首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 325 毫秒
1.
An extracellular Pseudomonas cepacia lipase, LipA, is inactive when expressed in the absence of the product of the limA gene. Evidence has been presented that LimA is a molecular chaperone. The lipA and limA genes have been cloned in separate and independently inducible expression systems in Escherichia coli. These systems were used to test the molecular chaperone hypothesis by investigating whether LimA could activate presynthesized prelipase and whether presynthesized LimA could activate newly synthesized prelipase. The results show that LimA cannot activate presynthesized prelipase and that presynthesized LimA can activate only a limited number of de novo synthesized prelipase molecules. Co-immunoprecipitation of prelipase/lipase with LimA generated a 1:1 complex of prelipase/lipase and LimA. The results suggest that a 1:1 complex of LipA and LimA is required for prelipase processing and secretion of active lipase.  相似文献   

2.
A microbial strain (referred to as M1) that produces an extracellular lipase was isolated from a soil sample in Vietnam, and identified as a Ralstonia species by partial sequencing of its 16S rDNA. A genomic library was constructed from Pst I fragments, and a colony showing lipase activity was selected for further analysis. Sequencing of the 4.7-kb insert in this clone (named M1-72) revealed one incomplete and three complete ORFs, predicted to encode a partial hypothetical glutaminyl tRNA synthetase (304 aa), a hypothetical transmembrane protein (500 aa), a lipase (328 aa) and a lipase chaperone (352 aa), respectively. Alignment of the insert sequence with the corresponding region of the genome of R. solanacearum GMI1000 (GenBank Accession No. AL646081) confirmed the presence in the latter of the genes for the hypothetical transmembrane protein and glutaminyl tRNA synthetase, which exhibited 89–91% identity to their counterparts in M1. However, R. solanacearum GMI1000 lacks the complete lipase-encoding gene and the major part of the chaperone-encoding gene, creating a so-called black hole. The deduced amino acid sequences of the products of the lipase gene lipA and chaperone gene lipB from strain M1 shared 49.3–60.3% and 23.9–32.7% identity, respectively, with those of the Burkholderia lipase/chaperone subfamily I.2. lipB is located downstream of lipA, and separated from it by only 9 bp, and each gene has a putative ribosome binding site. The mature lipase LipA, a His-tagged derivative (LipAhis), the tagged full-length chaperone LipBhis and a truncated form (LipBhis) lacking the 56 N-terminal residues were expressed in Escherichia coli BL21. LipA, LipAhis and LipBhis could be expressed at high levels (70, 15 and 12 mg/g wet cells, respectively) and were easily purified. However, LipBhis was expressed at a much lower level which precluded purification. The specific activity of purified LipAhis, expressed on its own, was very low (<52 U/mg). However, after co-incubation with the purified LipBhis in vitro, the specific activity of the enzyme was markedly enhanced, indicating that the chaperone facilitated correct folding of the enzyme. A lipase:chaperone ratio of 1:10 was found to be optimal, yielding an enzyme preparation with a specific activity of 650 U/mg.Communicated by H. Ikeda  相似文献   

3.
The open reading frame AF1763, annotated as a putative lipase gene (lipA) of the hyperthermophilic archaeon, Archaeoglobus fulgidus DSM 4304, was cloned and over-expressed in E. coli. A sequence analysis of LipA and the investigation of a truncated enzyme implied a special function of the C-terminal part of LipA. The substrate spectrum of the enzyme suggested that LipA is a carboxylesterase rather than a canonical lipase. The enzyme showed optimal activity at 70 °C and between pH 10 and 11, which is among the most alkaline pH range detected for hydrolases.  相似文献   

4.
The lipA gene, a structural gene encoding for protein of molecular mass 48 kDa, and lipB gene, encoding for a lipase-specific chaperone with molecular mass of 35 kDa, of Pseudomonas aeruginosa B2264 were co-expressed in heterologous host Escherichia coli BL21 (DE3) to obtain in vivo expression of functional lipase. The recombinant lipase was expressed with histidine tag at its N terminus and was purified to homogeneity using nickel affinity chromatography. The amino acid sequence of LipA and LipB of P. aeruginosa B2264 was 99–100% identical with the corresponding sequence of LipA and LipB of P. aeruginosa LST-03 and P. aeruginosa PA01, but it has less identity with Pseudomonas cepacia (Burkholderia cepacia) as it showed only 37.6% and 23.3% identity with the B. cepacia LipA and LipB sequence, respectively. The molecular mass of the recombinant lipase was found to be 48 kDa. The recombinant lipase exhibited optimal activity at pH 8.0 and 37°C, though it was active between pH 5.0 and pH 9.0 and up to 45°C. K m and V max values for recombinant P. aeruginosa lipase were found to be 151.5 ± 29 μM and 217 ± 22.5 μmol min−1 mg−1 protein, respectively.  相似文献   

