首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Homoeologous pairing at metaphase I was analyzed in standard-type, ph2b, and ph1b hybrids of Triticum aestivum (common, bread or hexaploid wheat) and T. sharonense in order to establish the homoeologus relationships of T. sharonense chromosomes to hexaploid wheat. Chromosomes of both species, and their arms, were identified by C-banding. Normal homoeologous relationships for the seven chromosomes of the Ssh genome, and their arms, were revealed, which implies that no apparent chromosome rearrangement occurred in the evolution of T. sharonense relative to wheat. All three types of hybrids with low-, intermediate-, and high-pairing level showed preferential pairing between A-D and B-Ssh. A close relationship of the Ssh genome to the B genome of bread wheat was confirmed, but the results provide no evidence that the B genome was derived from T. sharonense. Data on the pairing between individual chromosomes of T. aestivum and T. sharonense provide an estimate of interspecific homoeologous recombination. Received: 14 October 1996 / Accepted: 25 October 1996  相似文献   

2.
Diploid populations of Aegilops mutica and Aegilops speltoides containing B chromosomes have been used as male parents in crosses with aneuploid genotypes of Triticum aestivum to investigate the effect of B chromosomes on meiotic homologous and homoeologous chromosome pairing. F1 hybrids of T. aestivum/Ae. mutica and T. aestivum/Ae. speltoides segregated into four classes with regard to the degree of meiotic chromosome pairing, irrespective of the presence of B chromosomes. The B chromosomes do not introduce factors altering the level of pairing other than that due to the natural allelic and gene variation occurring in the diploids. Similarly no reduction in pairing of homologous chromosomes was observed in genotypes in which pairs of homologues co-existed with B chromosomes. However, a significant drop in chiasma frequency was observed in F1 hybrids of T. aestivum × Ae. mutica with B chromosomes and T. aestivum × Ae. mutica nullisomic for wheat chromosome 5D with B chromosomes, in temperature regimes of 12° C. No asynapsis occurred in similar hybrids in the absence of Mutica B chromosomes at low temperatures. The low-temperature sensitive phase lies early in the pre-meiotic interphase. In this instance the Mutica B chromosomes are interacting with specific gene loci of the A chromosomes. Synaptic pairing has been observed between A and B chromosomes in Ae. mutica. A high frequency of pollen mother cells with twice the number of chromosomes was observed in hybrids in the presence of Mutica B chromosomes due to failure of spindle formation at the last pre-meiotic mitosis. Meiotic spindle irregularities occurred in hybrids containing Speltoides B chromosomes. Hybrids of Ae. speltoides + B's X Ae. mutica + B's displayed the mitotic and meiotic spindle abnormalities introduced by the presence of the B chromosomes of each parent.  相似文献   

3.
Homoeology of rye chromosome arms to wheat   总被引:5,自引:0,他引:5  
Summary Cytological markers such as diagnostic C-bands, telocentrics, and translocations were used to identify the arms of rye chromosomes associated with wheat chromosomes at metaphase I in ph1b mutant wheat × rye hybrids. Arm homoeologies of rye chromosomes to wheat were established from the results of metaphase I pairing combined with available data on the chromosomal location of homoeoloci series in wheat and rye. Only arms 1RS, 1RL, 2RL, 3RS, and 5RS showed normal homoeologous relationships to wheat. The remaining arms of rye appeared to be involved in chromosome rearrangements that occurred during the evolution of the genus Secale. We conclude that a pericentric inversion in chromosome 4R, a reciprocal translocation between 3RL and 6RL, and a multiple translocation involving 4RL, 5RL, 6RS, and 7RS are present in rye relative to wheat.  相似文献   

4.
Genotyping was performed for the leaf rust-resistant line 73/00i (Triticum aestivum × Aegilops speltoides). Fluorescence in situ hybridization (FISH) with probes Spelt1 and pSc119.2 in combination with microsatellite analysis were used to determine the locations and sizes of the Ae. speltoides genetic fragments integrated into the line genome. Translocations were identified in the long arms of chromosomes 5B and 6B and in the short arm of chromosome 1B. The Spelt1 and pSc119.2 molecular cytological markers made it possible to rapidly establish lines with single translocation in the long arms of chromosomes 5B and 6B. The line carrying the T5BS · 5BL-5SL translocation was highly resistant to leaf rust, and the lines carrying the T6BS · 6BL-6SL translocation displayed moderate resistance. The translocations differed in chromosomal location from known leaf resistance genes transferred into common wheat from Ae. speltoides. Hence, it was assumed that new genes were introduced into the common wheat genome from Ae. speltoides. The locus that determined high resistance to leaf rust and was transferred into the common wheat genome from the long arm of Ae. speltoides chromosome 5S by the T5BS · 5BL-5SL translocation was preliminarily designated as LrAsp5.  相似文献   

