首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
类胡萝卜素合成的相关基因及其基因工程   总被引:43,自引:0,他引:43  
类胡萝卜素具有多种生物功能,尤其在保护人类健康方面起着重要的作用,如它们是合成维生素A的前体,能够增强人体免疫力和具有防癌抗癌的功效。人体自身不能合成类胡萝卜素,必须通过外界摄入;但类胡萝卜素在许多植物中含量较低,并且很难用化学方法合成。随着类胡萝卜素生物合成途径的阐明及其相关基因的克隆,运用基因工程手段调控类胡萝卜素的生物合成已成为可能。本文综述了微生物和高等植物类胡萝卜素生物合成途径中相关基因的克隆,以及运用这些基因通过异源微生物生产类胡萝卜素和提高作物类胡萝卜素含量的基因工程研究进展。  相似文献   

2.
脉孢菌lca-1基因调控无性产孢及类胡萝卜素的合成   总被引:1,自引:0,他引:1  
何纯  孙宪昀  段碧华 《菌物学报》2011,30(3):435-441
类胡萝卜素是很多生物细胞内重要的抗氧化剂,具有保护细胞免受紫外线伤害的功能。粗糙脉孢菌是少数几个类胡萝卜素合成基因比较清楚的真菌之一,为了深入了解该菌类胡萝卜素合成调控机制,通过对粗糙脉孢菌基因突变体库中6,087株突变体进行筛选,新发现6个基因敲除突变体营养生长正常,但类胡萝卜素的合成降低,其中表型较好的1个突变体,其无性产孢量与类胡萝卜素合成量均明显降低。鉴定发现该突变体所缺失的基因编码一种依赖ATP的染色体重建复合体的ATP酶链ISW1,将该基因命名为lca-1。进一步测定发现lca-1基因的突变导  相似文献   

3.
植物类胡萝卜素生物合成及其相关基因在基因工程中的应用   总被引:29,自引:0,他引:29  
近年来类胡萝卜素生物合成基因的分离与功能鉴定,为应用基因工程技术改变植物体内类胡萝卜素成份和提高类胡萝卜素含量提供了新的基因资源.有关类胡萝卜素合成的生物化学及其在体内调控研究的新进展,使通过遗传操作调控植物体内类胡萝卜素生物合成途径成为可能.该文综述了类胡萝卜素生物合成途径及其相关基因的研究现状,并结合作者的工作介绍了应用转基因技术改变植物体内类胡萝卜素成份与含量的最新成功的事例.  相似文献   

4.
杨远帆  倪辉 《生物技术》2002,12(5):34-36
从类胡萝卜素的合成机理,类胡萝卜素代谢酶的基因,类胡萝卜素分子育种及微生物类胡萝卜素代谢等方面概述了用基因工程菌产类胡萝卜素的研究进展。  相似文献   

5.
植物类胡萝卜素生物合成及功能   总被引:4,自引:0,他引:4  
详述了植物类胡萝卜素生物合成途径,并从突破类胡萝卜素合成途径中上游瓶颈限制、类胡萝卜素代谢各分支途径的改造、提高植物细胞对类胡萝卜素物质积累能力三个方面探讨了类胡萝卜素生物合成酶基因在植物基因工程中的研究现状,最后对植物类胡萝卜素代谢的研究前景进行了展望。  相似文献   

6.
类胡萝卜素衍生挥发物对提升番茄风味至关重要。为筛选调控类胡萝卜素衍生挥发物合成的关键基因,以90个番茄自交系中香气寡淡的TI4001和香气浓郁的CI1005为材料,分析了番茄类胡萝卜素裂解双加氧酶(SlCCDs)基因在不同组织及不同发育期果实中的表达量,果实不同成熟期类胡萝卜素及其衍生挥发物的含量。发现在7个SlCCDs基因中,SlCCD1A和SlCCD1B基因在番茄果实中表达量最高,且随着果实发育成熟表达量显著升高。果实中类胡萝卜素及其衍生挥发物含量也显著升高。SlCCD1A和SlCCD1B基因表达量与类胡萝卜素及其衍生挥发物含量之间极显著正相关。推测SlCCD1A和SlCCD1B基因是裂解类胡萝卜素合成挥发物的关键基因。  相似文献   