5.
Lipases are important as additives in detergent formulations but their biocatalytic potential is increasingly exploited in the synthesis of high-added value chemicals, in fine-chemical production and in the pharmaceutical industry. Traditionally, conventional purification schemes comprise several chromatographic steps. Here we report a new purification procedure of the lipase (LipA) that is endogenously secreted by the Gram-negative bacterium Burkholderia glumae. This affinity purification combines the specific binding scaffold of a lipase-specific foldase (Lif) and the intrinsic resistance to chemical denaturation of LipA. The newly devised method is less labor-intensive, is fast, leads to a homogeneous preparation and can be easily scaled up. The novel and the conventional purification strategies were evaluated in parallel and characteristics of the B. glumae lipase were analyzed via CD spectroscopy. Lipopolysaccharide (LPS) was still present in the samples purified via the conventional purification scheme and was shown to increase the thermostability of the lipase.  相似文献   

6.
X Wu  J Xu  P You  B Gao  E Su  D Wei 《BMC biotechnology》2012,12(1):58
ABSTRACT: BACKGROUND: Microbial lipases particularly Pseudomonas lipases are widely used for biotechnological applications. It is a meaningful work to design experiments to obtain high-level active lipase. There is a limiting factor for functional overexpression of the Pseudomonas lipase that a chaperone is necessary for effective folding. As previously reported, several methods had been used to resolve the problem. In this work, the lipase (LipA) and its chaperone (LipB) from a screened strain named AB which belongs to Pseudomonas aeruginosa were overexpressed in E.coli with two dual expression plasmid systems to enhance the production of the active lipase LipA without in vitro refolding process. RESULTS: In this work, we screened a lipase-produced strain named AB through the screening procedure, which was identified as P. aeruginosa on the basis of 16S rDNA. Genomic DNA obtained from the strain was used to isolate the gene lipA (936 bp) and lipase specific foldase gene lipB (1023 bp). One single expression plasmid system E.coli BL21/pET28a-lipAB and two dual expression plasmid systems E.coli BL21/pETDuet-lipA-lipB and E.coli BL21/pACYCDuet-lipA-lipB were successfully constructed. The lipase activities of the three expression systems were compared to choose the optimal expression method. Under the same cultured condition, the activities of the lipases expressed by E.coli BL21/pET28a-lipAB and E.coli BL21/pETDuet-lipA-lipB were 1300U/L and 3200U/L, respectively, while the activity of the lipase expressed by E.coli BL21/pACYCDuet-lipA-lipB was up to 8500U/L. The lipase LipA had an optimal temperature of 30[degree sign]C and an optimal pH of 9 with a strong pH tolerance. The active LipA could catalyze the reaction between fatty alcohols and fatty acids to generate fatty acid alkyl esters, which meant that LipA was able to catalyze esterification reaction. The most suitable fatty acid and alcohol substrates for esterification were octylic acid and hexanol, respectively. CONCLUSIONS: The effect of different plasmid system on the active LipA expression was significantly different. pACYCDuet-lipA-lipB was more suitable for the expression of active LipA than pET28a-lipAB and pETDuet-lipA-lipB. The LipA showed obvious esterification activity and thus had potential biocatalytic applications. The expression method reported here can give reference for the expression of those enzymes that require chaperones.  相似文献   

