首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rabbits and sheep were exposed to low-and high-protein diets and subsequently infested three times with adults ofRhipicephalus appendiculatus andRhipicephalus evertsi evertsi. The mean weight ofR.e. evertsi females which dropped from rabbits maintained on a high-protein diet decreased from 515.0±24.9 mg (naive) to 381.5±25.0 (second infestation) to 340.3±23.3 mg (third infestation) while the weight of ticks fed on animals which were exposed to a low-protein diet did not change significantly (2.7%). The mean weight of engorged females ofR. appendiculatus which completed their blood meal on rabbits (high protein) decreased from 520.9±31.8 (naive) to 369.3±39 mg (3rd infestation), a significant decrease of 29.1% compared to a 12.3% decrease in weight between the 1 st and 3rd infestation of females fed on animals on a low-protein diet.Rhipicephalus e. evertsi fed on sheep exhibited the same phenomenon. The mean decrease in weight of 4rd-infestation ticks which dropped from sheep fed lucerne was 26.2% compared to 16.6% for ticks from sheep which were fed on grass.Hosts maintained on a low-protein diet failed to acquire resistance to ticks, lost weight and developed anaemia while those on a high-protein diet developed resistance, maintained weight and did not develop anaemia.The nutritional stress of the hosts and its application in South Africa are discussed.  相似文献   

2.
The influence of diet on the courtship roles of male and female Requena verticaliswas investigated in the laboratory. The protein content of available food was found to affect the frequency of mating attempts. Pairs which were fed on a low-protein diet were involved in fewer mating attempts than pairs which were fed on a high-protein diet. Diet also influenced the relative frequencies of male and female rejections. Males rejected their virgin female partners more often than females rejected their male partners when the pairs were kept on a low-protein diet. The opposite was found when the female had mated once before. No difference in the frequency of male and female rejections was found when the pair was kept on a high-protein diet irrespective of the mating status of the female.  相似文献   

3.
Many birds switch seasonally or during ontogeny between diets of varying protein content. In mammals, high-protein diets induce hypertrophy of the kidney in general and of the thick ascending limbs (TAL) in particular, along with increases in glomerular filtration rate (GFR) and urine flow. A hypothesis to explain these phenomena is that the TAL become increasingly sensitive to peptide hormones (glucagon and antidiuretic hormone [ADH]) released in response to protein feeding; the consequent enhancement of ion reabsorption dilutes urine reaching the macula densa, thereby suppressing tubulo-glomerular feedback (TGF) and causing a rise in GFR. Avian kidneys possess most of the elements involved in this mechanism, including loops of Henle with TAL, sensitivity of TAL to ADH (arginine vasotocin [AVT] in birds), and the elements of TGF. We therefore hypothesized that switching from a low-protein to a high-protein diet would induce responses in birds similar to those found in mammals. We tested this hypothesis by feeding house sparrows, Passer domesticus, isocaloric diets containing either 8% or 30% protein. Birds on high-protein food had larger renal medullae, both in mass and in TAL diameter, but no increase in whole-kidney mass. Urine flow was approximately doubled on high-protein food, but there was no change in GFR. We were not able to detect an increased sensitivity of AVT-induced adenylyl cyclase activity in TAL from high-protein animals, and responsiveness to glucagon was higher in TAL from birds eating low-protein food. We are unable to conclude that a suppression of TGF is responsible for the rise in urine flow in birds eating high-protein foods, and the mechanisms behind the medullary hypertrophy and the diuresis remain to be fully explored.  相似文献   

