首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
We have shown that bacteriophage T5-induced DNA polymerase replicates short primer-templates (400 to 600 nucleotides long) at a rapid rate initially, followed by a slower rate sustained for much longer periods (Das, S. K., and Fujimura, R. K. (1977) J. Biol. Chem. 252, 8700-8707). In order to explain the slower steady rate and the results of polymer-challenge experiments, we conjectured the presence of a "dead-end complex" formed by the enzyme with the primer-template at the end of the primer elongation process. In this communication we present evidence which indicates that the presumed complex shows a first order kinetics of decay with a half-life of 3.5 min at 37 degrees. Energies of activation for the steady phase of synthesis and the decay of the dead-end complex were both found to be about 23 kcal/mol. This indicates that the dissociation of the aforesaid complex might be the rate-limiting step during the steady phase of synthesis. Correlation between the salt-induced reduction in the half-life of the complex and the increase in the steady rate of synthesis is in agreement with the above mentioned possibility.  相似文献   

2.
DNA synthesis by phage T4 DNA polymerase is arrested at specific sequences in single-stranded DNA templates. To determine whether or not T4 DNA polymerase accessory proteins 32, 44, 45 and 62 eliminated recognition of these arrest sites, unique primer-templates were constructed in which DNA synthesis began at a DNA primer located at different distances from palindromic and nonpalindromic arrest sites. Nucleotide positions that caused polymerase to pause or leave the template were identified by sequence analysis of 5'-end labeled nascent DNA chains. Stable hairpin structures at palindromic sequences were confirmed by acetylation of single-stranded sequences with bromoacetaldehyde. Our results confirmed that these T4 DNA polymerase accessory proteins stimulated T4 DNA polymerase activity and processivity on natural as well as homopolymer primer-templates. However, they did not alter recognition of DNA synthesis arrest sites by T4 DNA polymerase. Extensive DNA synthesis resulted from an increased rate of translocation and/or processivity to the same extent over all DNA sequences.  相似文献   

3.
4.
5.
Bacteriophage T7 DNA primase (gene-4 protein, 66,000 daltons) enables T7 DNA polymerase to initiate the synthesis of DNA chains on single-stranded templates. An initial step in the process of chain initiation is the formation of an oligoribonucleotide primer by T7 primase. The enzyme, in the presence of natural SS DNA, Mg++ (or Mn++), ATP and CTP (or a mixture of all 4 rNTPs), catalyzes the synthesis of di-, tri-, and tetraribonucleotides all starting at the 5' terminus with pppA. In a subsequent step requiring both T7 DNA polymerase and primase, the short oligoribonucleotides (predominantly pppA-C-C-AOH) are extended by covalent addition of deoxyribonucleotides. With the aid of primase, T7 DNA polymerase can also utilize efficiently a variety of synthetic tri-, tetra-, or pentanucleotides as chain initiators. T7 primase apparently plays an active role in primer extension by stabilizing the short primer segments in a duplex state on the template DNA.  相似文献   

6.
The replicative polymerase of bacteriophage T7 is structurally and mechanistically well characterized. The crystal structure of T7 DNA polymerase or gene 5 protein complexed to its processivity factor, Escherichia coli thioredoxin, a primer-template, and a dideoxynucleotide reveals how this enzyme interacts with the 3'-end of the primer-template, but does not show how thioredoxin confers processivity to the polymerase. In the crystal structure highly conserved amino acids Asn(335) and Ser(338) of the thumb subdomain of T7 DNA polymerase are seen to interact with phosphates 7 and 8 of the DNA template strand. Results with a mutant T7 DNA polymerase in which aliphatic residues are substituted for these amino acids and experiments with different length and methylphosphonate-modified primer-templates demonstrate that these interactions are essential for processive synthesis and d(A.T)(n) tract bypass. Our data with methylphosphonate-modified DNA suggests that thioredoxin confers processivity to T7 DNA polymerase in part by causing an interaction with the phosphate backbone or minor groove of DNA. Residues Asn(335) and Ser(338) may also function with a nearby helix-loop-helix motif located at residues 339-372 to enclose the DNA during processive synthesis. Our results suggest that this structure must be held close to the DNA by ionic interactions to function. These interactions also allow for DNA sliding but physically block the passage of a 3T bulge in the template. In contrast, yeast polymerase eta, a polymerase that non-mutagenically repairs cis-syn thymidine dimers, allows the same bulge to slide past its thumb subdomain during synthesis. A relaxed thumb interaction with the DNA could account for the notably low processivity of polymerase eta.  相似文献   