7.
8.
Microorganisms associated with marine sponges are potential resources for marine enzymes. In this study, culture-independent metagenomic approach was used to isolate lipases from the complex microbiome of the sponge Ircinia sp. obtained from the South China Sea. A metagenomic library was constructed, containing 6568 clones, and functional screening on 1 % tributyrin agar resulted in the identification of a positive lipase clone (35F4). Following sequence analysis 35F4 clone was found to contain a putative lipase gene lipA. Sequence analysis of the predicted amino acid sequence of LipA revealed that it is a member of subfamily I.1 of lipases, with 63 % amino acid similarity to the lactonizing lipase from Aeromonas veronii (WP_021231793). Based on the predicted secondary structure, LipA was predicted to be an alkaline enzyme by sequence/structure analysis. Heterologous expression of lipA in E. coli BL21 (DE3) was performed and the characterization of the recombinant enzyme LipA showed that it is an alkaline enzyme with high tolerance to organic solvents. The isolated lipase LipA was active in the broad alkaline range, with the highest activity at pH 9.0, and had a high level of stability over a pH range of 7.0–12.0. The activity of LipA was increased in the presence of 5 mM Ca2+ and some organic solvents, e.g. methanol, acetone and isopropanol. The optimum temperature for the activity of LipA is 40 °C and the molecular weight of LipA was determined to be ~30 kDa by SDS-PAGE. LipA is an alkaline lipase and shows good tolerance to some organic solvents, which make it of potential utility in the detergent industry and enzyme mediated organic synthesis. The result of this study has broadened the diversity of known lipolytic genes and demonstrated that marine sponges are an important source for new enzymes.  相似文献   

9.
Lipase enzymes catalyze the reversible hydrolysis of triacylglycerol to fatty acids and glycerol at the lipid–water interface. The metabolically versatile Ralstonia eutropha strain H16 is capable of utilizing various molecules containing long carbon chains such as plant oil, organic acids, or Tween as its sole carbon source for growth. Global gene expression analysis revealed an upregulation of two putative lipase genes during growth on trioleate. Through analysis of growth and activity using strains with gene deletions and complementations, the extracellular lipase (encoded by the lipA gene, locus tag H16_A1322) and lipase-specific chaperone (encoded by the lipB gene, locus tag H16_A1323) produced by R. eutropha H16 was identified. Increase in gene dosage of lipA not only resulted in an increase of the extracellular lipase activity, but also reduced the lag phase during growth on palm oil. LipA is a non-specific lipase that can completely hydrolyze triacylglycerol into its corresponding free fatty acids and glycerol. Although LipA is active over a temperature range from 10 °C to 70 °C, it exhibited optimal activity at 50 °C. While R. eutropha H16 prefers a growth pH of 6.8, its extracellular lipase LipA is most active between pH 7 and 8. Cofactors are not required for lipase activity; however, EDTA and EGTA inhibited LipA activity by 83 %. Metal ions Mg2+, Ca2+, and Mn2+ were found to stimulate LipA activity and relieve chelator inhibition. Certain detergents are found to improve solubility of the lipid substrate or increase lipase-lipid aggregation, as a result SDS and Triton X-100 were able to increase lipase activity by 20 % to 500 %. R. eutropha extracellular LipA activity can be hyper-increased, making the overexpression strain a potential candidate for commercial lipase production or in fermentations using plant oils as the sole carbon source.  相似文献   

10.
Growth of Pseudomonas sp. 42A2 on oleic acid releases polymerized hydroxy-fatty acids as a result of several enzymatic conversions that could involve one or more lipases. To test this hypothesis, the lipolytic system of strain Pseudomonas sp. 42A2 was analyzed, revealing the presence of at least an intracellular carboxylesterase and a secreted lipase. Consensus primers derived from a conserved region of bacterial lipase subfamilies I.1 and I.2 allowed isolation of two secreted lipase genes, lipA and lipC, highly homologous to those of Pseudomonas aeruginosa PAO1. Homologous cloning of the isolated lipA and lipC genes was performed in Pseudomonas sp. 42A2 for LipA and LipC over-expression. The overproduced lipases were further purified and characterized, both showing preference for medium fatty acid chain-length substrates. However, significant differences could be detected between LipA and LipC in terms of enzyme kinetics and behaviour pattern. Accordingly, LipA showed maximum activity at moderate temperatures, and displayed a typical Michaelis–Menten kinetics. On the contrary, LipC was more active at low temperatures and displayed partial interfacial activation, showing a shift in substrate specificity when assayed at different temperatures, and displaying increased activity in the presence of certain heavy metal ions. The versatile properties shown by LipC suggest that this lipase could be expressed in response to variable environmental conditions.  相似文献   

