首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A Carnation ringspot virus (CRSV) variant (1.26) was identified that accumulates virions but is incapable of forming a systemic infection. The 1.26 capsid protein gene possesses a Ser-->Pro mutation at amino acid 282. Conversion of 1.26 amino acid 282 to Ser restored systemic infection, while the reciprocal mutation in wild-type CRSV abolished systemic infection. Similar mutations introduced into the related Red clover necrotic mosaic virus capsid protein gene failed to induce the packaging but nonsystemic movement phenotype. These results provide additional support for the theory that virion formation is necessary but not sufficient for systemic movement with the dianthoviruses.  相似文献   

2.
Previously, we reported that CCMV(B3a), a hybrid of bromovirus Cowpea chlorotic mottle virus (CCMV) with the 3a cell-to-cell movement protein (MP) gene replaced by that of cowpea-nonadapted bromovirus Brome mosaic virus (BMV), can form small infection foci in inoculated cowpea leaves, but that expansion of the foci stops between 1 and 2 days postinoculation. To determine whether the lack of systemic movement of CCMV(B3a) is due to restriction of local spread at specific leaf tissue interfaces, we conducted more detailed analyses of infection in inoculated leaves. Tissue-printing and leaf press-blotting analyses revealed that CCMV(B3a) was confined to the inoculated cowpea leaves and exhibited constrained movement into leaf veins. Immunocytochemical analyses to examine the infected cell types in inoculated leaves indicated that CCMV(B3a) was able to reach the bundle sheath cells through the mesophyll cells and successfully infected the phloem cells of 50% of the examined veins. Thus, these data demonstrate that the lack of long-distance movement of CCMV(B3a) is not due to an inability to reach the vasculature, but results from failure of the virus to move through the vascular system of cowpea plants. Further, a previously identified 3a coding change (A776C), which is required for CCMV(B3a) systemic infection of cowpea plants, suppressed formation of reddish spots, mediated faster spread of infection, and enabled the virus to move into the veins of inoculated cowpea leaves. From these data, and the fact that CCMV(B3a) directs systemic infection in Nicotiana benthamiana, a permissive systemic host for both BMV and CCMV, we conclude that the bromovirus 3a MP engages in multiple activities that contribute substantially to host-specific long-distance movement through the phloem.  相似文献   

3.
A hybrid Cowpea chlorotic mottle virus(CCMV) with the movement protein (MP) gene replaced with that of the closely related Brome mosaic virus cannot infect cowpea systemically. Twenty-nine spontaneous mutants from the hybrid CCMV capable of systemic infection in cowpea appeared through biased codon changes that resulted in Lys or Arg at five specific positions in the MP gene. In this study, we report that systemic infection of cowpea with the hybrid CCMV can be achieved by artificial codon changes that do not result in Lys or Arg. We discuss mechanisms that restrict the occurrence of cowpea-adapted mutants in nature.  相似文献   

4.
Monocot-adapted brome mosaic virus (BMV) and dicot-adapted cowpea chlorotic mottle virus (CCMV) are closely related bromoviruses with tripartite RNA genomes. Although RNAs 1 and 2 together are sufficient for RNA replication in protoplasts, systemic infection also requires RNA3, which encodes the coat protein and the nonstructural 3a movement protein. We have previously shown with bromoviral reassortants that host specificity determinants in both viruses are encoded by RNA3 as well as by RNA1 and/or RNA2. Here, to test their possible role in host specificity, the 3a movement protein genes were precisely exchanged between BMV and CCMV. The hybrid viruses, but not 3a deletion mutants, systemically infected Nicotiana benthamiana, a permissive host for both parental viruses. The hybrids thus retain basic competence for replication, packaging, cell-to-cell spread, and long-distance (vascular) spread. However, the hybrids failed to systemically infect either barley or cowpea, selective hosts for parental viruses. Thus, the 3a gene and/or its encoded 3a protein contributes to host specificity of both monocot- and dicot-adapted bromoviruses. Tests of inoculated cowpea leaves showed that the spread of the CCMV hybrid containing the BMV 3a gene was blocked at a very early stage of infection. Moreover, the BMV hybrid containing the CCMV 3a gene appeared to spread farther than wt BMV in inoculated cowpea leaves. Several pseudorevertants directing systemic infection in cowpea leaves were obtained from plants inoculated with the CCMV(BMV 3a) hybrid, suggesting that the number of mutations required to adapt the hybrid to dicots is small.  相似文献   

