首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 802 毫秒
1.
Negative-contrast electron microscopy revealed that the outer layer of the envelope of rickettsiae is composed of a matrix of tetragonally arranged subunits. The layer projects approximately 7 nm from the cell wall. It is suggested that this outer layer is analogous to the structure considered capsule-like in morphology.  相似文献   

2.
Spotted fever group (SFG) rickettsial DNAs were detected in 2.4% of 340 canine blood samples and a pool of 84 tick pool samples (229 ticks) collected in Okinawa, Japan by PCR using a citrate synthase and an SFG rickettsial 190-kDa surface antigen gene primer pair. The sequences of both genes from canine blood and tick samples showed high levels of similarity with those of Rickettsiajaponica and several SFG rickettsiae (R. aeschlimannii, R. massiliae, R. rhipicephali and Bar-29 strain). Phylogenesis of canine blood and tick samples was closely related to that of reference SFG rickettsiae. Serological evidence of SFG rickettsial infection in dogs and humans in Okinawa, where no clinical human cases have been reported, has been obtained. In this study, genetical characterization of SFG rickettsia in Okinawa was investigated phylogenetically.  相似文献   

3.
Summary The large unicellular flagellate,Gloeomonas kupfferi, has recently been used as an important tool in chlamydomonad cell biology research, especially in studies dealing with the structure and function of the endomembrane system. However, little is known about the main secretory product, the cell wall. This study presents structural, chemical and immunological information about this wall. This 850–900 nm thick matrix is highly elaborate and consists of three distinct layers: an inner stratum (325 nm thick) consisting of tightly interwoven fibers, a medial crystalline layer consisting of 22–23 nm subunits and an outer wall layer (500 nm thick) of outwardlyradiating fibrils. Rapid freeze-deep etch analysis reveals that the 35–40 nm fibers of the outer layer form a quasi-lattice of 160 nm subunits. The outer wall can be removed from whole pellets using the chelator, CDTA. The medial wall complex can be solubilized by perchlorate. SDS-gel electrophoresis reveals that the perchlorate soluble-material consists of five high molecular weight glycoproteins and five major low molecular weight glycoproteins. The electrophoretic profile is roughly similar to that ofChlamydomonas reinhardtii. Antibodies were successfully raised against the outer wall component and were shown to label the outer wall layer.  相似文献   

4.
SYNOPSIS. Oocysts of Eimeria nieschulzi from the laboratory rat, Rattus, norvegicus , were studied by scanning and transmission electron microscopy. Oocysts had a rough outer wall with apparent random depressions. The oocyst wall is composed of 2 layers: an osmiophilic outer layer consisting of a rough external and smooth internal surface, and a relatively thick, electron-lucent inner layer. The outer layer is composed of a dense, coarsely granular matrix. The inner layer consists of homogeneous fine granular material interspersed with coarse osmiophilic granules and contains one closely applied membrane on the outermost surface. Several raised lenticular areas are seen on the coarse outer surface of the inner layer. These layers are 102 (75–128) and 176 (135–204) nm thick, respectively.
The sporocyst wall is thin, consisting of 3 to 4 unit membranes, and measures 27 (18–34) nm thick.  相似文献   

5.
Japanese isolates of spotted fever group rickettsiae were observed under a transmission electron microscope. In Vero cells persistently infected with Japanese isolates, small numbers of intracytoplasmic rickettsiae were seen. On the other hand, moderate numbers of rickettsiae were found in the cytoplasm of productively infected BHK cells. The electron-lucent, halo-like zone was found to surround organisms in the cytoplasm of their host cells, which is a prominent characteristic of spotted fever group rickettsiae. Fine structural features of the cell wall revealed thin outer and thick inner leaflets like those observed in other spotted fever group rickettsiae.  相似文献   