11.
Acinetobacter sp. XMZ-26 (ACCC 05422) was isolated from soil samples obtained from glaciers in Xinjiang Province, China. The partial nucleotide sequence of a lipase gene was obtained by touchdown PCR using degenerate primers designed based on the conserved domains of cold-adapted lipases. Subsequently, a complete gene sequence encoding a 317 amino acid polypeptide was identified. Our novel lipase gene, lipA, was overexpressed in Escherichia coli. The recombinant protein (LipA) was purified by Ni-affinity chromatography, and then deeply characterised. The LipA resulted to hydrolyse pNP esters of fatty acids with acyl chain length from C2 to C16, and the preferred substrate was pNP octanoate showing a k cat = 560.52 ± 28.32 s−1, K m = 0.075 ± 0.008 mM, and a k cat/K m = 7,377.29 ± 118.88 s−1 mM−1. Maximal LipA activity was observed at a temperature of 15°C and pH 10.0 using pNP decanoate as substrate. That LipA peaked at such a low temperature and remained most activity between 5°C and 35°C indicated that it was a cold-adapted enzyme. Remarkably, this lipase retained much of its activity in the presence of commercial detergents and organic solvents, including Ninol, Triton X-100, methanol, PEG-600, and DMSO. This cold-adapted lipase may find applications in the detergent industry and organic synthesis.  相似文献   

12.
The genes encoding the lipase (LipA) and lipase chaperone (LipB) from Acinetobacter calcoaceticus RAG-1 were cloned and sequenced. The genes were isolated from a genomic DNA library by complementation of a lipase-deficient transposon mutant of the same strain. Transposon insertion in this mutant and three others was mapped to a single site in the chaperone gene. The deduced amino acid (aa) sequences for the lipase and its chaperone were found to encode mature proteins of 313 aa (32.5 kDa) and 347 aa (38.6 kDa), respectively. The lipase contained a putative leader sequence, as well as the conserved Ser, His, and Asp residues which are known to function as the catalytic triad in other lipases. A possible trans-membrane hydrophobic helix was identified in the N-terminal region of the chaperone. Phylogenetic comparisons showed that LipA, together with the lipases of A. calcoaceticus BD413, Vibrio cholerae El Tor, and Proteus vulgaris K80, were members of a previously described family of Pseudomonas and Burkholderia lipases. This new family, which we redefine as the Group I Proteobacterial lipases, was subdivided into four subfamilies on the basis of overall sequence homology and conservation of residues which are unique to the subfamilies. LipB, moreover, was found to be a member of an analogous family of lipase chaperones. We propose that the lipases produced by P. fluorescens and Serratia marcescens, which comprise a second sequence family, be referred to as the Group II Proteobacterial lipases. Evidence is provided to support the hypothesis that both the Group I and Group II families have evolved from a combination of common descent and lateral gene transfer.  相似文献   

13.
The mature lipase LipA and its 56aa-truncated chaperone DeltaLipBhis (with 6xhis-tag) from Ralstonia sp. M1 were over-expressed in Escherichia coli BL21 under the control of T7 promoter with a high level of 70 and 12mg protein per gram of wet cells, respectively. The simply purified lipase LipA was effectively refolded by Ni-NTA purified chaperone DeltaLipBhis in molar ratio 1:1 at 4 degrees C for 24 hours in H2O. The in vitro refolded lipase LipA had an optimal activity in the temperature range of 50-55 degrees C and was stable up to 45 degrees C with more than 84% activity retention. The maximal activity was observed at pH 10.75 for hydrolysis of olive oil and found to be stable over alkaline pH range 8.0-10.5 with more than 52% activity retention. The enzyme was found to be highly resistant to many organic solvents especially induced by ethanolamine (remaining activity 137-334%), but inhibited by 1-butanol and acetonitrile (40-86%). Metal ions Cu2+, Sn2+, Mn2+, Mg2+, and Ca2+ stimulated the lipase slightly with increase in activity by up to 22%, whereas Zn2+ significantly inhibited the enzyme with the residual activity of 30-65% and Fe3+ to a lesser degree (activity retention of 77-86%). Tween 80, Tween 60, and Tween 40 induced the activation of the lipase LipA (222-330%) and 0.2-1% (w/v) of Triton X-100, X-45, and SDS increased the lipase activity by up to 52%. However, 5% (w/v) of Triton X-100, X-45, and SDS inhibited strongly the activity by 31-89%. The inhibitors including DEPC, EDTA, PMSF, and 2-mercaptoethanol (0.1-10mM) inhibited moderately the lipase with remaining activity of 57-105%. The lipase LipA hydrolyzed a wide range of triglycerides, but preferentially short length acyl chains (C4 and C6). In contrast to the triglycerides, medium length acyl chains (C8 and C14) of p-nitrophenyl (p-NP) esters were preferential substrates of this lipase. The enzyme preferentially catalyzed the hydrolysis of cottonseed oil (317%), cornoil (227%), palm oil (222%), and wheatgerm oil (210%) in comparison to olive oil (100%).  相似文献   