4.
Maternal low-protein diet during pregnancy is a risk factor for cardiovascular disease of the offspring in later life. The impact of high-protein diet during pregnancy on the cardiovascular phenotype of the offspring, however, is still unknown. We examined the influence of a high-protein diet during pregnancy and lactation on the renal, hemodynamic, and metabolic phenotype of the F1 generation. Female Wistar rats were either fed a normal protein diet (20% protein: NP) or an isocaloric high-protein diet (40% protein: HP) throughout pregnancy and lactation. At weaning, the offspring were fed with standard diet, and they were allocated according to sex and maternal diet to four groups: normal-protein male (NPm, n = 25), normal-protein female (NPf, n = 19), high-protein male (HPm, n = 24), high-protein female (HPf, n = 29). During the experiment (22 wk), the animals were characterized by repeated measurement of body weight, food intake, blood pressure, glucose tolerance, energy expenditure, and kidney function. At the end of the study period histomorphological analyses of the kidneys and weight measurement of reproductive fat pads were conducted. There were no differences in birth weight between the study groups. No influence of maternal diet on energy expenditure, glucose tolerance, and plasma lipid levels was detected. Blood pressure and glomerulosclerosis were elevated in male offspring only, whereas female offspring were characterized by an increased food efficiency, higher body weight, and increased fat pads. Our study demonstrates that a high-protein diet during pregnancy and lactation in rats programs blood pressure, food efficiency, and body weight of the offspring in a sex-dependent manner.  相似文献   

5.
Feeding high-protein diets in animals can lead to a decrease of nitrogen utilization efficiency, and then promote the environmental pollution. Recently, more reports have demonstrated that lowering protein level in diets supplemented with specific amino acids can address these problems. However, the whole proteome alteration in the skeletal muscle of weaned piglets fed low-protein diets is poorly understood. Here, we applied the isobaric tags for relative and absolute quantification approach to investigate this alteration. We fed weaned piglets with normal protein diet (20% crude protein) and low-protein diet supplemented with lysine, methionine, threonine, and tryptophan (17% crude protein) for 25 days. Then proteomic profiling of skeletal muscles was performed. In total, 1354 proteins were quantified in the porcine skeletal muscle proteome. 132 proteins were identified as differentially expressed proteins between the two groups. Differentially expressed proteins were significantly enriched in various nutrient metabolism including lipid, carbohydrate, and amino acid metabolism. Interestingly, a total of 20 differentially expressed proteins, which are involved in the oxidative phosphorylation pathway, were all down-regulated by the low-protein diet feeding. Further immunoblotting confirmed the down-regulations of MT-ATP8, COX2, NDUFA6, and SDHB, four selected proteins among these 20 proteins. Meanwhile, the ATP level in the low-protein diet group was also reduced. These findings for the first time reveal that oxidative phosphorylation pathway is suppressed in longissimus dorsi muscle of weaned piglets fed low-protein diet supplemented with limiting amino acids, which may provide new insights into further formula design and the choice of limiting amino acids in diets.  相似文献   

6.
We examined the effect of larval and adult nutrition on worker honey bee (Apis mellifera L.) ovary development. Workers were fed high or low-pollen diets as larvae, and high or low-protein diets as adults. Workers fed low-protein diets at both life stages had the lowest levels of ovary development, followed by those fed high-protein diets as larvae and low- quality diets as adults, and then those fed diets poor in protein as larvae but high as adults. Workers fed high-protein diets at both life stages had the highest levels of ovary development. The increases in ovary development due to improved dietary protein in the larval and adult life stages were additive. Adult diet also had an effect on body mass. The results demonstrate that both carry-over of larval reserves and nutrients acquired in the adult life stage are important to ovary development in worker honey bees. Carry-over from larval development, however, appears to be less important to adult fecundity than is adult nutrition. Seasonal trends in worker ovary development and mass were examined throughout the brood rearing season. Worker ovary development was lowest in spring, highest in mid-summer, and intermediate in fall.  相似文献   

7.
The eating pattern is altered by high-fat diet-induced obesity. To clarify whether this is dependent on the fatty acid profile of the diet, the authors conducted two studies on adult female Sprague-Dawley rats fed normal-fat chow or high-fat diets with varying fatty acid composition. Eating pattern and body weight were assessed in rats fed canola-based (low in saturated fatty acids) or lard-based (moderate in saturated fatty acids) diets for 7 days, and in animals fed chow or canola- or butter-based diets (rich in saturated fatty acids) for 43 days. These parameters were also determined when restricted amounts of low-fat canola- or butter-based diets were consumed for 25 days. Early exposure to canola or lard high-fat feeding or prolonged access to canola- or butter-based fat-rich diets (relative to chow feeding) did not alter the normal light-dark distribution of food and energy intake. All animals ingested most of their food during the dark phase. However, feeding the high-fat canola- and butter-based diets produced an altered eating pattern during the light phase characterized by a smaller number of meals, longer intermeal interval, and enhanced satiety ratio, and consumption of shorter-lasting meals than chow-fed animals. Relative to canola or chow feeding, butter-fed animals consumed a lower number of meals during the dark phase and had a higher eating rate in the light phase, but ate larger meals overall. Only butter feeding led to overeating and obesity. When given a restricted amount of low-fat canola- or butter-based diet at the start of the light phase, rats ate most of their food in that phase and diurnal rather than nocturnal feeding occurred with restriction. These findings underscore the role of saturated fatty acids and the resulting eating pattern alteration in the development of obesity.  相似文献   