6.
Ticks (Acari: Ixodidae) are ubiquitous hosts of rickettsiae (Rickettsiaceae: Rickettsia), obligate intracellular bacteria that occur as a continuum from nonpathogenic arthropod endosymbionts to virulent pathogens of both arthropod vectors and vertebrates. Visualization of rickettsiae in hosts has traditionally been limited to techniques utilizing fixed tissues. We report epifluorescence microscopy observations of unfixed tick tissues infected with a spotted fever group endosymbiont, Rickettsia monacensis, transformed to express green fluorescent protein (GFP). Fluorescent rickettsiae were readily visualized in tick tissues. In adult female, but not male, Ixodes scapularis infected by capillary feeding, R. monacensis disseminated from the gut and infected the salivary glands that are crucial to the role of ticks as vectors. The rickettsiae infected the respiratory tracheal system, a potential dissemination pathway and possible infection reservoir during tick molting. R. monacensis disseminated from the gut of capillary fed I. scapularis nymphs and was transstadially transmitted to adults. Larvae, infected by immersion, transstadially transmitted the rickettsiae to nymphs. Infected female I. scapularis did not transovarially transmit R. monacensis to progeny and the rickettsiae were not horizontally transmitted to a rabbit or hamsters. Survival of infected nymphal and adult I. scapularis did not differ from that of uninfected control ticks. R. monacensis did not disseminate from the gut of capillary fed adult female Amblyomma americanum (L.), or adult Dermacentor variabilis (Say) ticks of either sex. Infection of I. scapularis with R. monacensis expressing GFP provides a model system allowing visualization and study of live rickettsiae in unfixed tissues of an arthropod host.  相似文献   

7.
Rickettsia peacockii, a spotted fever group rickettsia, is a transovarially transmitted endosymbiont of Rocky Mountain wood ticks, Dermacentor andersoni. This rickettsia, formerly known as the East Side Agent and restricted to female ticks, was detected in a chronically infected embryonic cell line, DAE100, from D. andersoni. We examined infectivity, ability to induce cytopathic effect (CPE) and host cell specificity of R. peacockii using cultured arthropod and mammalian cells. Aposymbiotic DAE100 cells were obtained using oxytetracycline or incubation at 37 degrees C. Uninfected DAE100 sublines grew faster than the parent line, indicating R. peacockii regulation of host cell growth. Nevertheless, DAE100 cellular defenses exerted partial control over R. peacockii growth. Rickettsiae existed free in the cytosol of DAE100 cells or within autophagolysosomes. Exocytosed rickettsiae accumulated in the medium and were occasionally contained within host membranes. R. peacockii multiplied in other cell lines from the hard ticks D. andersoni, Dermacentor albipictus, Ixodes scapularis, and Ixodes ricinus; the soft tick Carios capensis; and the lepidopteran Trichoplusia ni. Lines from the tick Amblyomma americanum, the mosquito Aedes albopictus, and two mammalian cell lines were non-permissive to R. peacockii. High cell densities facilitated rickettsial spread within permissive cell cultures, and an inoculum of one infected to nine uninfected cells resulted in the greatest yield of infected tick cells. Cell-free R. peacockii also were infectious for tick cells and centrifugation onto cell layers enhanced infectivity approximately 100-fold. The ability of R. peacockii to cause mild CPE suggests that its pathogenicity is not completely muted. An analysis of R. peacockii-cell interactions in comparison to pathogenic rickettsiae will provide insights into host cell colonization mechanisms.  相似文献   

8.
Seven Haemaphysalis ticks were found positive in PCR assay of gltA gene to detect the spotted fever group (SFG) rickettsiae DNA from 100 ticks. The nucleotide sequence of 16S rRNA gene was determined from 5 ticks and compared to those of other Rickettsia strains. The nucleotide sequence from 4 ticks showed high homologies (99.7 to 100%) with that of R. japonica YH, and that from 1 tick (tick no. 48) was identical with that of R. rickettsii R, suggesting that SFG rickettsiae exists in Korea. This is the first documentation of SFG rickettsiae in Korea.  相似文献   

9.
A new species of rickettsiae with unknown pathogenicity has been detected in ticks Dermacentor silvarum in the region of Baikal Lake. As revealed by the analysis of the primary structure of the gene fragment coding surface membrane protein of 190 kD (rOmpA), the nucleotide sequence of the rickettsiae under study is mostly similar to the sequences of R. sp. MOAa isolate (96%), R. sp. WB-8-2 (96%), R. massiliae strain GS (94%), Rickettsia BAR-29 (94%), R. rhipicephali (94%). Similarity with the sequence of R. sibirica has proved to be 91%. The data thus obtained indicate that the detected rickettsiae represent a new rickettsial species in the territory of East Siberia.  相似文献   