7.
类胡萝卜素是苹果果实色泽形成的一个重要影响因子,其种类和含量决定果实是否具有良好的外观和丰富的营养。本文综述了近年来有关苹果果实类胡萝卜素方面的研究进展,并对苹果类胡萝卜素的种类和含量,苹果发育和贮藏过程中类胡萝卜素含量的变化规律,生物合成途径中相关基因的表达,以及环境因子对类胡萝卜素积累的影响等方面进行了阐述。  相似文献   

8.
类胡萝卜素是自然界中种类繁多的天然化合物。植物类胡萝卜素由类异戊二烯碳骨架组成,并含有或没有环氧的、羟基或酮基基团。类胡萝卜素是人类饮食结构中不可缺少的重要成分,具有多种重要的保健功能,并且是安全的食品、饲料和化妆品着色剂。类胡萝卜素植物代谢基因工程的应用旨在增加特殊植物的营养价值、利用植物来生产特殊的类胡萝卜素、提高植物对光氧化的抵抗力及对植物的花色进行修饰等。  相似文献   

9.
薛泊宁  张雁云  董路 《生物多样性》2021,29(6):843-4231
人们对动物体色的研究由来已久。作为一类让生物呈现出多变色彩的重要色素, 类胡萝卜素可以在鸟类的羽毛、鸟喙和皮肤等体表组织中沉积, 产生红、橙、黄、粉、紫等颜色。类胡萝卜素不能在鸟类体内合成, 需从食物中摄取, 进而在体内完成吸收、运输、代谢和沉积等一系列过程, 才能用于羽毛着色。与类胡萝卜素着色相关的生理及遗传调控机制一直备受关注, BCO2SCARB1CYP2J19等影响类胡萝卜素在鸟类羽毛中着色的关键基因, 推动了对羽色遗传调控机制的深入认识。本文介绍了鸟类可利用类胡萝卜素的主要类型和基本特征, 综述了类胡萝卜素着色相关的生理过程以及调控基因研究的最新进展, 旨在增加对鸟类羽毛中类胡萝卜素着色过程和相关遗传机制的理解。  相似文献   

10.
巩尊洋  罗玮  杜瑶  余晓斌 《微生物学报》2017,57(10):1527-1535
【目的】探究crgA基因在三孢布拉霉合成类胡萝卜素过程中的调控作用。【方法】克隆三孢布拉霉crgA基因并利用split-marker策略敲除该基因;在表型特征、关键酶基因转录水平、类胡萝卜素合成水平等方面将基因敲除株与野生株进行比较分析。【结果】与野生型菌株相比,crgA基因敲除菌产孢能力明显下降,而类胡萝卜素合成途径中的关键酶基因转录水平明显提高,在发酵120h后β-胡萝卜素的积累量提高了31.2%。将crgA基因重新导入到敲除菌后,该菌的性状恢复至野生型。【结论】crgA基因调控三孢布拉霉的生长和产孢能力,并通过调控类胡萝卜素关键酶基因表达来调控类胡萝卜素的合成,是一个负调控因子。  相似文献   

11.
Carotenoids are important natural pigments produced by many microorganisms and plants. Traditionally, carotenoids have been used in the feed, food and nutraceutical industries. The recent discoveries of health-related beneficial properties attributed to carotenoids have spurred great interest in the production of structurally diverse carotenoids for pharmaceutical applications. The availability of a considerable number of microbial and plant carotenoid genes that can be functionally expressed in heterologous hosts has opened ways for the production of diverse carotenoid compounds in heterologous systems. In this review, we will describe the recent progress made in metabolic engineering of non-carotenogenic microorganisms for improved carotenoid productivity. In addition, we will discuss the application of combinatorial and evolutionary strategies to carotenoid pathway engineering to broaden the diversity of carotenoid structures synthesized in recombinant hosts.  相似文献   

12.
Carotenoids, some of which are provitamin A, have a range of diverse biological functions and actions, especially in relation to human health. For example, carotenoids are known to be crucial for normal vision and have been associated with reducing the risk of several degenerative diseases including cancer. The putative advantage of modifying and engineering the carotenoid biosynthetic pathways is obvious: to provide sources for the isolation of desired carotenoids or to generate food plants with increased carotenoid content. This article reviews the studies of carotenoid production in heterologous microorganisms and the engineering of crop plants using manipulated carotenoid biosynthesis.  相似文献   