8.
Many insects eat their cast cuticle (exuviae) after moulting. The functional significance of this behaviour has not been addressed experimentally. I tested the hypothesis that exuviae eating constitutes a meal, so the animal recycles its nitrogen content. Nitrogenous compounds (protein and chitin) are major components of the cuticle in Periplaneta americana, accounting for as much as 87% of the total weight. It was found that insects almost invariably ate their exuviae during their larval life. The frequency of the behaviour decreased in newly emerged adults and varied between the sexes, males eating their exuviae less frequently than females. This may be due to the extra nitrogen endowment which females need for reproduction. Aposymbiotic animals, which lack the supply of essential amino acids from endosymbiotic bacteria, always ate their exuviae regardless of sex. When animals were reared on different diets throughout their larval life protein level in the diet correlated with exuviae eating. Animals reared on a low protein diet showed the highest levels of exuviae eating; animals reared on a high protein diet showed the highest levels of exuviae rejection. Analysis of the frass produced after exuviae meals showed that over 58% of the nitrogen present in the exuviae was recycled. This demonstrated that cockroaches digested nitrogenous compounds contained in the cuticle. The possibility that the exuviae meal has other functions is discussed, although the evidence supports a nutritional role.  相似文献   

9.
We studied the physiological, biochemical and morphological responses of the omnivore sparrow Zonotrichia capensis, a small opportunistic passerine from Central Chile acclimated to high- and low-protein diets. After 4 weeks of acclimation to 30% (high-protein group) or 7% (low-protein group) dietary casein, we collected urine and plasma for nitrogen waste production and osmometry analysis, and measured gross renal morphology. Plasma osmolality and hematocrit were not significantly affected by dietary treatment, but urine osmolality was higher in the high-protein group than in the low-protein group. Kidney and heart masses were higher in animals acclimated to the high-protein diet. Mean total nitrogen waste was significantly higher in the high-protein group, but the proportions of nitrogen excreted as uric acid, urea and ammonia were unaffected by diet. Our data suggest that the response of Z. capensis to an increase in dietary protein content is through greater amounts of total nitrogen excretion and hypertrophy of kidney structures, without any modification of the proportion of excretory compounds.  相似文献   

10.
Rats were fed on a 10% casein (10C) diet, 30% casein (30C) diet, 10C+0.5% methionine diet, or 30C+0.5% methionine diet for 14 d to investigate the relationship between the dietary protein level and plasma homocysteine concentration. The plasma homocysteine concentration was significantly higher in the rats fed on the 10C diet than in the rats fed on the 30C diet, and this phenomenon persisted even under the condition of methionine supplementation. The activity of hepatic cystathionine beta-synthase (CBS) was significantly lower in the rats fed on the 10% casein diets than in the rats fed on the 30% casein diets, irrespective of methionine supplementation. This is the first demonstration of a low-protein diet increasing the plasma homocysteine concentration in experimental animals. It is suggested that the decreased CBS activity might be associated, at least in part, with the hyperhomocysteinemia caused by the low-casein diet.  相似文献   

