp. strain D-6 with 99.7% identity. There are four to nine subtilisin-like serine protease genes in the reported genomes of Bacillus strains. At least 11 genes for the enzymes present in the genome of Bacillus sp. strain KSM-LD1, and this is the greatest number identified to date.  相似文献   

18.
Cell walls of alkalophilic Bacillus No. C-125 and No. A-59 which grew in different pH conditions were prepared and analyzed. In the walls from cells grown at pH 10.3 (pH 10.3-cell wall) and the walls from cells grown at pH 7.5 (pH 7.5-cell wall) of the alkalophilic bacilli, the contents of neutral sugar and phosphorus were low as compared with those of Bacillus subtilis 6160, while uronic acid and amino acids were abundant. The uronic acid content of the pH 10.3-cell walls was higher than that of the pH 7.5-cell walls in both strains. The insoluble fraction (peptidoglycan) of cell walls of Bacillus No. C-125 consisted of muramic acid, glutamic acid, alanine, diaminopimelic acid and glucosamine as in neutrophilic bacilli. In the TCA soluble fraction of pH 10.3-cell walls of Bacillus No. C-125, uronic acid was a polymer of glucuronic acid containing a small amount of hexosamine, and 2/3 of the ninhydrin positive material was glutamic acid which was derived mainly from poly γ-L-glutamic acid.  相似文献   

19.
Flagellin glycosylation was identified in Bacillus sp. PS3 and Geobacillus stearothermophilus. In vivo complementation showed that these flagellin genes did not restore the motility of a Bacillus subtilis flagellin mutant, whereas the genes encoding non-glycosylated flagellin from Geobacillus kaustophilus and Bacillus sp. Kps3 restored motility. Moreover, four types of flagellins expressed in B. subtilis were not glycosylated. We speculate that glycosylation is required for flagellar filament assembly of these bacilli.  相似文献   

20.
The gene for a novel enzyme having pectate lyase (Pel) and pectin methylesterase (Pme) activities found in the genome of an alkaliphilic Bacillus, KSM-P358, was sequenced. The structural gene contained a long open reading frame of 4314 bp corresponding to a 32-amino-acid signal peptide and a 1406-amino-acid mature enzyme with a molecular mass of 155,666. The mature enzyme contained two uncontiguous regions at amino acids 800–1051 and 1105–1406 exhibiting homology to a Pel from a Bacillus strain with 43.7% and a Pme from Erwinia chrysanthemi with 33.4% identity, respectively. The recombinant enzyme expressed in Bacillus subtilis cells had a molecular mass of 160 kDa and exhibited pH and temperature optima for Pel activity of 10 and 40 °C and those for the Pme activity of 8.5 and 45 °C. The genes for the domains for the Pel and Pme could be separately expressed in Escherichia coli cells, and the catalytic properties of the respective protein fragments were essentially identical to those of the intact enzyme. This novel enzyme is mosaic in that some regions before the two domains exhibited limited but substantial similarity to some regions of carbohydrate-active enzymes. The regions contained parts of a gene for Pels from a Bacillus sp. and Pseudomonas fluorescens, a xylanase from P. fluorescens subsp. cellulosa, a 1,4--mannanase from a Pyromyces sp., a putative Pel from a Streptomyces coelicolor cosmid, a (1,3-1,4)--glucanase from Clostridium thermocellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号