首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
BAX Inhibitor-1 (BI-1) is a conserved cell death suppressor protein. In barley, BI-1 ( HvBI-1 ) expression is induced upon powdery mildew infection and when over-expressed in epidermal cells of barley, HvBI-1 induces susceptibility to the biotrophic fungal pathogen Blumeria graminis . We co-expressed mammalian pro-apoptotic BAX together with HvBI-1, and the mammalian BAX antagonist BCL-XL in barley epidermal cells. BAX expression led to cessation of cytoplasmic streaming and collapse of the cytoplasm while co-expression of HvBI-1 and BCL-XL partially or completely, respectively, rescued cells from BAX lethality. When B. graminis was attacking epidermal cells, a green fluorescent protein fusion of HvBI-1 accumulated at the site of attempted penetration and was also present around haustoria. Over-expression of HvBI-1 in epidermal cells weakened a cell-wall-associated local hydrogen peroxide burst in a resistant mlo -mutant genotype and supported haustoria accommodation in race-specifically resistant MLA12 -barley. HvBI-1 is a cell death regulator protein of barley with the potential to suppress host defence reactions.  相似文献   

2.
Dong W  Nowara D  Schweizer P 《The Plant cell》2006,18(11):3321-3331
To study protein ubiquitination pathways in the interaction of barley (Hordeum vulgare) with the powdery mildew fungus (Blumeria graminis), we measured protein turnover and performed transient-induced gene silencing (TIGS) of ubiquitin and 26S proteasome subunit encoding genes in epidermal cells. Attack by B. graminis hyperdestabilized a novel unstable green fluorescent protein fusion that contains a destabilization domain of a putative barley 1-aminocyclopropane-1-carboxylate synthase, suggesting enhanced protein turnover. Partial depletion of cellular ubiquitin levels by TIGS induced extreme susceptibility of transformed cells toward the appropriate host pathogen B. graminis f. sp hordei, whereas papilla-based resistance to the nonhost pathogen B. graminis f. sp tritici and host resistance mediated by the mlo gene (for mildew resistance locus O) remained unaffected. Cells were rescued from TIGS-induced ubiquitin depletion by synthetic genes encoding wild-type or mutant barley monoubiquitin proteins. The strongest rescue was from a gene encoding a K63R mutant form of ubiquitin blocked in several ubiquitination pathways while still allowing Lys-48-dependent polyubiquitination required for proteasomal protein degradation. Systematic RNA interference of 40 genes encoding all 17 subunits of the proteasome 19S regulatory particle failed to induce hypersusceptibility against B. graminis f. sp hordei. This suggests a role for Lys-48-linked protein polyubiquitination, which is independent from the proteasome pathway, in basal host defense of barley.  相似文献   

3.
Higher plants possess large multigene families encoding secreted class III peroxidase (Prx) proteins. In barley, two Prx cDNAs encoding HvPrx07 and HvPrx08 have been isolated and characterized to some extent with respect to a resistance-mediating function upon attack by the powdery-mildew fungus Blumeria graminis f.sp. hordei ( Bgh ). Here we present evidence for the tissue-specific accumulation of a new Prx mRNA, HvPrx40 , in Bgh -attacked epidermis of barley ( Hordeum vulgare ). The encoded protein is predicted to be secreted into the apoplastic space of epidermal cells due to the absence of a C-terminal extension, which distinguishes it from other Prx proteins reported to accumulate in leaf epidermis. Transient overexpression of HvPrx40 enhanced the resistance of wheat ( Triticum aestivum ) and barley against Blumeria graminis f.sp. tritici (wheat powdery mildew) and Bgh , respectively. These findings were complemented by transient-induced gene silencing showing hypersusceptibility of barley leaf epidermal cells to Bgh . The local accumulation of oxidized 3,3-diaminobenzidine that reflects H2O2 production at sites of attempted fungal penetration was not reduced in HvPrx40 -silenced cells, suggesting a role of this peroxidase other than the production of reactive oxygen species.  相似文献   

4.
5.
6.
Cell polarization is a crucial process during plant development, as well as in plant-microbe interactions, and is frequently associated with extensive cytoskeletal rearrangements. In interactions of plants with inappropriate fungal pathogens (so-called non-host interactions), the actin cytoskeleton is thought to contribute to the establishment of effective barriers at the cell periphery against fungal ingress. Here, we impeded actin cytoskeleton function in various types of disease resistance using pharmacological inhibitors and genetic interference via ectopic expression of an actin-depolymerizing factor-encoding gene, ADF. We demonstrate that barley (Hordeum vulgare) epidermal cells require actin cytoskeleton function for basal defense to the appropriate powdery mildew pathogen Blumeria graminis f. sp. hordei and for mlo-mediated resistance at the cell wall, but not for several tested race-specific immune responses. Analysis of non-host resistance to two tested inappropriate powdery mildews, Erysiphe pisi and B. graminis f. sp. tritici, revealed the existence of actin-dependent and actin-independent resistance pathways acting at the cell periphery. These pathways act synergistically and appear to be under negative control by the plasma membrane-resident MLO protein.  相似文献   

7.
8.
9.
Nonhost resistance of cereals to inappropriate formae speciales of Blumeria graminis is little understood. However, on the microscopic level, nonhost defense to B. graminis is reminiscent of host defense preventing fungal development by penetration resistance and the hypersensitive cell death response (HR). We analyzed histochemically the accumulation of superoxide anion radicals (O2*-) and hydrogen peroxide (H2O2) at sites of B. graminis attack in nonhost barley and wheat. Superoxide visualized by subcellular reduction of nitroblue tetrazolium accumulated in association with successful fungal penetration in attacked cells and in cells neighboring HR. In contrast, H2O2 accumulated in cell wall appositions beneath fungal penetration attempts or in the entire epidermal cell during HR. The data provide evidence for different roles and sources of superoxide and H2O2 in the nonhost interaction of cereals with inappropriate formae speciales of B. graminis.  相似文献   