7.
An in vitro system using nuclei from parvovirus H-1-infected cells was used to characterize the influence of inhibitors of mammalian DNA polymerases on viral DNA synthesis. The experiments tested the effects of aphidicolin, which is highly specific for DNA polymerase alpha, and 2',3'-dideoxythymidine-5'-triphosphate (ddTTP), which inhibits cellular DNA polymerases in the order gamma greater than beta greater than alpha. Both aphidicolin and ddTTP were inhibitory, indicating that both polymerase alpha and a ddttp-sensitive enzyme are required for viral DNA synthesis. This was seen more clearly in kinetic measurements, which indicated an initial period of rapid DNA synthesis with the participation of polymerase alpha, followed by a period of less rapid, but more sustained, rate of DNA synthesis carried out by a ddTTP-sensitive enzyme, probably polymerase gamma. One interpretation of the results is that polymerase alpha functions in a strand displacement stage of the viral DNA replication mechanism, whereas polymerase gamma serves to convert the displaced single strands back to double-strand replicative form.  相似文献   

8.
Bacteriophage T4 RNase H belongs to a family of prokaryotic and eukaryotic nucleases that remove RNA primers from lagging strand fragments during DNA replication. Each enzyme has a flap endonuclease activity, cutting at or near the junction between single- and double-stranded DNA, and a 5'- to 3'-exonuclease, degrading both RNA.DNA and DNA.DNA duplexes. On model substrates for lagging strand synthesis, T4 RNase H functions as an exonuclease removing short oligonucleotides, rather than as an endonuclease removing longer flaps created by the advancing polymerase. The combined length of the DNA oligonucleotides released from each fragment ranges from 3 to 30 nucleotides, which corresponds to one round of processive degradation by T4 RNase H with 32 single-stranded DNA-binding protein present. Approximately 30 nucleotides are removed from each fragment during coupled leading and lagging strand synthesis with the complete T4 replication system. We conclude that the presence of 32 protein on the single-stranded DNA between lagging strand fragments guarantees that the nuclease will degrade processively, removing adjacent DNA as well as the RNA primers, and that the difference in the relative rates of synthesis and hydrolysis ensures that there is usually only a single round of degradation during each lagging strand cycle.  相似文献   

9.
The polymerase and deoxyribonuclease activities of the purified Ustilago maydis DNA polymerase coeluted from a hydroxyapatite column, cosedimented in sucrose gradients in both the absence and presence of salt, possessed similar thermolabilities and reaction requirements. These observations suggest that both activities are associated with the same enzyme and that the deoxyribonuclease activity is not a contaminant. The initial rate of degradation of native 3'-end-group-labelled DNA was similar to that of a heat-denatured substrate, but the final extent was greater for the former. The enzyme exhibits a high specificity for degradation of DNA in a 3' leads to 5' direction. The degradation of a DNA template was inhibited by the presence of the deoxyribonucleoside triphosphates necessary for simultaneous DNA synthesis, but not that of the newly synthesised DNA. About 50%, 29% and 13% of the purine, cytosine and thymine deoxyribonucleotide residues incorporated by the enzyme into DNA respectively, were subsequently excised when monitored by the resulting conversion of the triphosphate substrates to free monophosphate. The majority of the purine deoxyribonucleoside monophosphates appear after the synthetic phase of the reaction has ceased. In many respects, therefore, the deoxyribonuclease activity of the U. maydis DNA polymerase is similar to the bacteriophage T4-induced enzyme.  相似文献   