14.
Sullivan ER  Leahy JG  Colwell RR 《Gene》1999,230(2):277-286
The genes encoding the lipase (LipA) and lipase chaperone (LipB) from Acinetobacter calcoaceticus RAG-1 were cloned and sequenced. The genes were isolated from a genomic DNA library by complementation of a lipase-deficient transposon mutant of the same strain. Transposon insertion in this mutant and three others was mapped to a single site in the chaperone gene. The deduced amino acid (aa) sequences for the lipase and its chaperone were found to encode mature proteins of 313 aa (32.5kDa) and 347 aa (38.6kDa), respectively. The lipase contained a putative leader sequence, as well as the conserved Ser, His, and Asp residues which are known to function as the catalytic triad in other lipases. A possible trans-membrane hydrophobic helix was identified in the N-terminal region of the chaperone. Phylogenetic comparisons showed that LipA, together with the lipases of A. calcoaceticus BD413, Vibrio cholerae El Tor, and Proteus vulgaris K80, were members of a previously described family of Pseudomonas and Burkholderia lipases. This new family, which we redefine as the Group I Proteobacterial lipases, was subdivided into four subfamilies on the basis of overall sequence homology and conservation of residues which are unique to the subfamilies. LipB, moreover, was found to be a member of an analogous family of lipase chaperones. We propose that the lipases produced by P. fluorescens and Serratia marcescens, which comprise a second sequence family, be referred to as the Group II Proteobacterial lipases. Evidence is provided to support the hypothesis that both the Group I and Group II families have evolved from a combination of common descent and lateral gene transfer.  相似文献   

15.
An edible-oil degrading bacterial strain HH-01 was isolated from oil plant gummy matter and was classified as a member of the genus Bacillus on the basis of the nucleotide sequence of the 16S rRNA gene. A putative lipase gene and its flanking regions were cloned from the strain based on its similarity to lipase genes from other Bacillus spp. The deduced product was composed of 214 amino acids and the putative mature protein, consisting of 182 amino acids, exhibited 82% amino acid sequence identity with the subfamily I.4 lipase LipA of Bacillus subtilis 168. The recombinant product was successfully overproduced as a soluble form in Escherichia coli and showed lipase activity. The gene was, therefore, designated as lipA of HH-01. HH-01 LipA was stable at pH 4–11 and up to 30°C, and its optimum pH and temperature were 8–9 and 30°C, respectively. The enzyme showed preferential hydrolysis of the 1(3)-position ester bond in trilinolein. The activity was, interestingly, enhanced by supplementing with 1 mM CoCl2, in contrast to other Bacillus lipases. The lipA gene seemed to be constitutively transcribed during the exponential growth phase, regardless of the presence of edible oil.  相似文献   

16.
The implementation of efficient technologies for the production of recombinant mammalian membrane receptors is an outstanding challenge in understanding receptor-ligand actions and the development of therapeutic antibodies. In order to improve the solubility of recombinant extracellular domains of human membrane receptors expressed in Escherichia coli, proteins were synthesized by an E. coli in vitro translation system supplemented with bacterial molecular chaperones, such as GroEL-GroES (GroEL/ES), Trigger factor (TF), a DnaK-DnaJ-GrpE chaperone system (DnaKJE), and/or a heat shock protein Hsp100, ClpB. The following three proteins that are prone to aggregation were examined: the extracellular domain (ECD) or the second immunoglobulin-like domain (IgII) of the human neurotrophin receptor TrkC (TrkC-ECD and TrkC-IgII), and the C-type lectin carbohydrate recognition domain of the human asialoglycoprotein receptor (ASGPR HI CRD). The cooperative chaperone system including GroEL/ES, DnaKJE and ClpB had a marked effect on the solubility of TrkC-ECD and TrkC-IgII, and the GroEL/ES-DnaKJE-TF chaperone system was more effective for TrkC-IgII. The GroEL/ES-DnaKJE-TF chaperone network increased the yield of soluble ASGPR HI CRD. The present findings demonstrate that E. coli molecular chaperones are useful in improving the yield of soluble recombinant extracellular domains of human membrane receptors in an E. coli expression system.  相似文献   