10.
The Rar1 gene, identified in the context of race-specific powdery mildew resistance mediated by the Hordeum vulgare (barley) resistance (R) gene Mla12, is required for the function of many R-mediated defense responses in mono- and dicotyledonous plant species. Mla resistance is associated with an oxidative burst and a subsequent cell death reaction of attacked cells. Rar1 mutants are impaired in these responses and, to identify genetic elements which negatively regulate the Mla12-triggered response, we have screened mutagenized Mla12 rar1 mutant populations for restoration of the resistance response. Here we describe the restoration of Mla12-specified resistance (rom1) mutant that restores features of disease resistance to a Blumeria graminis f. sp. hordei isolate expressing the avirulence gene AvrMla12 and retains susceptibility to an isolate lacking AvrMla12. Histochemical analyses show that, in rom1 mutant plants, a whole-cell oxidative burst and cell death response in attacked epidermal cells is restored in the incompatible interaction. Defense responses against tested inappropriate powdery mildews, B. graminis f. sp. tritici and Golovinomyces orontii, were diminished in rar1 mutant plants and enhanced in rom1 mutant plants relative to the wild type. These findings indicate antagonistic activities of Rar1 and Rom1 and reveal their contribution to nonhost and race-specific resistance responses.  相似文献   

11.
12.
13.
14.
15.
16.
BAX inhibitor-1 (BI-1) is a conserved cell death regulator protein that inhibits mammalian BAX-induced cell death in yeast, animals and plants. Additionally, HvBI-1 suppresses defense responses and resistance to the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh) when over-expressed in single epidermal cells of barley. To test the potential of ectopic expression of BI-1 to influence fungal interactions with crop plants, we produced stable transgenic barley plants expressing a green fluorescing protein (GFP) fusion of HvBI-1 under control of the cauliflower mosaic virus 35S promoter. GFP-HvBI-1 plants were fertile and did not display obvious developmental alterations when compared to wild type parents. GFP-HvBI-1 plants were more resistant to single cell death induced by ballistic delivery of a mammalian proapototic BAX expression construct and more susceptible to biotrophic Bgh. Microscopic observation of the interaction phenotype revealed that enhanced susceptibility, i.e. a higher degree of successful establishment of haustoria in epidermal cells, was associated with a reduced frequency of hypersensitive cell death reactions. In contrast, young seedlings of GFP-HvBI-1 barley were more resistant to Fusarium graminearum than wild type or azygous controls. Hence the effect of GFP-HvBI-1 on the outcome of a particular plant–fungus interaction appeared dependent on the lifestyle of the pathogen. V. Babaeizad and J. Imani contributed equally to this study.  相似文献   

17.
Blumeria graminis f.sp. hordei (Bgh) attack disrupted stomatal behaviour, and hence leaf water conductance (g(l)), in barley genotypes Pallas and Ris?-S (susceptible), P01 (with Mla1 conditioning a hypersensitive response; HR), and P22 and Ris?-R (with mlo5 conditioning papilla-based penetration resistance). Inoculation caused some stomatal closure well before the fungus attempted infection. Coinciding with epidermal cell penetration, stomatal opening in light was also impeded, although stomata of susceptible and mlo5 lines remained largely able to close in darkness. Following infection, in susceptible lines stomata closed in darkness but opening in light was persistently impeded. In Ris?-R, stomata recovered nearly complete function by approximately 30 h after inoculation, i.e. after penetration resistance was accomplished. In P01, stomata became locked open and unable to close in darkness shortly after epidermal cells died due to HR. In the P22 background, mlo5 penetration resistance was often followed by consequential death of attacked cells, and here too stomata became locked open, but not until approximately 24 h after pathogen attack had ceased. The influence of epidermal cell death was localized, and only affected stomata within one or two cells distance. These stomata were unable to close not only in darkness but also after application of abscisic acid and in wilted leaves suffering drought. Thus, resistance to Bgh based on HR or associated with cell death may have previously unsuspected negative consequences for the physiological health of apparently 'disease-free' plants. The results are discussed in relation to the control of stomatal aperture in barley by epidermal cells.  相似文献   

18.
19.
Little is known about the function of host factors involved in disease susceptibility. The barley (Hordeum vulgare) ROP (RHO of plants) G-protein RACB is required for full susceptibility of the leaf epidermis to invasion by the biotrophic fungus Blumeria graminis f. sp hordei. Stable transgenic knockdown of RACB reduced the ability of barley to accommodate haustoria of B. graminis in intact epidermal leaf cells and to form hairs on the root epidermis, suggesting that RACB is a common element of root hair outgrowth and ingrowth of haustoria in leaf epidermal cells. We further identified a barley MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN (MAGAP1) interacting with RACB in yeast and in planta. Fluorescent MAGAP1 decorated cortical microtubules and was recruited by activated RACB to the cell periphery. Under fungal attack, MAGAP1-labeled microtubules built a polarized network at sites of successful defense. By contrast, microtubules loosened where the fungus succeeded in penetration. Genetic evidence suggests a function of MAGAP1 in limiting susceptibility to penetration by B. graminis. Additionally, MAGAP1 influenced the polar organization of cortical microtubules. These results add to our understanding of how intact plant cells accommodate fungal infection structures and suggest that RACB and MAGAP1 might be antagonistic players in cytoskeleton organization for fungal entry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号