10.
The fine structure of the mature macrogamonts and intracellular oocysts of Eimeria labbeana from the ileal mucosa of experimentally infected Pigeons (Columbia livia) was investigated and described. The macrogamont reached a maximum size of 12.0 x 9.5 mum (average equals 10.8 x 8.8 mum), and was located within a narrow parasitophorus vacuole. Most of the macrogamonts were limited by two membranes. Intravacuolar tubules, 1.2 mum long and 58 nm in diameter, established direct connections between the parasite and the host cell. Each tabule was composed of 9 subunits arranged around the central lumen. Cytoplasmic canaliculi were composed of bundles of microtubule-like structures (8-10 nm wide). Type 1 wall-forming bodies reached a maximum size of 1.8 x 1.5 mum, and many had centric or eccentric electron transparent portions within them. They were frequently seen lodged within peripherally-located mitochondria. Type 2 wall-forming bodies averaged 1.5 mum in diameter. The role of the two types of wall-forming bodies in forming the outer and inner layers of the wall of the oocyst was similar to that in other species of Eimeria. The oocyst wall was 0.2 mum thick and composed of a limiting membrane (20 nm thick), an outer layer (75 nm thick), and an inner layer (100 nm thick).  相似文献   

11.
Ultrastructure of rumen bacterial attachment to forage cell walls.   总被引:20,自引:18,他引:2       下载免费PDF全文
The degradation of forage cell walls by rumen bacteria was investigated with critical-point drying/scanning electron microscopy and ruthenium red staining/transmission electron microscopy. Differences were observed in the manner of attachment of different morphological types of rumen bacteria to plant cell walls during degradation. Cocci, constituting about 22% of the attached bacteria, appeared to be attached to degraded plant walls via capsule-like substances averaging 58 nm in width (range, 21 to 84 nm). Many bacilli appeared to adhere to forage substrates without distinct capsule-like material, although unattached bacteria with capsules were observed occasionally. Certain bacili appeared to be attached to degraded tissue via small amounts of extracellular material, but others apparently had no extracellular material. Bacilli with a distinct morphology due to an irregularly folded, electron-dense outer layer or layers (about 15 nm thick) and without fibrous extracellular material consituted about 37% of the attached bacteria and were observed to adhere so closely to degraded plant walls that the bacterial shape conformed to the shape of the degraded zone. In the rumen ecosystem, bacteria appeared to adhere to plant substrates during degradation by capsule-like material and by small amounts of extracellular material, as well as by the other means not observable by electron microscopy.  相似文献   

12.
We describe the isolation and characterization of Rickettsia monacensis sp. nov. (type strain, IrR/Munich(T)) from an Ixodes ricinus tick collected in a city park, the English Garden in Munich, Germany. Rickettsiae were propagated in vitro with Ixodes scapularis cell line ISE6. BLAST analysis of the 16S rRNA, the citrate synthase, and the partial 190-kDa rickettsial outer membrane protein A (rOmpA) gene sequences demonstrated that the isolate was a spotted fever group (SFG) rickettsia closely related to several yet-to-be-cultivated rickettsiae associated with I. ricinus. Phylogenetic analysis of partial rompA sequences demonstrated that the isolate was genotypically different from other validated species of SFG rickettsiae. R. monacensis also replicated in cell lines derived from the ticks I. ricinus (IRE11) and Dermacentor andersoni (DAE100) and in the mammalian cell lines L-929 and Vero, causing cell lysis. Transmission electron microscopy of infected ISE6 and Vero cells showed rickettsiae within the cytoplasm, pseudopodia, nuclei, and vacuoles. Hamsters inoculated with R. monacensis had immunoglobulin G antibody titers as high as 1:16,384, as determined by indirect immunofluorescence assay. Western blot analyses demonstrated that the hamster sera cross-reacted with peptides from other phylogenetically distinct rickettsiae, including rOmpA. R. monacensis induced actin tails in both tick and mammalian cells similar to those reported for R. rickettsii. R. monacensis joins a growing list of SFG rickettsiae that colonize ticks but whose infectivity and pathogenicity for vertebrates are unknown.  相似文献   

13.
Interaction of tick vectors with Borrelia species including B. burgdorferi, rickettsias and piroplasms has been demonstrated by describing selected phenomena. In particular, the various environments inside the tick vector have been considered, including the midgut lumen, gut epithelial cells, body cavities and tissues. Intracellular parasitism occurs in different compartments of the host cell: parasitophorous vacuoles (Anaplasma marginale), phagolysosomes (Coxiella spp.), cytoplasm (Rickettsia, spp. piroplasms) or nucleus (some rickettsiae).  相似文献   