10.
Evidence for template-specific sites in DNA polymerases   总被引:3,自引:0,他引:3  
Using rabbit hemoglobin messenger RNA as template, E. coli polymerase I produces poly (dT), poly (dA)·(dT) and antimessenger DNA products. Mild heating of the enzyme causes a differential loss in activity as indicated by three rates of inactivation for the three types of synthesis. Heat inactivation studies have also been carried out with DNA polymerases from oncogenic RNA viruses and mammalian sources using various homopolymer-oligomer pairs as primertemplates. In general, for any given enzyme these synthetic primer-templates reveal different extents of inactivation of the polymerase. These findings may be interpreted to suggest a) that the binding of DNA polymerase to various primer-templates produces conformational changes in the enzyme which are dependent on the type of template bound, or b) that many, if not all, DNA polymerases have different subsites for different templates.  相似文献   

11.
Studies of simian virus 40 (SV40) DNA replication in a reconstituted cell-free system have established that T antigen and two cellular replication proteins, replication protein A (RP-A) and DNA polymerase alpha-primase complex, are necessary and sufficient for initiation of DNA synthesis on duplex templates containing the SV40 origin of DNA replication. To better understand the mechanism of initiation of DNA synthesis, we analyzed the functional interactions of T antigen, RP-A, and DNA polymerase alpha-primase on model single-stranded DNA templates. Purified DNA polymerase alpha-primase was capable of initiating DNA synthesis de novo on unprimed single-stranded DNA templates. This reaction involved the synthesis of a short oligoribonucleotide primer which was then extended into a DNA chain. We observed that the synthesis of ribonucleotide primers by DNA polymerase alpha-primase is dramatically stimulated by SV40 T antigen. The presence of T antigen also increased the average length of the DNA product synthesized on primed and unprimed single-stranded DNA templates. These stimulatory effects of T antigen required direct contact with DNA polymerase alpha-primase complex and were most marked at low template and polymerase concentrations. We also observed that the single-stranded DNA binding protein, RP-A, strongly inhibits the primase activity of DNA polymerase alpha-primase, probably by blocking access of the enzyme to the template. T antigen partially reversed the inhibition caused by RP-A. Our data support a model in which DNA priming is mediated by a complex between T antigen and DNA polymerase alpha-primase with the template, while RP-A acts to suppress nonspecific priming events.  相似文献   

12.
The transition of suspension cultures of Novikoff rat hepatoma cells from the exponential to the stationary phase is accompanied by decreases of over 90% in the rates of synthesis of RNA, DNA and protein, a 90% loss of the apparent DNA-dependent RNA polymerase activity of the cells, and a disaggregation of the polyribosomes with a concomitant accumulation of 80 S and 110 S ribosomal structures. The cells also attain a minimum content of DNA, RNA and protein and a minimum size. Upon dilution of stationary phase cultures with fresh medium, the rate of protein synthesis begins to increase immediately and this correlates with a rapid reformation of the polyribosomes. The initial re-formation of polyribosomes is little affected by the presence of actinomycin D. RNA polymerase activity also begins to increase immediately after dilution and an increase in rate of RNA synthesis becomes apparent shortly thereafter. The increase in polymerase activity is inhibited by treating the cells with puromycin or actidione. Cell division commences only 9–13 hours after dilution and the rate of DNA synthesis begins to increase about midway through the lag period. During the lag period the average cellular content of protein increases about 80% and that of RNA and DNA about 30%. These increases are accompanied by a marked increase in the average size of the cells. Upon continued incubation of stationary phase cultures, the cells become irreversibly damaged physiologically before gross morphological damage becomes apparent. The irreversible physiological damage is recognized by the fact that the cells fail to recover when suspended in fresh medium.  相似文献   