5.
The interaction between viral capsid protein (CP) and its cognate viral RNA modulates many steps in the virus infection cycle, such as replication, translation and assembly. The N-terminal 50 amino acids of the Red clover necrotic mosaic virus (RCNMV) CP are rich in basic residues (especially lysine) and are essential for the core functions of the CP, namely RNA binding and virion assembly. To further elucidate additional biological roles for these basic residues, a series of alanine substitution mutations was introduced into infectious clones of RCNMV RNA-1 and assayed for symptomatology, virion formation and systemic infection. Infectivity assays conducted in Nicotiana benthamiana revealed that all nine alanine substitution mutants (ASMs) were competent for systemic infection. Two ASMs (K4A and K7A/K8A) induced severe symptoms and delayed the systemic spread of viral genomes when compared with wild-type RCNMV. However, these ASMs were still competent for virion formation. Three other ASMs (K25A, K33A and K38A) displayed milder symptoms and significant reductions in virion accumulation when compared with wild-type RCNMV, but retained the ability to spread systemically. Evidence from these last three ASMs, as well as a CP null mutant, showed that RCNMV is able to move systemically in N. benthamiana as a nonvirion form. These observations reaffirm the necessity of the N-terminal lysine-rich residues of the RCNMV CP for efficient virion accumulation. They also reveal additional roles for the CP in the modulation of host symptomatology, independent of its role in virion assembly and the rate of systemic viral movement in N. benthamiana.  相似文献   

6.
Eight adaptive mutant clones have been made from the total RNA extracted from uninoculated upper leaves of a single cowpea plant exhibiting systemic infection after inoculation with a hybrid cowpea chlorotic mottle bromovirus (CCMV) with the 3a movement protein gene of CCMV replaced by that of cowpea-nonadapted brome mosaic bromovirus (BMV). Sequence and mutational analyses of these clones showed genotypic and phenotypic diversity of the cloned virus population, but all examined clones had the adaptive mutation, A to C at position 776 within the BMV 3a gene, required for the systemic infection of cowpea. The data support the quasispecies model for RNA virus population, and suggest that the maintenance of the adaptive mutation may be due to powerful selection pressure in an infection process.  相似文献   

7.
The 3' noncoding region of turnip yellow mosaic virus RNA includes an 82-nucleotide-long tRNA-like structure domain and a short upstream region that includes a potential pseudoknot overlapping the coat protein termination codon. Genomic RNAs with point mutations in the 3' noncoding region that result in poor replication in protoplasts and no systemic symptoms in planta were inoculated onto Chinese cabbage plants in an effort to obtain second-site suppressor mutations. Putative second-site suppressor mutations were identified by RNase protection and sequencing and were then introduced into genomic cDNA clones to permit their characterization. A C-57----U mutation in the tRNA-like structure was a strong suppressor of the C-55----A mutation which prevented both systemic infection and in vitro valylation of the viral RNA. Both of these phenotypes were rescued in the double mutant. An A-107----C mutation was a strong second-site suppressor of the U-96----G mutation, permitting the double mutant to establish systemic infection. The C-107 and G-96 mutations are located on opposite strands of one helix of a potential pseudoknot, and the results support a functional role for the pseudoknot structure. A mutation near the 5' end of the genome (G + 92----A), at position -3 relative to the initiation codon of the essential open reading frame 206, was found to be a general potentiator of viral replication, probably as a result of enhanced expression of open reading frame 206. The A + 92 mutation enhanced the replication of mutant TYMC-G96 in protoplasts but was not a sufficiently potent suppressor to permit systemic spread of the A + 92/G-96 double mutant in plants.  相似文献   

8.
The V20 cultivar of Nicotiana tabacum was shown previously to exhibit a strain-specific restriction of long-distance movement of tobacco etch potyvirus (TEV). In V20, both TEV-HAT and TEV-Oxnard strains are capable of genome amplification and cell-to-cell movement, but only TEV-Oxnard is capable of systemic infection by vasculature-dependent long-distance movement. To investigate the basis for host-specific movement of TEV, chimeric virus genomes were assembled from TEV-HAT and TEV-Oxnard. Viruses containing the TEV-Oxnard coding regions for HC-Pro and/or capsid protein (CP), two proteins that are known to be essential for TEV long-distance movement, failed to infect V20 systemically. In contrast, chimeric viruses encoding the TEV-Oxnard VPg domain of NIa were able to infect V20 systemically. The critical region controlling the infection phenotype in V20 was mapped to a 67-nucleotide segment containing 10-nucleotide differences, but only five amino acid differences, between TEV-HAT and TEV-Oxnard. In V20 coinfection experiments, a restricted strain had no effect on systemic infection by a long-distance movement-competent chimeric strain, suggesting that the restricted strain was not inducing a generalized systemic resistance response. These data suggest that the VPg domain, which is covalently attached to the 5' end of genomic RNA, interacts either directly or indirectly with host components to facilitate long-distance movement.  相似文献   