5.
A total of 137 loci were mapped in Aegilops speltoides, the closest extant relative of the wheat B genome, using two F2 mapping populations and a set of wheat-Ae. speltoides disomic addition (DA) lines. Comparisons of Ae. speltoides genetic maps with those of Triticum monococcum indicated that Ae. speltoides conserved the gross chromosome structure observed across the tribe Triticeae. A putative inversion involving the short arm of chromosome 2 was detected in Ae. speltoides. A translocation between chromosomes 2 and 6, present in the wheat B genome, was absent. The ligustica/aucheri spike dimorphism behaved as allelic variation at a single locus, which was mapped in the centromeric region of chromosome 3. The genetic length of each chromosome arm was about 50 cM, irrespective of its physical length. Compared to T. monococcum genetic maps, recombination was virtually eliminated from the proximal 50–100 cM and was localized in short distal regions, which were often expanded compared to the T. monococcum maps. The wheat B genome and the genome of Ae. longissima, a close relative of Ae. speltoides, do not show the extreme localization of crossovers observed in Ae. speltoides.  相似文献   

6.
Homoeologous metaphase I (MI) pairing of Triticum aestivum × Aegilops geniculata hybrids (2n = 5× = 35, ABDUgMg) has been examined by an in situ hybridization procedure permitting simultaneous discrimination of A, B, D and wild genomes. The seven D genome chromosomes (and their arms, except for 6D and 7D) plus some additional wheat chromosomes were also identified. Wheat-wild MI associations represented more than 60% of total, with an average ratio of 5:1:12 for those involving the A, B and D genomes, respectively. A remarkable between-chromosome variation for the level of wheat-wild genetic exchange is expected within each wheat genome. However, it can be concluded that 3DL and 5DL are the crop genome locations with the highest probability of being transferred to Ae. geniculata. Hybrids derived from the ph2b wheat mutant line showed increased MI pairing but identical pattern of homoeologous associations than those with active Ph2.  相似文献   

7.
The first microsatellite linkage map of Ae. speltoides Tausch (2n = 2x = 14, SS), which is a wild species with a genome closely related to the B and G genomes of polyploid wheats, was developed based on two F2 mapping populations using microsatellite (SSR) markers from Ae. speltoides, wheat genomic SSRs (g-SSRs) and EST-derived SSRs. A total of 144 different microsatellite loci were mapped in the Ae. speltoides genome. The transferability of the SSRs markers between the related S, B, and G genomes allowed possible integration of new markers into the T. timopheevii G genome chromosomal maps and map-based comparisons. Thirty-one new microsatellite loci assigned to the genetic framework of the T. timopheevii G genome maps were composed of wheat g-SSR (genomic SSR) markers. Most of the used Ae. speltoides SSRs were mapped onto chromosomes of the G genome supporting a close relationship between the G and S genomes. Comparative microsatellite mapping of the S, B, and G genomes demonstrated colinearity between the chromosomes within homoeologous groups, except for intergenomic T6AtS.1G, T4AL.5AL.7BS translocations. A translocation between chromosomes 2 and 6 that is present in the T. aestivum B genome was found in neither Ae. speltoides nor in T. timopheevii. Although the marker order was generally conserved among the B, S, and G genomes, the total length of the Ae. speltoides chromosomal maps and the genetic distances between homoeologous loci located in the proximal regions of the S genome chromosomes were reduced compared with the B, and G genome chromosomes.  相似文献   

8.
Homoeologous pairing at metaphase-I was analyzed in wild-type, ph2b, and ph1b hybrids of wheat and a low-pairing type of T. longissimum in order to study the effect of ph mutations on the pairing of T. longissimum chromosomes with wheat chromosomes. Chromosomes of both species, and their arms, were identified by C-banding. The three types of hybrids, with low-, intermediate-, and high-pairing levels, respectively, exhibited a very similar pairing pattern which was characterized by the existence of two types, A-D and B-S1, of preferential pairing. These results confirm that the S1 genome of T. longissimum is closely related to the B genome of wheat. The possible use of ph1b and ph2b mutations in the transfer to wheat of genes from related species is discussed.  相似文献   