13.
Plant carotenoids are essential for photosynthesis and photoprotection and provide colors in the yellow to red range to non-photosynthetic organs such as petals and ripe fruits. They are also the precursors of biologically active molecules not only in plants (including hormones and retrograde signals) but also in animals (including retinoids such as vitamin A). A carotenoid-rich diet has been associated with improved health and cognitive capacity in humans, whereas the use of carotenoids as natural pigments is widespread in the agrofood and cosmetic industries. The nutritional and economic relevance of carotenoids has spurred a large number of biotechnological strategies to enrich plant tissues with carotenoids. Most of such approaches to alter carotenoid contents in plants have been focused on manipulating their biosynthesis or degradation, whereas improving carotenoid sink capacity in plant tissues has received much less attention. Our knowledge on the molecular mechanisms influencing carotenoid storage in plants has substantially grown in the last years, opening new opportunities for carotenoid biofortification. Here we will review these advances with a particular focus on those creating extra room for carotenoids in plant cells either by promoting the differentiation of carotenoid-sequestering structures within plastids or by transferring carotenoid production to the cytosol.  相似文献   

14.
The interaction of dietary carotenoids with radical species   总被引:4,自引:0,他引:4  
Dietary carotenoids react with a wide range of radicals such as CCl3O2*, RSO2*, NO2*, and various arylperoxyl radicals via electron transfer producing the radical cation of the carotenoid. Less strongly oxidizing radicals, such as alkylperoxyl radicals, can lead to hydrogen atom transfer generating the neutral carotene radical. Other processes can also arise such as adduct formation with sulphur-centered radicals. The oxidation potentials have been established, showing that, in Triton X-100 micelles, lycopene is the easiest carotenoid to oxidize to its radical cation and astaxanthin is the most difficult. The interaction of carotenoids and carotenoid radicals with other antioxidants is of importance with respect to anti- and possibly pro-oxidative reactions of carotenoids. In polar environments the vitamin E (alpha-tocopherol) radical cation is deprotonated (TOH*+ --> TO* + H+) and TO* does not react with carotenoids, whereas in nonpolar environments such as hexane, TOH*+ is converted to TOH by hydrocarbon carotenoids. However, the nature of the reaction between the tocopherol and various carotenoids shows a marked variation depending on the specific tocopherol homologue. The radical cations of the carotenoids all react with vitamin C so as to "repair" the carotenoid.  相似文献   

15.
枸杞子中类胡萝卜素的组成及含量   总被引:14,自引:0,他引:14  
枸杞子(FructusLycii)为宁夏枸杞(LyciumbarbarumL.)的成熟果实,有补肾养肝、润肺明目的功效。枸杞子中的类胡萝卜素已有一些研究[1,2],但只对其中个别类胡萝卜素提取液皂化后进行了鉴定,不能真正代表其组成。本文采用HPLC法对6种不同产地...  相似文献   

16.
Chromatophores and peripheral light-harvesting complexes B800–850 with a trace of carotenoids were isolated from Chromatium minutissimum cells in which carotenoid biosynthesis was inhibited by diphenylamine. Three methods previously used for the reconstitution of carotenoids into either the light-harvesting (LH1) type complexes or reaction centers (RC) of carotenoidless mutants were examined for the possibility of carotenoid reconstitution into the carotenoid depleted chromatophores. All these methods were found to be unsuitable because carotenoid depleted complex B800–850 from Chr. minutissimum is characterized by high lability. We have developed a novel method maintaining the native structure of the complexes and allowing reconstitution of up to 80% of the carotenoids as compared to the control. The reconstituted complex has a similar CD spectrum in the carotenoid region as the control, and its structure restores its stability. These data give direct proof for the structural role of carotenoids in bacterial photosynthesis.  相似文献   