9.
Recently we generated a panel of hepatitis B virus core gene mutants carrying single insertions or deletions which allowed efficient expression of the core protein in bacteria and self-assembly of capsids. Eleven of these mutations were introduced into a eukaryotic core gene expression vector and characterized by trans complementation of a core-negative HBV genome in cotransfected human hepatoma HuH7 cells. Surprisingly, four mutants (two insertions [EFGA downstream of A11 and LDTASALYR downstream of R39] and two deletions [Y38-R39-E40 and L42]) produced no detectable capsids. The other seven mutants supported capsid formation and pregenome packaging/viral minus- and plus-strand-DNA synthesis but to different levels. Four of these seven mutants (two insertions [GA downstream of A11 and EHCSP downstream of P50] and two deletions [S44 and A80]) allowed virion morphogenesis and secretion. The mutant carrying a deletion of A80 at the tip of the spike protruding from the capsid was hepatitis B virus core antigen negative but wild type with respect to virion formation, indicating that this site might not be crucial for capsid-surface protein interactions during morphogenesis. The other three nucleocapsid-forming mutants (one insertion [LS downstream of S141] and two deletions [T12 and P134]) were strongly blocked in virion formation. The corresponding sites are located in the part of the protein forming the body of the capsid and not in the spike. These mutations may alter sites on the particle which contact surface proteins during envelopment, or they may block the appearance of a signal for the transport or the maturation of the capsid which is linked to viral DNA synthesis and required for envelopment.  相似文献   

10.
F G Albert  J M Fox    M J Young 《Journal of virology》1997,71(6):4296-4299
The mechanism by which virions of cowpea chlorotic mottle virus (CCMV) disassemble and allow for translation of the virion RNA is not well understood. Previous models have suggested that virion swelling is required to expose the virion RNA for translation in a process referred to as cotranslational disassembly (M. Brisco, R. Hull, and T. M. A. Wilson, Virology 148:210-217, 1986; J. W. Roenhorst, J. W. M. van Lent, and B. J. M. Verduin, Virology 164:91-98, 1988; J. W. Roenhorst, J. M. Verduin, and R. W. Goldbach, Virology 168:138-146, 1989). Previous work in our laboratory has identified point mutations in the CCMV coat protein which result in virions with altered swelling characteristics (J. Fox, F. G. Albert, J. Speir, and M. J. Young, Virology 227:229-233, 1997; J. M. Fox, X. Zhao, J. A. Speir, and M. J. Young, Virology 222:115-122, 1996). The wild-type and mutant CCMV virions were used to correlate virion swelling with the ability of virion RNA to be translated in a cell-free wheat germ extract. Mutant virions unable to swell (cpK42R) are as infectious as wild-type virions in vivo, and the levels of translated encapsidated virion RNA are similar to those of wild-type virions in vitro. Mutant virions capable of swelling but not of disassembling in vitro (cpR26C) are noninfectious and have severely reduced levels of translation of the encapsidated virion RNA in vitro. These studies suggest that virion swelling is not required for the cotranslational disassembly of CCMV. Additionally, the results indicate that there is a pH-dependent structural transition in the virion, other than swelling, that results in the RNA's being exposed for translation in vitro. An alternative model suggesting that cotranslational disassembly of CCMV involves presentation of the virion RNA through the virion fivefold axis is proposed.  相似文献   

11.
The nucleotide sequences of the subgenomic coat protein messengers (RNA4's) of two related bromoviruses, brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV), have been determined by direct RNA and CDNA sequencing without cloning. BMV RNA4 is 876 b long including a 5' noncoding region of nine nucleotides and a 3' noncoding region of 300 nucleotides. CCMV RNA 4 is 824 b long, including a 5' noncoding region of 10 nucleotides and a 3' noncoding region of 244 nucleotides. The encoded coat proteins are similar in length (188 amino acids for BMV and 189 amino acids for CCMV) and display about 70% homology in their amino acid sequences. Length difference between the two RNAs is due mostly to a single deletion, in CCMV with respect to BMV, of about 57 b immediately following the coding region. Allowing for this deletion the RNAs are indicate that mutations leading to divergence were constrained in the coding region primarily by the requirement of maintaining a favorable coat protein structure and in the 3' noncoding region primarily by the requirement of maintaining a favorable RNA spatial configuration.  相似文献   