11.
For many insect herbivores, variation in protein availability is a pervasive part of the environment. I explore how variable protein availability affects growth rates of fifth-instar Manduca sexta caterpillars and how growth is related to behavior and physiology. Groups of larvae were reared on low- or high-protein artificial diets (5.9% and 17.7% casein by dry weight, respectively) and then transferred in the fifth instar to the same or opposite diet. During or after the 24-h period following transfer, I measured growth rate, consumption rate, growth efficiency, midgut proteolytic activity, and masses of midgut contents and tissues. Fifth-instar caterpillars reared in earlier instars on high-protein diet grew about 20% more rapidly over 24 h than did caterpillars reared on low-protein diet. This growth pattern appears to be caused by differences in consumption and growth efficiency: caterpillars reared on high protein consumed more food, and used it more efficiently, than did caterpillars reared on low-protein diet. Over the short term (24 h), in contrast, fifth instars that received low-protein diet grew as rapidly as caterpillars that received high-protein diet. Increased (compensatory) consumption appears to be the primary mechanism by which caterpillars consuming low-protein food maintained growth rates.  相似文献   

12.
The possible correlation between malnutrition and degree of severity of rotavirus-associated infantile diarrhea which appears to occur in human populations was studied using a mouse model. To determine the effects of general malnutrition or altered levels of dietary protein, female mice were fed throughout pregnancy and infection periods with diets diluted with 0, 300, or 600 g glucose/kg, designated as normal nutrient to calorie ratio (N/C) diet, 70% N/C diet, or 40% N/C diet or with diets containing 75, 150, or 300 g casein/kg, as low-, normal-, or high-protein diets. Murine rotavirus was given by gavage to the 2-day-old offspring of these dams, and the extent of infection determined. Marked increases in severity of diarrheal disease were seen in the infants from dams receiving the 40 and 70% N/C diets and the low-protein diet. Severity of infection was seen as increased deaths, reduced weight gain, and increased passage of diarrheic feces. Intestinal viral levels and intestinal diarrhea scores did not vary appreciably. Serum interferon remained below detectable limits throughout the studies, but serum antibody was determined in dams 30 days post-virus exposure. The latter titers were lower in the infected mice from dams fed the 40 and 70% N/C diets, but were essentially the same in all the protein diet groups. Cross-fostering was done using the 40 and 100% N/C diets, wherein mice from dams fed either diet were placed on mothers fed the opposite diet. Increased severity of infection was again seen when the virus was given 2 days after the exchange, although the greatest infection occurred in animals from dams fed 40% N/C diet which were then fostered by other similarly fed dams. The increased host sensitivity to the rotaviral infection appeared to be a result of both pre- and postnatal dietary effects.  相似文献   

13.
The eating pattern is altered by high-fat diet-induced obesity. To clarify whether this is dependent on the fatty acid profile of the diet, the authors conducted two studies on adult female Sprague-Dawley rats fed normal-fat chow or high-fat diets with varying fatty acid composition. Eating pattern and body weight were assessed in rats fed canola-based (low in saturated fatty acids) or lard-based (moderate in saturated fatty acids) diets for 7 days, and in animals fed chow or canola- or butter-based diets (rich in saturated fatty acids) for 43 days. These parameters were also determined when restricted amounts of low-fat canola- or butter-based diets were consumed for 25 days. Early exposure to canola or lard high-fat feeding or prolonged access to canola- or butter-based fat-rich diets (relative to chow feeding) did not alter the normal light-dark distribution of food and energy intake. All animals ingested most of their food during the dark phase. However, feeding the high-fat canola- and butter-based diets produced an altered eating pattern during the light phase characterized by a smaller number of meals, longer intermeal interval, and enhanced satiety ratio, and consumption of shorter-lasting meals than chow-fed animals. Relative to canola or chow feeding, butter-fed animals consumed a lower number of meals during the dark phase and had a higher eating rate in the light phase, but ate larger meals overall. Only butter feeding led to overeating and obesity. When given a restricted amount of low-fat canola- or butter-based diet at the start of the light phase, rats ate most of their food in that phase and diurnal rather than nocturnal feeding occurred with restriction. These findings underscore the role of saturated fatty acids and the resulting eating pattern alteration in the development of obesity. (Author correspondence: )  相似文献   

14.

Background

It is well accepted that reduced foetal growth and development resulting from maternal malnutrition are associated with a number of chronic conditions in later life. On the other hand such generation-transcending effects of over-nutrition and of high-protein consumption in pregnancy and lactation, a proven fact in all developed societies, are widely unknown. Thus, we intended to describe the generation-transcending effects of a high-protein diet, covering most relevant topics of human life like embryonic mortality, infant death, and physical health in later life.