17.
Carotenoids, such as lycopene, β-carotene, zeaxanthin, canthaxanthin and astaxanthin have many benefits for human health. In addition to the functional role of carotenoids as vitamin A precursors, adequate consumption of carotenoids prevents the development of a variety of serious diseases. Biosynthesis of carotenoids is a complex process and it starts with the common isoprene precursors. Condensation of these precursors and subsequent modifications, by introducing hydroxyl- and keto-groups, leads to the generation of diversified carotenoid structures. To improve carotenoid production, metabolic engineering has been explored in bacteria, yeast, and algae. The success of the pathway engineering effort depends on the host metabolism, specific enzymes used, the enzyme expression levels, and the strategies employed. Despite the difficulty of pathway engineering for carotenoid production, great progress has been made over the past decade. We review metabolic engineering approaches used in a variety of microbial hosts for carotenoid biosynthesis. These advances will greatly expedite our efforts to bring the health benefits of carotenoids and other nutritional compounds to our diet.  相似文献   

18.
Carotenoid‐based colours in animals are valuable models for testing theories of sexual selection and life‐history trade‐offs because the pigments used in coloration are chemically tractable in the diet and in the body, where they serve multiple purposes (e.g. health enhancement, photoprotection). An important assumption underlying the hypothesized signalling value of carotenoid coloration is that there is a trade‐off in carotenoid pigment allocation, such that not all individuals can meet the physiological/morphological demands for carotenoids (i.e. carotenoids are limited) and that only those who have abundant supplies or fewer demands become the most colourful. Studies of carotenoid trade‐offs in colourful animals have been limited largely to domesticated species, which may have undergone artificial selection that changed the historical/natural immunomodulatory roles of carotenoids, to young animals lacking carotenoid‐based signals or to species displaying carotenoid‐based skin and bare parts. We studied the health benefits of carotenoids during moult in house finches (Carpodacus mexicanus), which display sexually selected, carotenoid‐based plumage coloration. We manipulated dietary carotenoid availability during both winter (nonmoult) and autumn (moult) in captive males and females and found that carotenoid‐supplemented birds mounted stronger immune responses (to phytohemagglutinin injection and to a bacterial inoculation in blood) than control birds only during moult. This study provides experimental, seasonal support for a fundamental tenet of Lozano's ‘carotenoid trade‐off’ hypothesis and adds to a growing list of animal species that benefit immunologically from ingesting higher dietary carotenoid levels. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 560–572.  相似文献   

19.
Why do some invertebrates store so much carotenoids in their tissues? Storage of carotenoids may not simply be passive and dependent on their environmental availability, as storage variation exists at various taxonomic scales, including among individuals within species. While the strong antioxidant and sometimes immune‐stimulating properties of carotenoids may be beneficial enough to cause the evolution of features improving their assimilation and storage, they may also have fitness downsides explaining why massive carotenoid storage is not universal. Here, the functional and ecological implications of carotenoid storage for the evolution of invertebrate innate immune defenses are examined, especially in crustaceans, which massively store carotenoids for unclear reasons. Three testable hypotheses about the role of carotenoid storage in immunological (resistance and tolerance) and life‐history strategies (with a focus on aging) are proposed, which may ultimately explain the storage of large amounts of these pigments in a context of host–pathogen interactions.  相似文献   

20.
Carotenoid biotechnology in plants for nutritionally improved foods   总被引:8,自引:1,他引:7  
Carotenoids participate in light harvesting and are essential for photoprotection in photosynthetic plant tissues. They also furnish non-photosynthetic flowers and fruits with yellow to red colors to attract animals for pollination and dispersal of seeds. Although animals can not synthesize carotenoids de novo , carotenoid-derived products such as retinoids (including vitamin A) are required as visual pigments and signaling molecules. Dietary carotenoids also provide health benefits based on their antioxidant properties. The main pathway for carotenoid biosynthesis in plants and microorganisms has been virtually elucidated in recent years, and some of the identified biosynthetic genes have been successfully used in metabolic engineering approaches to overproduce carotenoids of interest in plants. Alternative approaches that enhance the metabolic flux to carotenoids by upregulating the production of their isoprenoid precursors or interfere with light-mediated regulation of carotenogenesis have been recently shown to result in increased carotenoid levels. Despite spectacular achievements in the metabolic engineering of plant carotenogenesis, much work is still ahead to better understand the regulation of carotenoid biosynthesis and accumulation in plant cells. New genetic and genomic approaches are now in progress to identify regulatory factors that might significantly contribute to improve the nutritional value of plant-derived foods by increasing their carotenoid levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号