首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
Calibration of ring-current effects in proteins and nucleic acids   总被引:3,自引:0,他引:3  
Summary Density functional chemical shielding calculations are reported for methane molecules placed in a variety of positions near aromatic rings of the type found in proteins and nucleic acids. The results are compared to empirical formulas that relate these intermolecular shielding effects to magnetic anisotropy (ring-current) effects and to electrostatic polarization of the C–H bonds. Good agreement is found between the empirical formulas and the quantum chemistry results, allowing a reassessment of the ring-current intensity factors for aromatic amino acids and nucleic acid bases. Electrostatic interactions contribute significantly to the computed chemical shift dispersion. Prospects for using this information in the analysis of chemical shifts in proteins and nucleic acids are discussed.  相似文献   

2.
We present here the parmbsc0 force field, a refinement of the AMBER parm99 force field, where emphasis has been made on the correct representation of the alpha/gamma concerted rotation in nucleic acids (NAs). The modified force field corrects overpopulations of the alpha/gamma = (g+,t) backbone that were seen in long (more than 10 ns) simulations with previous AMBER parameter sets (parm94-99). The force field has been derived by fitting to high-level quantum mechanical data and verified by comparison with very high-level quantum mechanical calculations and by a very extensive comparison between simulations and experimental data. The set of validation simulations includes two of the longest trajectories published to date for the DNA duplex (200 ns each) and the largest variety of NA structures studied to date (15 different NA families and 97 individual structures). The total simulation time used to validate the force field includes near 1 mus of state-of-the-art molecular dynamics simulations in aqueous solution.  相似文献   

3.
Resveratrol (RES) and genistein (GEN) are the dietary natural products known to possess chemopreventive property and also the ability to repair DNA damage induced by mutagens/carcinogens. It is believed that the therapeutic activity of these compounds could be primarily due to their interaction with nucleic acids but detailed reports are not available. We here explore the interaction of these drugs with nucleic acids considering DNA and RNA as a potential therapeutic target. The interaction of RES and GEN has been analysed in buffered solution with DNA [saline sodium citrate (SSC)] and RNA [tris ethylene diammine tetra acetic acid (TE)] using UV-absorption and Fourier transform infrared (FTIR) spectroscopy. The UV analysis revealed lesser binding affinity with nucleic acids at lower concentration of RES (P/D = 5.00 and 10.00), while at higher drug concentration (P/D = 0.75, 1.00 and 2.50) hyperchromic effect with shift in the lambda(max) is noted for DNA and RNA. A major RES-nucleic acids complexes was observed through base pairs and phosphate backbone groups with K = 35.782 M(-1) and K = 34.25 M(-1) for DNARES and RNA-RES complexes respectively. At various concentrations of GEN (P/D = 0.25, 0.50, 0.75, 1.00 and 2.50) hyperchromicity with shift in the lambda(max) from 260-->263 nm and 260--> 270 nm is observed for DNA-GEN and RNA-GEN complexes respectively. The binding constant (from UV analysis) for GEN-nucleic acids complexes could not be obtained due to GEN absorbance overlap with that of nucleic acids at 260 nm. Nevertheless a detailed analysis with regard to the interaction of these drugs (RES/GEN) with DNA and RNA could feasibly be understood by FTIR.  相似文献   

4.
Recent advances in atomic force microscopy (AFM) imaging of nucleic acids include the visualization of DNA and RNA incorporated into devices and patterns, and into structures based on their sequences or sequence recognition. AFM imaging of nuclear structures has contributed to advances in telomere research and to our understanding of nucleosome formation. Highlights of force spectroscopy or pulling of nucleic acids include the use of DNA as a programmable force sensor, and the analysis of RNA flexibility and drug binding to DNA.  相似文献   

5.
Development and current status of the CHARMM force field for nucleic acids.   总被引:6,自引:0,他引:6  
The CHARMM27 all-atom force field for nucleic acids represents a highly optimized model for investigations of nucleic acids via empirical force field calculations. The force field satisfactorily treats the A, B, and Z forms of DNA as well as RNA, and it also useful for nucleosides and nucleotides. In addition, it is compatible with the CHARMM force fields for proteins and lipids, allowing for simulation studies of heterogeneous systems.  相似文献   

6.
Nucleic acids are an important class of biological macromolecules that carry out a variety of cellular roles. For many functions, naturally occurring DNA and RNA molecules need to fold into precise three-dimensional structures. Due to their self-assembling characteristics, nucleic acids have also been widely studied in the field of nanotechnology, and a diverse range of intricate three-dimensional nanostructures have been designed and synthesized. Different physical terms such as base-pairing and stacking interactions, tertiary contacts, electrostatic interactions and entropy all affect nucleic acid folding and structure. Here we review general computational approaches developed to model nucleic acid systems. We focus on four key areas of nucleic acid modeling: molecular representation, potential energy function, degrees of freedom and sampling algorithm. Appropriate choices in each of these key areas in nucleic acid modeling can effectively combine to aid interpretation of experimental data and facilitate prediction of nucleic acid structure.  相似文献   