17.
Regulation of cell division requires the concerted function of proteins and protein complexes that properly mediate cytoskeletal dynamics. NudC is an evolutionarily conserved protein of undetermined function that associates with microtubules and interacts with several key regulators of mitosis, such as polo-kinase 1 (Plk1) and dynein. NudC is essential for proper mitotic progression, and homologs have been identified in species ranging from fungi to humans. In this paper, we report the characterization of the Caenorhabditis elegans NudC homolog, NUD-1, as a protein exhibiting molecular chaperone activity. All NudC/NUD-1 proteins share a conserved p23/HSP20 domain predicted by three-dimensional modeling [Garcia-Ranea, Mirey, Camonis, Valencia, FEBS Lett 529(2–3):162–167, 2002]. We demonstrate that nematode NUD-1 is able to prevent the aggregation of two substrate proteins, citrate synthase (CS) and luciferase, at stoichiometric concentrations. Further, NUD-1 also protects the native state of CS from thermal inactivation by significantly reducing the inactivation rate of this enzyme. To further determine if NUD-1/substrate complexes were productive or simply “dead-end” unfolding intermediates, a luciferase refolding assay was utilized. Following thermal denaturation, rabbit reticulocyte lysate and ATP were added and luciferase activity measured. In the presence of NUD-1, nearly all of the luciferase activity was regained, indicating that unfolded intermediates complexed with NUD-1 could be refolded. These studies represent the first functional evidence for a member of this mitotically essential protein family as having chaperone activity and facilitates elucidation of the role such proteins play in chaperone complexes utilized in cell division. C. elegans NUD-1 is a member of an evolutionary conserved protein family of unknown function involved in the regulation of cytoskeletal dynamics. NUD-1 and its mammalian homolog, NudC, function with the dynein motor complex to ensure proper cell division, and knockdown or overexpression of these proteins leads to disruption of mitosis. In this paper, we show that NUD-1 possesses ATP-independent chaperone activity comparable to that of small heat shock proteins and cochaperones and that changes in phosphorylation state functionally alter chaperone activity in a phosphomimetic NUD-1 mutant.  相似文献   

18.
α-Lipoic acid (LA), a naturally occurring cofactor reported to be present in a diverse group of microorganisms, plants, and animal tissues, has been widely and successfully used as a therapy for a variety of diseases, including diabetes and heart disease. However, to date, recombinant DNA technology has not been applied for higher LA production due mainly to difficulties in the functional expression of key enzymes involved in LA production. Here, we report a study for higher LA production with the aid of chaperone plasmids, DnaKJE and trigger factor (Tf). The lipA and lplA genes encoding lipoate synthase and lipoate protein ligase in Pseudomonas fluorescens, respectively, were cloned and transformed into Escherichia coli K12. When they were overexpressed in E. coli, both LipA and LplA were expressed as inclusion bodies leading to no increase in LA production. However, when chaperone plasmids DnaKJE and Tf were coexpressed with lipA and lplA, the resulting recombinant E. coli strains showed higher LA production than the wild-type E. coli by 32–111%, respectively.  相似文献   

19.
Extracellular cholesterol esterase of Burkholderia cepacia strain ST-200 was purified from the culture supernatant. Its molecular mass was 37 kDa. The enzyme was stable at pH 5.5–12 and active at pH 5.5–6, showing optimal activity at pH 7.0 at 45°C. Relative to the commercially available cholesterol esterases, the purified enzyme was highly stable in the presence of various water-miscible organic solvents. The enzyme preferentially hydrolyzed long-chain fatty acid esters of cholesterol, except for that of cholesteryl palmitate. The enzyme exhibited lipolytic activity toward various p-nitrophenyl esters. The hydrolysis rate of p-nitrophenyl caprylate was enhanced 3.5- to 7.2-fold in the presence of 5–20% (vol/vol) water-miscible organic solvents relative to that in the absence of organic solvents. The structural gene encoding the cholesterol esterase was cloned and sequenced. The primary translation product was predicted to be 365 amino acid residues. The mature product is composed of 325 amino acid residues. The amino acid sequence of the product showed the highest similarity to the lipase LipA (87%) from B. cepacia DSM3959.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号