13.
Frameshift mutagenesis occurs through the misalignment of primer and template strands during DNA synthesis and involves DNA intermediates that contain one or more extrahelical bases in either strand of the DNA substrate. To investigate whether these DNA structures are recognized by the proofreading apparatus of DNA polymerases, time-resolved fluorescence spectroscopy was used to examine the interaction between the Klenow fragment of DNA polymerase I and synthetic DNA primer-templates containing extrahelical bases at defined positions within the template strand. A dansyl probe attached to the DNA was used to measure the fractional occupancies of the polymerase and 3'-5' exonuclease sites of the enzyme for DNA substrates with and without the extrahelical bases. The presence of an extrahelical base at the first position from the primer 3' terminus increased the level of partitioning of the DNA substrates into the 3'-5' exonuclease site by 3-7-fold, relative to the perfectly base-paired primer-template, depending on the identity of the extrahelical base. The ability of different extrahelical bases to promote partitioning of DNA into the 3'-5' exonuclease site decreased in the following order: G > A approximately T > C. The results of partitioning measurements for DNA substrates containing a bulged adenine base at different positions within the template showed that an extrahelical base is recognized up to five bases from the primer 3' terminus. The largest effects were observed for the extrahelical base at the third or fourth positions from the primer terminus, which increased the level of partitioning of DNA into the 3'-5' exonuclease site by 8- and 18-fold, respectively, relative to that of the perfectly base-paired substrate. Steady-state fluorescence measurements of analogous primer-templates containing 2-aminopurine (AP) at the primer 3' terminus indicate that extrahelical bases increase the degree of terminus unwinding, especially when close to the terminus. In addition, steady-state kinetic measurements of removal of AP from the primer-templates indicate that the exonucleolytic cleavage activity of Klenow fragment is correlated with the increased level of partitioning of bulged DNA substrates to the 3'-5' exonuclease site relative to that of properly base-paired DNA. The results of this study indicate that misalignment of primer and template strands to generate an extrahelical base strongly promotes transfer of a DNA substrate to the 3'-5' exonuclease site, suggesting that the premutational intermediates in frameshift mutagenesis are subject to proofreading by the polymerase.  相似文献   

14.
The influence of DNA polymerase (pol) alpha and DNA primase on SV40 DNA replication was examined in both the monopolymerase and dipolymerase systems. The synthesis of oligoribonucleotides in the monopolymerase and dipolymerase systems, followed by pulse labeling with deoxynucleoside triphosphates, yielded short Okazaki fragments approximately 35 nucleotides in length that were chased into full-length Okazaki fragments with time. In the presence of activator 1 and proliferating cell nuclear antigen (PCNA), but no pol delta, these short fragments hardly increased in size with time. DNA fragments of similar size (approximately 35 nucleotides) were previously observed in SV40 replication reactions carried out with crude extracts of HeLa cells in the presence of antibodies directed against PCNA (Bullock, P. A., Seo, Y.S., and Hurwitz, J. (1991) Mol. Cell. Biol. 11, 2350-2361). Thus, the pol alpha-primase complex appears to act processively for only a short distance. At high levels of pol alpha and primase, both short and long DNA products were formed in both systems. In the presence of limiting amounts of pol alpha and excess primase, the monopolymerase system inefficiently yielded longer length Okazaki fragments than those formed with excess pol alpha and primase, whereas the dipolymerase system yielded both short and long DNA fragments. In the presence of limiting amounts of primase and excess pol alpha, long products were formed in both systems, and virtually no short products accumulated. Thus, the ratio between the polymerase and primer ends available controls the size of the nascent product DNA strands. We examined whether PCNA, the T4 phage-encoded gene product 45 (T4 gp45), and the Escherichia coli beta subunit of DNA polymerase III (dnaN gene product) supported SV40 DNA replication and the elongation of single-stranded DNA-binding protein-coated singly primed DNA in reactions catalyzed by pol delta, T4 DNA pol, and E. coli DNA pol III*, respectively. In the presence of T4 gp44/62 and T4 gp32 (but not human single-stranded DNA-binding protein isolated from HeLa cells), T4 DNA pol was weakly activated by PCNA and the beta subunit in lieu of T4 gp45 in the elongation of singly primed phi X174 DNA. However, the other systems were specific for their analogous auxiliary factors. This specificity indicates the importance of protein-protein interactions.  相似文献   