7.
We have developed a new method for mounting nucleic acids and nucleic acidprotein complexes for high-resolution electron microscopy, and have used it to characterize the interaction between ribosomal protein S1 and single-stranded nucleic acids. We find that SI unwinds most, but not all of the secondary structure present in MS2 RNA and øX174 viral DNA. The binding of S1 to DNA and RNA is not highly co-operative, and has a stoichiometry of one S1 per 10 to 15 nucleotides. We have not observed any tendency for S1 nucleic acid complexes to form aggregates in either 0·01 m-Na+ or 0·1 m-Na+. An analogous protein isolated from the 30 S ribosomal subunit of Caulobacter crescentus is indistinguishable from Escherichia coli S1 in these studies. The mono-N-ethylmaleimide derivative of E. coli S1 will bind to both MS2 RNA and øX174 viral DNA with a stoichiometry of one N-ethylmaleimide-S1 per 10 to 15 nucleotides, but will not unwind the secondary structure of either of them.  相似文献   

8.
This protocol describes the procedures for measuring nanometer distances in nucleic acids using a nitroxide probe that can be attached to any nucleotide within a given sequence. Two nitroxides are attached to phosphorothioates that are chemically substituted at specific sites of DNA or RNA. Inter-nitroxide distances are measured using a four-pulse double electron-electron resonance technique, and the measured distances are correlated to the parent structures using a Web-accessible computer program. Four to five days are needed for sample labeling, purification and distance measurement. The procedures described herein provide a method for probing global structures and studying conformational changes of nucleic acids and protein/nucleic acid complexes.  相似文献   

9.
Here we report efficient and selective postsynthesis labeling strategies, based on an advanced phosphoramidation reaction, for nucleic acids of either synthetic or enzyme-catalyzed origin. The reactions provided phosphorimidazolide intermediates of DNA or RNA which, whether reacted in one pot (one-step) or purified (two-step), were directly or indirectly phosphoramidated with label molecules. The acquired fluorophore-labeled nucleic acids, prepared from the phosphoramidation reactions, demonstrated labeling efficacy by their F/N ratio values (number of fluorophores per molecule of nucleic acid) of 0.02–1.2 which are comparable or better than conventional postsynthesis fluorescent labeling methods for DNA and RNA. Yet, PCR and UV melting studies of the one-step phosphoramidation-prepared FITC-labeled DNA indicated that the reaction might facilitate nonspecific hybridization in nucleic acids. Intrinsic hybridization specificity of nucleic acids was, however, conserved in the two-step phosphoramidation reaction. The reaction of site-specific labeling nucleic acids at the 5′-end was supported by fluorescence quenching and UV melting studies of fluorophore-labeled DNA. The two-step phosphoramidation-based, effective, and site-specific labeling method has the potential to expedite critical research including visualization, quantification, structural determination, localization, and distribution of nucleic acids in vivo and in vitro.  相似文献   

10.
At high binding densities acridine orange (AO) forms complexes with ds DNA which are insoluble in aqueous media. These complexes are characterized by high red- and minimal green-luminescence, 1:1 (dye/P) stoichiometry and resemble complexes of AO with ss nucleic acids. Formation of these complexes can be conveniently monitored by light scatter measurements. Light scattering properties of these complexes are believed to result from the condensation of nucleic acids induced by the cationic, intercalating ligands. The spectral and thermodynamic data provide evidence that AO (and other intercalating agents) induces denaturation of ds nucleic acids; the driving force of the denaturation is high affinity and cooperativity of binding of these ligands to ss nucleic acids. The denaturing effects of AO, adriamycin and ellipticine were confirmed by biochemical studies on accessibility of DNA bases (in complexes with these ligands) to the external probes. The denaturing properties of AO vary depending on the primary structure (sugar- and base-composition) of nucleic acids.  相似文献   

11.
Yan H  Tram K 《Glycoconjugate journal》2007,24(2-3):107-123
Nucleic acids bearing glycans of various structures have been under vigorous investigation in the past decade. The carbohydrate moieties of such complexes can serve as recognition sites for carbohydrate-binding proteins—lectins—and initiate receptor-mediated endocytosis. Therefore, carbohydrates can enhance cell targeting and internalization of nucleic acids that are associated with them and thus improve the bioavailability of nucleic acids as therapeutic agents. This review summarizes nucleic acid glycosylation in nature and approaches for the preparation of both non-covalently associated and covalently-linked carbohydrate-nucleic acid complexes.  相似文献   