Methods

Female mice received control food (21% protein) or were fed a high protein diet (42% protein) during mating. After fertilisation, females stayed on their respective diet until weaning. At birth, pups were put to foster mothers who were fed with standard food or with HP diet. After weaning, control diet was fed to all mice. All offspring were monitored up to 360 days after birth. We determined glucose-tolerance and measured cardiovascular parameters using a tip-catheter. Finally, abdominal fat amount was measured.

Results and Conclusions

We identified a worried impact of high-protein diet during pregnancy on dams'' body weight gain, body weight of newborns, number of offspring, and also survival in later life. Even more important is the discovery that high-protein diet during lactation caused a more than eight-fold increase in offspring mortality. The observed higher newborn mortality during lactation is a hitherto non-described, unique link to the still incompletely understood human sudden infant death syndrome (SIDS). Thus, although offspring of lactating mothers on high-protein diet might have the advantage of lower abdominal fat within the second half of life, this benefit seems not to compensate the immense risk of an early sudden death during lactation. Our data may implicate that both pregnant women and lactating mothers should not follow classical high-protein diets.  相似文献   

15.
Male streptocozin diabetic rats were fed ad libitum in two diets, one a control, adequate in protein and energy, and another, depleted in protein, but adequate in energy. Within each one of these dietary groups, three hormone-treated groups were made as follows: rats receiving vehicle, or 0.25 or 0.50 I.U. insulin/100 g body weight/day i.p. for 21 days. A fourth group of intact rats, receiving vehicle injection, was included as a control. Every day urine excretion was collected for urea-N and 3-methylhistidine (3-Mehis) determination. Body weight and food intake were recorded daily. At the end of the experiment, all animals were sacrificed, and a sample of blood was taken for plasma insulin assay. Liver, as well as gastrocnemius, soleus and extensor digitorum longus muscles were excised and weighed. Results showed that diabetic animals had a reduced body weight gain, although the food intake was elevated in all groups, as compared to the intact rats. Gastrocnemius and soleus muscle weights were, respectively, reduced and increased in the diabetic animals fed the low-protein diet. Urea-N output was elevated in all groups fed the control diet, but a marked reduction was observed in the protein depleted rats. A reduction in 3-Mehis output was displayed by the diabetic animals, specially those fed the low-protein diet. The results of this experiment showed that in streptocozin diabetic rats there was a reduction in the rate of myofibrillar protein breakdown, specially marked when fed a protein depleted diet.  相似文献   

16.
Weanling mammals (including infants) often experience intestinal dysfunction when fed a high-protein diet. Recent work with the piglet (an animal model for studying human infant nutrition) shows that reducing protein intake can improve gut function during weaning but compromises the provision of essential amino acids (EAA) for muscle growth. The present study was conducted with weaned pigs to test the hypothesis that supplementing deficient EAA (Lys, Met, Thr, Trp, Leu, Ile and Val) to a low-protein diet may maintain the activation of translation initiation factors and adequate protein synthesis in tissues. Pigs were weaned at 21 days of age and fed diets containing 20.7, 16.7 or 12.7% crude protein (CP), with the low-CP diets supplemented with EAA to achieve the levels in the high-CP diet. On Day 14 of the trial, tissue protein synthesis was determined using the phenylalanine flooding dose method. Reducing dietary CP levels decreased protein synthesis in pancreas, liver, kidney and longissimus muscle. A low-CP diet reduced the phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein-1 (4E-BP1) in skeletal muscle and liver while increasing the formation of an inactive eIF4E.4E-BP1 complex in muscle. Dietary protein deficiency also decreased the phosphorylation of mammalian target of rapamycin (mTOR) and the formation of an active eIF4E.eIF4G complex in liver. These results demonstrate for the first time that chronic feeding of a low-CP diet suppresses protein synthesis in animals partly by inhibiting mTOR signaling. Additionally, our findings indicate that supplementing deficient EAA to low-protein diets is not highly effective in restoring protein synthesis or whole-body growth in piglets. We suggest that conditionally essential amino acids (e.g., glutamine and arginine) may be required to maintain the activation of translation initiation factors and optimal protein synthesis in neonates.  相似文献   