9.
The meiotic behaviour of Triticum aestivum × Aegilops speltoides, T. aestivum × Ae. sharonensis and T. aestivum × Ae. longissima tetraploid hybrids (genome constitution ABDS, ABDS l , and ABDS l , respectively) has been analysed by the C-banding technique. Of the six types of pairing normally occurring, at metaphase I three were recognized: A-D, AD-BS/AD-BS l and B-S/B-S l . The relative order observed in the low pairing hybrid, A-D> B-S l >AD-BS l , as well as that found in high-pairing Chinese Spring × Ae. speltoides hybrids, A-D>AD-BS>ß-S, revealed the existence of preferential pairing patterns among the different genomes that are in competition. In all of the hybrids analysed the mean number of bound arms per cell for the A-D type was significantly higher than the mean number of associations between the B and S/S l genomes. Usually the relative contribution of each type of pairing is maintained among hybrids with different Aegilops species. These results indicate that the genomes of Ae. speltoides, Ae. sharonensis and Ae. longissima show a similar affinity with the genomes of hexaploid wheat; therefore none of these species can be considered to be a distinct donor of the B genome of wheats.  相似文献   

10.

Key message

We physically dissected and mapped wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum based on meiotic homoeologous recombination, providing a unique physical framework for genome studies.

Abstract

Common wheat has a large and complex genome with narrow genetic diversity and various degrees of recombination between the A, B, and D subgenomes. This has limited the homologous recombination-based genome studies in wheat. Here, we exploited meiotic homoeologous recombination for molecular mapping of wheat chromosome 2B and its homoeologue 2S from Aegilops speltoides and 2E from Thinopyrum elongatum. The 2B–2S and 2B–2E recombination was induced by the ph1b mutant, and recovered using molecular markers and fluorescent genomic in situ hybridization (FGISH). A total of 112 2B–2S and 87 2B–2E recombinants involving different chromosome regions were developed and physically delineated by FGISH. The 2B–2S and 2B–2E recombination hotspots mapped to the subterminal regions on both arms. Recombination hotspots with the highest recombination rates mapped to the short arms. Eighty-three 2B–2S and 67 2B–2E recombinants were genotyped using the wheat 90 K SNP arrays. Based on the genotyping results and FGISH patterns of the recombinants, chromosomes 2B, 2S, and 2E were partitioned into 93, 66, and 46 bins, respectively. In total, 1037 SNPs physically mapped onto distinct bins of these three homoeologous chromosomes. A homoeologous recombination-based bin map was constructed for chromosome 2B, providing a unique physical framework for genome studies in wheat and its relatives. Meiotic homoeologous recombination also facilitates gene introgression to diversify the wheat genome for germplasm development. Therefore, homoeologous recombination-based studies enhance understanding of the wheat genome and its homoeologous counterparts from wild grasses, and expand the genetic variability of the wheat genome.
  相似文献   

11.
 Fluorescence in situ hybridization (FISH) with multiple probes has been applied to meiotic chromosome spreads derived from ph1b common wheat x rye hybrid plants. The probes used included pSc74 and pSc 119.2 from rye (the latter also hybridizes on wheat, mainly B genome chromosomes), the Ae. squarrosa pAs1 probe, which hybridizes almost exclusively on D genome chromosomes, and wheat rDNA probes pTa71 and pTa794. Simultaneous and sequential FISH with a two-by-two combination of these probes allowed unequivocal identification of all of the rye (R) and most of the wheat (W) chromosomes, either unpaired or involved in pairing. Thus not only could wheat-wheat and wheat-rye associations be easily discriminated, which was already feasible by the sole use of the rye-specific pSc74 probe, but the individual pairing partners could also be identified. Of the wheat-rye pairing observed, which averaged from about 7% to 11% of the total pairing detected in six hybrid plants of the same cross combination, most involved B genome chromosomes (about 70%), and to a much lesser degree, those of the D (almost 17%) and A (14%) genomes. Rye arms 1RL and 5RL showed the highest pairing frequency (over 30%), followed by 2RL (11%) and 4RL (about 8%), with much lower values for all the other arms. 2RS and 5RS were never observed to pair in the sample analysed. Chromosome arms 1RL, 1RS, 2RL, 3RS, 4RS and 6RS were observed to be exclusively bound to wheat chromosomes of the same homoeologous group. The opposite was true for 4RL (paired with 6BS and 7BS) and 6RL (paired with 7BL). 5RL, on the other hand, paired with 4WL arms or segments of them in more than 80% of the cases and with 5WL in the remaining ones. Additional cases of pairing involving wheat chromosomes belonging to more than one homoeologous group occurred with 3RL, 7RS and 7RL. These results, while adding support to previous evidence about the existence of several translocations in the rye genome relative to that of wheat, show that FISH with multiple probes is an efficient method by which to study fundamental aspects of chromosome behaviour at meiosis, such as interspecific pairing. The type of knowledge attainable from this approach is expected to have a significant impact on both theoretical and applied research concerning wheat and related Triticeae. Received: 21 February 1996 / Accepted: 12 July 1996  相似文献   