12.
Viral coat proteins function in virion assembly and virus biology in a tightly coordinated manner with a role for virtually every amino acid. In this study, we demonstrated that the coat protein (CP) of Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) is unusually tolerant of extensive deletions, with continued virion assembly and/or systemic infection found after extensive deletions are made. A series of deletion and point mutations was created in the CP cistron of wild-type and/or green fluorescent protein-tagged WSMV, and the effects of these mutations on cell-to-cell and systemic transport and virion assembly of WSMV were examined. Mutants with overlapping deletions comprising N-terminal amino acids 6 to 27, 36 to 84, 85 to 100, 48 to 100, and 36 to 100 or the C-terminal 14 or 17 amino acids systemically infected wheat with different efficiencies. However, mutation of conserved amino acids in the core domain, which may be involved in a salt bridge, abolished virion assembly and cell-to-cell movement. N-terminal amino acids 6 to 27 and 85 to 100 are required for efficient virion assembly and cell-to-cell movement, while the C-terminal 65 amino acids are dispensable for virion assembly but are required for cell-to-cell movement, suggesting that the C terminus of CP functions as a dedicated cell-to-cell movement determinant. In contrast, amino acids 36 to 84 are expendable, with their deletion causing no obvious effects on systemic infection or virion assembly. In total, 152 amino acids (amino acids 6 to 27 and 36 to 100 and the 65 amino acids at the C-terminal end) of 349 amino acids of CP are dispensable for systemic infection and/or virion assembly, which is rare for multifunctional viral CPs.  相似文献   

13.
Variants of hepatitis A virus (pHM175 virus) recovered from persistently infected green monkey kidney (BS-C-1) cells induced a cytopathic effect during serial passage in BS-C-1 or fetal rhesus kidney (FRhK-4) cells. Epitope-specific radioimmunofocus assays showed that this virus comprised two virion populations, one with altered antigenicity including neutralization resistance to monoclonal antibody K24F2, and the other with normal antigenic characteristics. Replication of the antigenic variant was favored over that of virus with the normal antigenic phenotype during persistent infection, while virus with the normal antigenic phenotype was selected during serial passage. Viruses of each type were clonally isolated; both were cytopathic in cell cultures and displayed a rapid replication phenotype when compared with the noncytopathic passage 16 (p16) HM175 virus which was used to establish the original persistent infection. The two cytopathic virus clones contained 31 and 34 nucleotide changes from the sequence of p16 HM175. Both shared a common 5' sequence (bases 30 to 1677), as well as sequence identity in the P2-P3 region (bases 3249 to 5303 and 6462 to 6781) and 3' terminus (bases 7272 to 7478). VP3, VP1, and 3Cpro contained different mutations in the two virus clones, with amino acid substitutions at residues 70 of VP3 and 197 and 276 of VP1 of the antigenic variant. These capsid mutations did not affect virion thermal stability. A comparison of the nearly complete genomic sequences of three clonally isolated cytopathic variants was suggestive of genetic recombination between these viruses during persistent infection and indicated that mutations in both 5' and 3' nontranslated regions and in the nonstructural proteins 2A, 2B, 2C, 3A, and 3Dpol may be related to the cytopathic phenotype.  相似文献   

14.
Many viruses use stop codon readthrough as a strategy to produce extended coat or replicase proteins. The stop codon of the barley yellow dwarf virus (PAV serotype) coat protein gene is read through at a low rate. This produces an extended polypeptide which becomes part of the virion. We have analyzed the cis-acting sequences in the barley yellow dwarf virus PAV genome required for this programmed readthrough in vitro in wheat germ extracts and reticulocyte lysates and in vivo in oat protoplasts. Two regions 3' to the stop codon were required. Deletion of sections containing the first 5 of the 16 CCN NNN repeats located 3' of the stop codon greatly reduced readthrough in vitro and in vivo. Surprisingly, readthrough also required a second, more distal element that is located 697 to 758 bases 3' of the stop codon within the readthrough open reading frame. This element also functioned in vivo in oat protoplasts when placed more than 2 kb from the coat protein gene stop in the untranslated region following a GUS reporter gene. This is the first report of a long-range readthrough signal in viruses.  相似文献   