15.
DNA polymerase was purified from Drosophila melanogaster embryos by a combination of phosphocellulose adsorption, Sepharose 6B gel filtration, and DEAE-cellulose chromatography. Three enzyme forms, designated enzymes I, II, and III, were separated by differential elution from DEAE-cellulose and were further purified by glycerol gradient centrifugation. Purification was monitored with two synthetic primer-templates, poly(dA) . (dT)-16 and poly(rA) . (dT)-16. At the final step of purification, enzymes I, II, and III were purified approximately 1700-fold, 2000-fold and 1000-fold, respectively, on the basis of their activities with poly(dA) . (dT)-16. The DNA polymerase eluted heterogeneously as anomalously high-molecular-weight molecules from Sepharose 6B gel filtration columns. On DEAE-cellulose chromatography enzymes I and II eluted as distinct peaks and enzyme III eluted heterogeneously. On glycerol velocity gradients enzyme I sedimented at 5.5-7.3 S, enzyme II sedimented at 7.3-8.3 S, and enzyme III sedimented at 7.3-9.0 S. All enzymes were active with both synthetic primer-templates, except the 9.0 S component of enzyme III, which was inactive with poly(rA) . (dT)-16. Non-denaturing polyacrylamide gel electrophoresis did not separate poly(dA) . (dT)-16 activity from poly(rA) . (dT)-16 activity. The DNA polymerase preferred poly(dA) . (dT)-16 (with Mg2+) as a primer-template, although it was also active with poly(rA) . (dT)-16 (with Mn2+), and it preferred activated calf thymus DNA to native or heat-denatured calf thymus DNA. All three primer-template activities were inhibited by N-ethylmaleimide. Enzyme activity with activated DNA and poly(dA) . (dT)-16 was inhibited by K+ and activity with poly(rA) . (dT)-16 was stimulated by K+ and by spermidine. The optimum pH for enzyme activity with the synthetic primer-templates was 8.5. The DNA polymerases did not exhibit deoxyribonuclease or ATPase activities. The results of this study suggest that the forms of DNA polymerase from Drosophila embryos have physical properties similar to those of DNA polymerase-alpha and enzymatic properties similar to those of all three vertebrate DNA polymerases.  相似文献   

16.
Lambda exonuclease processively degrades one strand of double-stranded DNA (dsDNA) in the 5"-3" direction. To understand the mechanism through which this enzyme generates high processivity we are analyzing the first step in the reaction, namely the interaction of lambda exonuclease with the ends of substrate DNA. Endonuclease mapping of lambda exonuclease bound to DNA has shown that the enzyme protects approximately 13-14 bp on dsDNA, and no nucleo-tides on the single-stranded tail of the DNA product. We have developed a rapid fluorescence-based assay using 2-aminopurine and measured the steady-state rate constants for different end-structures of DNA. The relative k(cat)for 5" ends decreases in the order 5" recessed > blunt >> 5" overhang. However, k(cat)/K(m)remains relatively constant for these different structures suggesting they are all used equally efficiently as substrates. From these data we propose that a single-stranded 5" overhang end can bind non-productively to the enzyme and the non-hydrolyzed strand is required to aid in the proper alignment of the 5" end. We have also measured the length-dependence of the steady-state rate para-meters and find that they are consistent with a high degree of processivity.  相似文献   