12.
Kushnir U  Halloran GM 《Genetics》1981,99(3-4):495-512
A number of lines of evidence are advanced for the candidacy of Aegilops sharonensis Eig as the donor of the B genome of wheat. The cytoplasm of Ae. sharonensis is compatible with tetraploid wheat Triticum turgidum dicoccoides, as evidenced by the high level of chromosome pairing and fertility of the amphiploid Ae. sharonensis x T. turgidum dicoccoides. Ae. sharonensis chromosomes exhibit high levels of pairing with those of the B genome of wheat in hybrids with Ph-deficient hexaploid wheat and low levels of homoeologous pairing with T. monococcum chromosomes.——The amphidiploid between Ae. sharonensis and T. monococcum is very similar to T. turgidum dicoccoides in spike, spikelet and grain morphology. The karyotype of Ae. sharonensis resembles more closely that of extrapolated B genome karyotypes of wheat than do the karyotypes of other proposed B-genome donor species of Aegilops. Because of distinctiveness in cytological affinity and karyotype morphology between Ae. sharonensis and Ae. longissima, a separate genome symbol Ssh is proposed for the former species.  相似文献   

13.
Induction of recombination between rye chromosome 1RL and wheat chromosomes   总被引:2,自引:0,他引:2  
Summary The ph1b mutant in bread wheat has been used to induce homoeologous pairing and recombination between chromosome arm 1RL of cereal rye and wheat chromosome/s. A figure of 2.87% was estimated for the maximal frequency of recombination between a rye glutelin locus tightly linked to the centromere and the heterochromatic telomere on the long arm of rye chromosome 1R in the progeny of ph1b homozygotes. This equates to a gametic recombination frequency of 1.44%. This is the first substantiated genetic evidence for homoeologous recombination between wheat and rye chromosomes. No recombinants were confirmed in control populations heterozygous for ph1b. The ph1b mutant was also observed to generate recombination between wheat homoeologues.  相似文献   

14.
Diploid-like chromosome pairing in polyploid wheat is controlled by several Ph (pairing homoeologous) genes with major and minor effects. Homoeologous pairing occurs in either the absence of these genes or their inhibition by genes from other species (Ph I genes). We transferred Ph I genes from Triticum speltoides (syn Aegilops speltoides) to T. aestivum, and on the basis of further analysis it appears that two duplicate and independent Ph I genes were transferred. Since Ph I genes are epistatic to the Ph genes of wheat, homoeologous pairing between the wheat and alien chromosomes occurs in the F1 hybrids. Using the Ph I gene stock, we could demonstrate homoeologous pairing between the wheat and Haynaldia villosa chromosomes. Since homoeologous pairing occurs in F1 hybrids and no cytogenetic manipulation is needed, the Ph I gene stock may be a versatile tool for effecting rapid and efficient alien genetic transfers to wheat.Contribution no. 93-435-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502, USA  相似文献   

15.

Key message

This work pinpointed the goatgrass chromosomal segment in the wheat B genome using modern cytogenetic and genomic technologies, and provided novel insights into the origin of the wheat B genome.