15.
The capsid protein (CP) of potyviruses is required for various steps during plant infection, such as virion assembly, cell-to-cell movement, and long-distance transport. This suggests a series of compatible interactions with putative host factors which, however, are largely unknown. By using the yeast two-hybrid system the CP from Potato virus Y (PVY) was found to interact with a novel subset of DnaJ-like proteins from tobacco, designated NtCPIPs. Mutational analysis identified the CP core region, previously shown to be essential for virion formation and plasmodesmal trafficking, as the interacting domain. The ability of NtCPIP1 and NtCPIP2a to associate with PVY CP could be confirmed in vitro and was additionally verified in planta by bimolecular fluorescence complementation. The biological significance of the interaction was assayed by PVY infection of agroinfiltrated leaves and transgenic tobacco plants that expressed either full-length or J-domain-deficient variants of NtCPIPs. Transient expression of truncated dominant-interfering NtCPIP2a but not of the functional protein resulted in strongly reduced accumulation of PVY in the inoculated leaf. Consistently, stable overexpression of J-domain-deficient variants of NtCPIP1 and NtCPIP2a dramatically increased the virus resistance of various transgenic lines, indicating a critical role of functional NtCPIPs during PVY infection. The negative effect of impaired NtCPIP function on viral pathogenicity seemed to be the consequence of delayed cell-to-cell movement, as visualized by microprojectile bombardment with green fluorescent protein-tagged PVY. Therefore, we propose that NtCPIPs act as important susceptibility factors during PVY infection, possibly by recruiting heat shock protein 70 chaperones for viral assembly and/or cellular spread.  相似文献   

16.
Two acidic domains of the Potato leafroll virus (PLRV) coat protein, separated by 55 amino acids and predicted to be adjacent surface features on the virion, were the focus of a mutational analysis. Eleven site-directed mutants were generated from a cloned infectious cDNA of PLRV and delivered to plants by Agrobacterium-mediated mechanical inoculation. Alanine substitutions of any of the three amino acids of the sequence EWH (amino acids 170 to 172) or of D177 disrupted the ability of the coat protein to assemble stable particles and the ability of the viral RNA to move systemically in four host plant species. Alanine substitution of E109, D173, or E176 reduced the accumulation of virus in agrobacterium-infiltrated tissues, the efficiency of systemic infection, and the efficiency of aphid transmission relative to wild-type virus, but the mutations did not affect virion stability. A structural model of the PLRV capsid predicted that the amino acids critical for virion assembly were located within a depression at the center of a coat protein trimer. The other amino acids that affected plant infection and/or aphid transmission were predicted to be located around the perimeter of the depression. PLRV virions play key roles in phloem-limited virus movement in plant hosts as well as in transport and persistence in the aphid vectors. These results identified amino acid residues in a surface-oriented loop of the coat protein that are critical for virus assembly and stability, systemic infection of plants, and movement of virus through aphid vectors.  相似文献   

17.
The roles of the capsid protein (CP) and the CP coding sequence of tobacco etch potyvirus (TEV) in genome amplification were analyzed. A series of frameshift-stop codon mutations that interrupted translation of the CP coding sequence at various positions were introduced into the TEV genome. A series of 3' deletion mutants that lacked the CP coding sequence beyond each of the frameshift-stop codon mutations were also produced. In addition, a series of 5' CP deletion mutants were generated. Amplification of genomes containing either frameshift-stop codon insertions after codons 1, 59, 103, and 138 or genomes containing the corresponding 3' deletions of the CP coding sequence was reduced by 100- to 1,000-fold relative to that of the parental genome in inoculated protoplasts. In contrast, a mutant containing a frameshift-stop codon after CP position 189 was amplified to 27% of the level of the parental virus, but the corresponding 3' deletion mutant lacking codons 190 to 261 was nonviable. Deletion mutants lacking CP codons 2 to 100, 2 to 150, 2 to 189, and 2 to 210 were amplified relatively efficiently in protoplasts, but a deletion mutant lacking codons 2 to 230 was nonviable. None of the amplification-defective frameshift-stop codon or deletion mutants was rescued in transgenic cells expressing TEV CP, although the transgenic CP was able to rescue intercellular movement defects of replication-competent CP mutants. Coupled with previous results, these data led to the conclusions that (i) TEV genome amplification requires translation to a position between CP codons 138 and 189 but does not require the CP product and (ii) the TEV CP coding sequence contains a cis-active RNA element between codons 211 and 246. The implications of these findings on mechanisms of RNA replication and genome evolution are discussed.  相似文献   