14.
Rickettsiae are obligate intracellular alphaproteobacteria that include pathogenic species in the spotted fever, typhus, and transitional groups. The development of a standardized cell line in which diverse rickettsiae can be grown and compared would be highly advantageous to investigate the differences among and between pathogenic and nonpathogenic species of rickettsiae. Although several rickettsial species have been grown in tick cells, tick cells are more difficult to maintain and they grow more slowly than insect cells. Rickettsia-permissive arthropod cell lines that can be passaged rapidly are highly desirable for studies on arthropod-Rickettsia interactions. We used two cell lines (Aedes albopictus cell line Aa23 and Anopheles gambiae cell line Sua5B) that have not been used previously for the purpose of rickettsial propagation. We optimized the culture conditions to propagate one transitional-group rickettsial species (Rickettsia felis) and two spotted-fever-group rickettsial species (R. montanensis and R. peacockii) in each cell line. Both cell lines allowed the stable propagation of rickettsiae by weekly passaging regimens. Stable infections were confirmed by PCR, restriction digestion of rompA, sequencing, and the direct observation of bacteria by fluorescence in situ hybridization. These cell lines not only supported rickettsial growth but were also permissive toward the most fastidious species of the three, R. peacockii. The permissive nature of these cell lines suggests that they may potentially be used to isolate novel rickettsiae or other intracellular bacteria. Our results have important implications for the in vitro maintenance of uncultured rickettsiae, as well as providing insights into Rickettsia-arthropod interactions.  相似文献   

15.
A rickettsial strain IO-1 has been isolated from a tick, Ixodes ovatus, in Japan and genetically identified as Rickettsia helvetica, a member of the spotted fever group rickettsiae. Ultrastructural observations were made on the microorganism. The ultrastructure of R. helvetica IO-1 appeared to be generally the same as that previously shown for other rickettsiae of the spotted fever and typhus groups. The rickettsiae were primarily found free in the cytoplasm of L929 cultured cells. Occasionally, the rickettsiae may also invade the host cell nucleus; however, the frequency of the nuclear localization was very low.  相似文献   

16.
Phoretic stages of the exuviotrophic apostome Gymnodinioides pacifica were examined using transmission and scanning electron microscopy (TEM and SEM). TEM revealed that the mature cyst wall possesses 2 or 3 layers differing by the presence or absence of the third inner layer. This inner layer may represent a different form of the middle wall material. The inner cyst layer is approximately 0.15 microm thick and has striations with a periodicity of approximately 19 nm. The middle cyst layer has a variable thickness and the outer dense layer is approximately 0.1 microm thick. The 3 layered cyst wall had a thickness of 0.3-0.7 microm and averaged 0.5 microm. Advanced phoront stages were enclosed by fully formed cyst walls or by cyst walls thinned to approximately 0.1 microm, as the phoronts prepared to excyst prior to host ecdysis. Additionally, we report the fine structure of the rosette, trichocysts, nuclei, food plaquettes, oral fiber, and other cytoplasmic inclusions. SEM revealed an outer cyst wall layer connected to the secreted peduncle material, which was observed to extend over a wide (15 microm) area on the host setae. Cysts were usually attached at their posterior ends or, less frequently, along their side.  相似文献   

17.
Summary An antibody to the inner wall layer ofGloeomonas kupfferi was isolated and used in a developmental analysis of cell wall processing, secretion and extracellular assembly. The focus of the processing of this matrix layer is the endomembrane system, in particular the Golgi apparatus (GA) and contractile vacuole (CV). During interphase, inner wall materials are processed in the GA, packaged in trans face vesicles and transported to the CV, the final internal depository of wall precursors until release to the cell surface. During cell division, significant changes occur in the inner wall layer processing. Early on in cytokinesis, the GA does not label with our antibody, suggesting that other wall layers are being processed. In later stages of cytokinesis, the GA changes in morphology and begins to produce inner wall layer materials. These wall precursors are shuttled to the CV where they are released around the daughter cell protoplasts. The first wall layer that is formed around daughter cells is the crystalline median wall layer. Once assembled, the inner wall layer condenses upon the crystalline layer and grows in size.  相似文献   