17.
The effect of dietary protein concentration and tyrosine supplementation on growth in streptozotocin (65 mg/kg, ip) diabetic rats was evaluated. When rats were fed diets ranging from 15 to 60% protein, weight gain and feed efficiency were greatest in rats fed the 45% protein diet. Adding tyrosine to this diet (8%, incorporated as a percentage of protein) did not promote further weight gain relative to nonsupplemented diabetic animals. In contrast, rats choosing 45% of total calories as protein by selecting from 10 and 60% protein diets supplemented with either 0, 4, or 8% tyrosine demonstrated a 35% (4% tyrosine) to 45% (8% tyrosine) increase in weight gain. Proximate analysis indicated similar body composition in tyrosine supplemented and nonsupplemented diabetic animals. Including tryptophan (1.45%) with tyrosine in the self-selection diet was without effect. Thus, tyrosine supplementation promoted a modest but consistent and specific increase in weight gained by self-selecting diabetic rats.  相似文献   

18.
Many fruits contain high levels of available energy but very low levels of protein and other nutrients. The discrepancy between available energy and protein creates a physiological paradox for many animals consuming high-fruit diets, as they will be protein deficient if they eat to meet their minimum energy requirement. We fed young grizzly bears both high-energy pelleted and fruit diets containing from 1.6% to 15.4% protein to examine the role of diet-induced thermogenesis and fat synthesis in dealing with high-energy-low-protein diets. Digestible energy intake at mass maintenance increased 2.1 times, and composition of the gain changed from primarily lean mass to entirely fat when the protein content of the diet decreased from 15.4% to 1.6%. Daily fat gain was up to three times higher in bears fed low-protein diets ad lib., compared with bears consuming the higher-protein diet and gaining mass at the same rate. Thus, bears eating fruit can either consume other foods to increase dietary protein content and reduce energy expenditure, intake, and potentially foraging time or overeat high-fruit diets and use diet-induced thermogenesis and fat synthesis to deal with their skewed energy-to-protein ratio. These are not discrete options but a continuum that creates numerous solutions for balancing energy expenditure, intake, foraging time, fat accumulation, and ultimately fitness, depending on food availability, foraging efficiency, bear size, and body condition.  相似文献   

19.
Hematological and serum biochemical responses to two levels of dietary energy (high energy [HE], 3300 kcal digestible energy [DE]/kg; moderate energy [ME], 2300 kcal DE/kg) and protein (high protein [HP], 16.0% crude protein; moderate protein [MP], 8.4% crude protein) during gestation in 15 collared peccaries (Tayassu tajacu) were examined. Dietary energy and protein levels influenced body weight gain during gestation. Red blood cell counts and lymphocyte concentrations were higher and neutrophil concentrations were lower among females fed an HP diet compared to those fed an MP diet. Alkaline phosphatase and alpha-2 globulin concentrations were higher among females fed an MP diet. Aspartate aminotransferase and cholesterol concentrations were higher and calcium and thyroxine concentrations were lower among females fed ME diets compared to those fed HE diets. These results suggest that physiological indices used in combination with morphological measurements can be useful in assessing collared peccary nutritional health during gestation.  相似文献   

20.
This study examined the effect on glycogen resynthesis during recovery from exercise of feeding glucose orally to physically trained rats which had been fed for 5 weeks on high-protein low fat (HP), high-protein/long-chain triglyceride (LCT) or high carbohydrate (CHO) diets. Muscle glycogen remained low and hepatic gluconeogenesis was stimulated by long-term fat or high-protein diets. The trained rats received, via a stomach tube, 3 ml of a 34% glucose solution immediately after exercise (2 h at 20 m.min-1), followed by 1-ml portions at hourly intervals until the end of the experiments. When fed glucose soleus muscle glycogen overcompensation occurred rapidly in the rats fed all three diets following prolonged exercise. In LCT- and CHO-fed rats, glucose feeding appeared more effective for soleus muscle repletion than in HP-fed rats. The liver demonstrated no appreciable glycogen overcompensation. A complete restoration of liver glycogen occurred within a 2- to 4-h recovery period in the rats fed HP-diet, while the liver glycogen store had been restored by only 67% in CHO-fed rats and 84% in LCT-fed rats within a 6-h recovery period. This coincides with low gluconeogenesis efficiency in these animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号