18.
Tzeng WP  Frey TK 《Journal of virology》2003,77(17):9502-9510
Rubella virus (RUB) replicons with an in-frame deletion of 507 nucleotides between two NotI sites in the P150 nonstructural protein (DeltaNotI) do not replicate (as detected by expression of a reporter gene encoded by the replicon) but can be amplified by wild-type helper virus (Tzeng et al., Virology 289:63-73, 2001). Surprisingly, virus with DeltaNotI was viable, and it was hypothesized that this was due to complementation of the NotI deletion by one of the virion structural protein genes. Introduction of the capsid (C) protein gene into DeltaNotI-containing replicons as an in-frame fusion with a reporter gene or cotransfection with both DeltaNotI replicons and RUB replicon or plasmid constructs containing the C gene resulted in replication of the DeltaNotI replicon, confirming the hypothesis that the C gene was the structural protein gene responsible for complementation and demonstrating that complementation could occur either in cis or in trans. Approximately the 5' one-third of the C gene was necessary for complementation. Mutations that prevented translation of the C protein while minimally disturbing the C gene sequence abrogated complementation, while synonymous codon mutations that changed the C gene sequence without affecting the amino acid sequence at the 5' end of the C gene had no effect on complementation, indicating that the C protein, not the C gene RNA, was the moiety responsible for complementation. Complementation occurred at a basic step in the virus replication cycle, because DeltaNotI replicons failed to accumulate detectable virus-specific RNA.  相似文献   

19.
Brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV) are related positive-strand RNA viruses with tripartite genomes. RNA replication by either virus requires genomic RNAs 1 and 2, which encode protein 1a and the polymeraselike, 94-kilodalton 2a protein, respectively. Proteins 1a and 2a share extensive sequence similarity with proteins encoded by a wide range of other positive-strand RNA viruses of animals and plants. Heterologous combinations of BMV and CCMV RNAs 1 and 2 do not support viral RNA replication, and although BMV RNA2 is amplified in CCMV-infected cells, CCMV RNA2 is not amplified by BMV. Construction of hybrids by precise exchange of segments between BMV and CCMV RNA2 has now allowed preliminary mapping of such virus-specific replication functions in RNA2 and the 2a protein. The ability to support replication in trans with BMV RNA1 segregated with a 5' BMV RNA2 fragment encoding the first 358 2a gene amino acids, while a 5' fragment extending over 281 BMV 2a codons transferred only cis-acting competence for RNA2 amplification in cells coinfected with wild-type BMV. Successful trans-acting function with CCMV RNA1 segregated with a CCMV RNA2 3' fragment that included the last 206 2a gene codons. Thus, the less conserved N- and C-terminal 2a segments appear to be involved in required interaction(s) of this polymeraselike protein with the 1a protein or RNA1 or both. Moreover, when individual hybrid RNA2 molecules that function with either BMV or CCMV RNA1 were tested, BMV- and CCMV-specific differences in recognition and amplification of RNA3 templates appeared to segregate with RNA1.  相似文献   

20.
Thirteen mutations were introduced in the movement protein (MP) gene of Alfalfa mosaic virus (AMV) fused to the green fluorescent protein (GFP) gene and the mutant MP-GFP fusions were expressed transiently in tobacco protoplasts, tobacco suspension cells, and epidermal cells of tobacco leaves. In addition, the mutations were introduced in the MP gene of AMV RNA 3 and the mutant RNAs were used to infect tobacco plants. Ten mutants were affected in one or more of the following functions of MP: the formation of tubular structures on the surface of protoplasts, association with the endoplasmic reticulum (ER) of suspension cells and epidermal cells, targeting to punctate structures in the cell wall of epidermis cells, movement from transfected cells to adjacent cells in epidermis tissue, cell-to-cell movement, or long-distance movement in plants. The mutations point to functional domains of the MP and support the proposed order of events in AMV transport. Studies with several inhibitors indicate that actin or microtubule components of the cytoskeleton are not involved in tubule formation by AMV MP. Evidence was obtained that tubular structures on the surface of transfected protoplasts contain ER- or plasmalemma-derived material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号