Abstract

Wheat is a typical allopolyploid with three homoeologous subgenomes (A, B, and D). The donors of the subgenomes A and D had been identified, but not for the subgenome B. The goatgrass Aegilops speltoides (genome SS) has been controversially considered a possible candidate for the donor of the wheat B genome. However, the relationship of the Ae. speltoides S genome with the wheat B genome remains largely obscure. The present study assessed the homology of the B and S genomes using an integrative cytogenetic and genomic approach, and revealed the contribution of Ae. speltoides to the origin of the wheat B genome. We discovered noticeable homology between wheat chromosome 1B and Ae. speltoides chromosome 1S, but not between other chromosomes in the B and S genomes. An Ae. speltoides-originated segment spanning a genomic region of approximately 10.46 Mb was detected on the long arm of wheat chromosome 1B (1BL). The Ae. speltoides-originated segment on 1BL was found to co-evolve with the rest of the B genome. Evidently, Ae. speltoides had been involved in the origin of the wheat B genome, but should not be considered an exclusive donor of this genome. The wheat B genome might have a polyphyletic origin with multiple ancestors involved, including Ae. speltoides. These novel findings will facilitate genome studies in wheat and other polyploids.
  相似文献   

16.
Aegilops speltoides Tausch (2n = 2x = 14, SS) is considered as the closest living relative of the B and G genomes of polyploid wheats. A complete set of Triticum aestivum L. cv Chinese Spring-Ae. speltoides whole chromosomes and seven telosomic addition lines was established. A low pairing accession was selected for the isolation of the chromosome addition lines. Except for chromosomes 3S and 6S, which are presently only available as monosomic additions, all other lines were recovered as disomic or ditelosomic additions. The individual Ae. speltoides chromosomes isolated in the wheat background were assayed for their genetic effects on plant phenotype and cytologically characterized in terms of chromosome length, arm ratio, distribution of marker C-bands, and FISH sites using a Ae. speltoides-specific repetitive element, Gc1R-1, as a probe. The homoeology of the added Ae. speltoides chromosomes was established by using a standard set of RFLP probes. No chromosomal rearrangements relative to wheat were detected. Received: 28 June 1999 / Accepted: 16 November 1999  相似文献   

17.
 Wheat-wheat and wheat-rye homoeologous pairing at metaphase I and wheat-rye recombination at anaphase I were examined by genomic in situ hybridization (GISH) in wild-type (Ph1Ph2) and mutant ph1b and ph2b wheat×rye hybrids. The metaphase-I analysis revealed that the relative contribution of wheat-rye chromosome associations in ph2b wheat×rye was similar to that of the wild-type hybrid genotype but differed from the effect of the ph1b mutation. The greater pairing promotion effect of the ph1b mutation appears to be relatively more on distant homoeologous partner metaphase-I associations, whereas the lower promoting effect of ph2b is evenly distributed among all types of homoeologous associations. This finding reveals that distinct mechanisms are involved in the control of wheat homoeologous pairing by the two Ph genes. The frequency of wheat-rye recombination calculated from anaphase-I analysis was lower than expected from the metaphase-I data. A greater discrepancy was found in ph2b than in ph1b wheat×rye hybrids, which may suggest a more distal chiasma localization in the former hybrid genotype. Received: 20 June 1997 / Accepted: 9 December 1997  相似文献   

18.
Dvorak J  Deal KR  Luo MC 《Genetics》2006,174(1):17-27
Pairing between wheat (Triticum turgidum and T. aestivum) homeologous chromosomes is prevented by the expression of the Ph1 locus on the long arm of chromosome 5B. The genome of Aegilops speltoides suppresses Ph1 expression in wheat x Ae. speltoides hybrids. Suppressors with major effects were mapped as Mendelian loci on the long arms of Ae. speltoides chromosomes 3S and 7S. The chromosome 3S locus was designated Su1-Ph1 and the chromosome 7S locus was designated Su2-Ph1. A QTL with a minor effect was mapped on the short arm of chromosome 5S and was designated QPh.ucd-5S. The expression of Su1-Ph1 and Su2-Ph1 increased homeologous chromosome pairing in T. aestivum x Ae. speltoides hybrids by 8.4 and 5.8 chiasmata/cell, respectively. Su1-Ph1 was completely epistatic to Su2-Ph1, and the two genes acting together increased homeologous chromosome pairing in T. aestivum x Ae. speltoides hybrids to the same level as Su1-Ph1 acting alone. QPh.ucd-5S expression increased homeologous chromosome pairing by 1.6 chiasmata/cell in T. aestivum x Ae. speltoides hybrids and was additive to the expression of Su2-Ph1. It is hypothesized that the products of Su1-Ph1 and Su2-Ph1 affect pairing between homeologous chromosomes by regulating the expression of Ph1 but the product of QPh.ucd-5S may primarily regulate recombination between homologous chromosomes.  相似文献   