18.
In the present study, attempts to isolate Rickettsia in cell culture were performed individually in seven specimens of Haemaphysalis juxtakochi ticks collected in the state of S?o Paulo (southeastern Brazil). Rickettsia was successfully isolated by the shell vial technique and established in Vero cell culture from six ticks (six isolates). DNA extracted from infected cells of these isolates was tested by PCR and DNA sequencing, using genus-specific Rickettsia primers targeting the genes gltA, htrA, ompA, and ompB. After the generated sequences were compared with available sequences in GenBank, five out of the six isolates were identified as Rickettsia bellii (isolates HJ#1, HJ#2, HJ#3, HJ#4, and HJ#7). The sixth isolate (HJ#5) was closest to Rickettsia sp. strain R300, previously detected in H. juxtakochi in northern Brazil, and to Rickettsia rhipicephali, isolated from ticks in the United States. Following recent gene sequence-based criteria proposed for the identification of Rickettsia isolates, both isolate HJ#5 and strain R300 were identified as South American strains of R. rhipicephali, which was confirmed in this continent for the first time. Isolation of R. bellii from H. juxtakochi ticks, added to eight other tick species that have been reported to be infected with this bacterium in Brazil, indicates that R. bellii is indeed the most frequent Rickettsia species infecting ticks in Brazil. Currently, the role of both R. rhipicephali and R. bellii as human pathogens is regarded as unknown.  相似文献   

19.
We describe the isolation and characterization of Rickettsia monacensis sp. nov. (type strain, IrR/MunichT) from an Ixodes ricinus tick collected in a city park, the English Garden in Munich, Germany. Rickettsiae were propagated in vitro with Ixodes scapularis cell line ISE6. BLAST analysis of the 16S rRNA, the citrate synthase, and the partial 190-kDa rickettsial outer membrane protein A (rOmpA) gene sequences demonstrated that the isolate was a spotted fever group (SFG) rickettsia closely related to several yet-to-be-cultivated rickettsiae associated with I. ricinus. Phylogenetic analysis of partial rompA sequences demonstrated that the isolate was genotypically different from other validated species of SFG rickettsiae. R. monacensis also replicated in cell lines derived from the ticks I. ricinus (IRE11) and Dermacentor andersoni (DAE100) and in the mammalian cell lines L-929 and Vero, causing cell lysis. Transmission electron microscopy of infected ISE6 and Vero cells showed rickettsiae within the cytoplasm, pseudopodia, nuclei, and vacuoles. Hamsters inoculated with R. monacensis had immunoglobulin G antibody titers as high as 1:16,384, as determined by indirect immunofluorescence assay. Western blot analyses demonstrated that the hamster sera cross-reacted with peptides from other phylogenetically distinct rickettsiae, including rOmpA. R. monacensis induced actin tails in both tick and mammalian cells similar to those reported for R. rickettsii. R. monacensis joins a growing list of SFG rickettsiae that colonize ticks but whose infectivity and pathogenicity for vertebrates are unknown.  相似文献   

20.
Rickettsiae are obligate intracellular alphaproteobacteria that include pathogenic species in the spotted fever, typhus, and transitional groups. The development of a standardized cell line in which diverse rickettsiae can be grown and compared would be highly advantageous to investigate the differences among and between pathogenic and nonpathogenic species of rickettsiae. Although several rickettsial species have been grown in tick cells, tick cells are more difficult to maintain and they grow more slowly than insect cells. Rickettsia-permissive arthropod cell lines that can be passaged rapidly are highly desirable for studies on arthropod-Rickettsia interactions. We used two cell lines (Aedes albopictus cell line Aa23 and Anopheles gambiae cell line Sua5B) that have not been used previously for the purpose of rickettsial propagation. We optimized the culture conditions to propagate one transitional-group rickettsial species (Rickettsia felis) and two spotted-fever-group rickettsial species (R. montanensis and R. peacockii) in each cell line. Both cell lines allowed the stable propagation of rickettsiae by weekly passaging regimens. Stable infections were confirmed by PCR, restriction digestion of rompA, sequencing, and the direct observation of bacteria by fluorescence in situ hybridization. These cell lines not only supported rickettsial growth but were also permissive toward the most fastidious species of the three, R. peacockii. The permissive nature of these cell lines suggests that they may potentially be used to isolate novel rickettsiae or other intracellular bacteria. Our results have important implications for the in vitro maintenance of uncultured rickettsiae, as well as providing insights into Rickettsia-arthropod interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号