17.
18.
The DNA polymerase encoded by bacteriophage T5 has been reported previously to be processive and to catalyze extensive strand displacement synthesis. The enzyme, purified from phage-infected cells, did not require accessory proteins for these activities. Although T5 DNA polymerase shares extensive sequence homology with Escherichia coli DNA polymerase I and T7 DNA polymerase, it contains unique regions of 130 and 71 residues at its N and C termini, respectively. We cloned the gene encoding wild-type T5 DNA polymerase and characterized the overproduced protein. We also examined the effect of N- and C-terminal deletions on processivity and strand displacement synthesis. T5 DNA polymerase lacking its N-terminal 30 residues resembled the wild-type enzyme albeit with a 2-fold reduction in polymerase activity. Deletion of 24 residues at the C terminus resulted in a 30-fold reduction in polymerase activity on primed circular DNA, had dramatically reduced processivity, and was unable to carry out strand displacement synthesis. Deletion of 63 residues at the C terminus resulted in a 20,000-fold reduction in polymerase activity. The 3' to 5' double-stranded DNA exonuclease activity associated with T5 DNA polymerase was reduced by a factor of 5 in the polymerase truncated at the N terminus but was stimulated by a factor of 7 in the polymerase truncated at the C terminus. We propose a model in which the C terminus increases the affinity of the DNA for the polymerase active site, thus increasing processivity and decreasing the accessibility of the DNA to the exonuclease active site.  相似文献   

19.
Characterization of human poly(ADP-ribose) polymerase with autoantibodies   总被引:7,自引:0,他引:7  
The addition of poly(ADP-ribose) chains to nuclear proteins has been reported to affect DNA repair and DNA synthesis in mammalian cells. The enzyme that mediates this reaction, poly(ADP-ribose) polymerase, requires DNA for catalytic activity and is activated by DNA with strand breaks. Because the catalytic activity of poly(ADP-ribose) polymerase does not necessarily reflect enzyme quantity, little is known about the total cellular poly(ADP-ribose) polymerase content and the rate of its synthesis and degradation. In the present experiments, specific human autoantibodies to poly(ADP-ribose) polymerase and a sensitive immunoblotting technique were used to determine the cellular content of poly(ADP-ribose) polymerase in human lymphocytes. Resting peripheral blood lymphocytes contained 0.5 X 10(6) enzyme copies per cell. After stimulation of the cells by phytohemagglutinin, the poly(ADP-ribose) polymerase content increased before DNA synthesis. During balanced growth, the T lymphoblastoid cell line CEM contained approximately 2 X 10(6) poly(ADP-ribose) polymerase molecules per cell. This value did not vary by more than 2-fold during the cell growth cycle. Similarly, mRNA encoding poly(ADP-ribose) polymerase was detectable throughout S phase. Poly(ADP-ribose) polymerase turned over at a rate equivalent to the average of total cellular proteins. Neither the cellular content nor the turnover rate of poly(ADP-ribose) polymerase changed after the introduction of DNA strand breaks by gamma irradiation. These results show that in lymphoblasts poly(ADP-ribose) polymerase is an abundant nuclear protein that turns over relatively slowly and suggest that most of the enzyme may exist in a catalytically inactive state.  相似文献   

20.
Sung JS  Mosbaugh DW 《Biochemistry》2003,42(16):4613-4625
The rate, extent, and DNA synthesis patch size of base excision repair (BER) were measured using Escherichia coli GM31 cell-free extracts and a pGEM (form I) DNA substrate containing a site-specific uracil or ethenocytosine target. The rate of complete BER was stimulated (approximately 3-fold) by adding exogenous E. coli DNA ligase to the cell-free extract, whereas addition of E. coli Ung, Nfo, Fpg, or Pol I did not stimulate BER. Hence, DNA ligation was identified as the rate-limiting step in the E. coli BER pathway. The addition of exogenous DNA polymerase I caused modest inhibition of BER, which was overcome by concomitant addition of DNA ligase. Repair patch size determinations were performed to assess the distribution of DNA synthesis associated with both uracil- and ethenocytosine-initiated BER. During the early phase (0-5 min) of the BER reaction, the large majority of repair events resulted from short patch (1-nucleotide) DNA synthesis. However, during the late phase (>10 min) both short and long (2-20 nucleotide) patches were observed, with long patch BER progressively dominating the repair process. In addition, the patch size distribution was influenced by the ratio of DNA polymerase I to DNA ligase activity in the reaction. A novel mode of BER was identified that involved DNA synthesis tracts of >205 nucleotides in length and termed very-long patch BER. This BER process was dependent upon DNA polymerase I since very-long patch BER was inhibited by DNA polymerase I antibody and addition of excess DNA polymerase I reversed this inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号