19.
Kota RS  McGuire PE  Dvorák J 《Genetics》1986,114(2):579-592
Previous work has shown that chromosome pairing at metaphase I (MI) of wheat homologous chromosomes from different inbred lines (heterohomologous chromosomes) is reduced relative to that between homologous chromosomes within an inbred line (euhomologous chromosomes). In order to determine if a potential for this phenomenon exists in diploid species closely related to the wheat B genome, MI chromosome pairing was investigated between euhomologous and heterohomologous 6Be (=6Se) chromosomes, each from a different population of Aegilops longissima Schweinf. et Muschl. (2n = 2x = 14) substituted for chromosome 6B of Chinese Spring wheat (Triticum aestivum L., 2n = 6x = 42). Euhomologous and heterohomologous monotelodisomics, i.e., plants with one complete chromosome 6Be and a telosome of either 6Bep or 6Beq, were constructed in the isogenic background of Chinese Spring. Pairing at MI of the Ae. longissima chromosomes was reduced in heterohomologous monotelodisomics compared to that in the corresponding euhomologous monotelodisomics. The remaining 20 pairs of Chinese Spring chromosomes paired equally well in the euhomologous and heterohomologous monotelodisomics. Thus, the cause of the reduced pairing must reside specifically in the Ae. longissima heterohomologues. In the hybrids between the Ae. longissima lines that contributed the substituted chromosomes, pairing between the heterohomologous chromosomes was normal and did not differ from that of the euhomologous chromosomes. These data provide evidence that a potential for reduced pairing between the heterohomologues is present in the diploid species, but is expressed only in the polyploid wheat genetic background. The reduction in heterohomologous chromosome pairing was greater in the p arm than in the q arm, exactly as in chromosome 6B of wheat. It is concluded that the reduced pairing between Ae. longissima heterohomologues has little to do with constitutive heterochromatin. The value of chromosome pairing as an unequivocal means of determining the origin of genomes in polyploid plants is questioned.  相似文献   

20.
Aegilops longissima Schw. et Musch. (2n= 2x=14, SlSl) and Aegilops sharonensis Eig. (2n=2x=14, SlSl) are diploid species belonging to the section Sitopsis in the tribe Triticeae and potential donors of useful genes for wheat breeding. A comparative genetic map was constructed of the Ae. longissima genome, using RFLP probes with known location in wheat. A high degree of conserved colinearity was observed between the wild diploid and basic wheat genome, represented by the D genome of cultivated wheat. Chromosomes 1Sl, 2Sl, 3Sl, 5Sl and 6Sl are colinear with wheat chromosomes 1D, 2D, 3D, 5D and 6D, respectively. The analysis confirmed that chromosomes 4Sl and 7Sl are translocated relative to wheat. The short arms and major part of the long arms are homoeologous to most of wheat chromosomes 4D and 7D respectively, but the region corresponding to the distal segment of 7D was translocated from 7SlL to the distal region of 4SlL. The map and RFLP markers were then used to analyse the genomes and added chromosomes in a set of ’Chinese Spring’ (CS)/Ae. longissima chromosome additions. The study confirmed the availability of disomic CS/Ae. longissima addition lines for chromosomes 1Sl, 2Sl, 3Sl, 4Sl and 5Sl. An as yet unpublished set of Ae. sharonensis chromosome addition lines were also available for analysis. Due to the gametocidal nature of Ae. sharonensis chromosomes 2Sl and 4Sl, additions 1Sl, 3Sl, 5Sl, 6Sl and 7Sl were produced in a (4D)4Sl background, and 2Sl and 4Sl in a euploid wheat background. The analysis also confirmed that the 4/7 translocation found in Ae. longissima was not present in Ae. sharonensis although the two wild relatives of wheat are considered to be closely related. The phenotypes of the Ae. sharonensis addition lines are described in an Appendix. Received: 28 September 2000 / Accepted: 19 January 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号