12.
Conformational transitions of nitroxide labeled and unlabeled nucleic acids were analyzed by esr and uv spectroscopy to evaluate potential perturbation effects caused by chemical modifications of nucleic acids with spin labels. The melting temperature (Tm) determined by uv or esr melting profiles of 2 → 1 or 3 → 1 transitions is similar for labeled and unlabeled polyadenylic acid [(A)n] and polyuridylic acid [(U)n] complexes provided spin-labeled (A)n with a nitroxide to nucleotide ratio of 0.002 is used. Complexes formed with spin-labeled (A)n of greater spin-labeling extent display a noticeable perturbation of their thermal melting profiles. The studies reconfirm the existence of a low temperature esr transition at about 20 °C with calf thymus and T4 DNA duplexes spin-labeled with a nitroxide to nucleotide ratio of about 0.006. The uv melting profiles of the spin-labeled duplexes reveal no low-temperature discontinuity, but the Tm values reflecting the 2 → 1 transitions were reduced by several degrees versus those of the unlabeled duplexes. Thus, these studies suggest that with homopolymers, chemically modified to a low extent with nitroxides, the monitoring of local conformational transitions of duplexes or triplexes reflect the overall 2 → 1 or 3 → 1 transitions. In the case of the heteropolymers the possibility that the chemical modification is responsible for the low-temperature phenomenon cannot be ruled out.  相似文献   

13.
14.
Structural biology experiments and structure prediction tools have provided many high-resolution three-dimensional structures of nucleic acids. Also, molecular dynamics force field parameters have been adapted to simulating charged and flexible nucleic acid structures on microsecond time scales. Therefore, we can generate the dynamics of DNA or RNA molecules, but we still lack adequate tools for the analysis of the resulting huge amounts of data. We present MINT (Motif Identifier for Nucleic acids Trajectory) — an automatic tool for analyzing three-dimensional structures of RNA and DNA, and their full-atom molecular dynamics trajectories or other conformation sets (e.g. X-ray or nuclear magnetic resonance-derived structures). For each RNA or DNA conformation MINT determines the hydrogen bonding network resolving the base pairing patterns, identifies secondary structure motifs (helices, junctions, loops, etc.) and pseudoknots. MINT also estimates the energy of stacking and phosphate anion-base interactions. For many conformations, as in a molecular dynamics trajectory, MINT provides averages of the above structural and energetic features and their evolution. We show MINT functionality based on all-atom explicit solvent molecular dynamics trajectory of the 30S ribosomal subunit.  相似文献   

15.
Binding of recombinant prion protein with small highly structured RNAs, prokaryotic and eukaryotic prion protein mRNA pseudoknots, tRNA and polyA has been studied by the change in fluorescence anisotropy of the intrinsic tryptophan groups of the protein. The affinities of these RNAs to the prion protein and the number of sites where the protein binds to the nucleic acids do not vary appreciably although the RNAs have very different compositions and structures. The binding parameters do not depend upon pH of the solution and show a poor co-operativity. The reactants form larger nucleoprotein complexes at pH 5 compared to that at neutral pH. The electrostatic force between the protein and nucleic acids dominates the binding interaction at neutral pH. In contrast, nucleic acid interaction with the incipient nonpolar groups exposed from the structured region of the prion protein dominates the reaction at pH 5. Prion protein of a particular species forms larger complexes with prion protein mRNA pseudoknots of the same species. The structure of the pseudoknots and not their base sequences probably dominates their interaction with prion protein. Possibilities of the conversion of the prion protein to its infectious form in the cytoplasm by nucleic acids have been discussed.  相似文献   

16.
Förster resonance energy transfer (FRET) is a technique commonly used to unravel the structure and conformational changes of biomolecules being vital for all living organisms. Typically, FRET is performed using dyes attached externally to nucleic acids through a linker that complicates quantitative interpretation of experiments because of dye diffusion and reorientation. Here, we report a versatile, general methodology for the simulation and analysis of FRET in nucleic acids, and demonstrate its particular power for modelling FRET between probes possessing limited diffusional and rotational freedom, such as our recently developed nucleobase analogue FRET pairs (base–base FRET). These probes are positioned inside the DNA/RNA structures as a replacement for one of the natural bases, thus, providing unique control of their position and orientation and the advantage of reporting from inside sites of interest. In demonstration studies, not requiring molecular dynamics modelling, we obtain previously inaccessible insight into the orientation and nanosecond dynamics of the bases inside double-stranded DNA, and we reconstruct high resolution 3D structures of kinked DNA. The reported methodology is accompanied by a freely available software package, FRETmatrix, for the design and analysis of FRET in nucleic acid containing systems.  相似文献   

17.
In moving towards the simulation of larger nucleic acid assemblies over longer timescales that include more accurate representations of the environment, we are nearing the end of an era characterized by single nanosecond molecular dynamics simulation of nucleic acids. We are excited by the promise and predictability of the modeling methods, yet remain prudently cautious of sampling and force field limitations. Highlights include the accurate representation of subtle drug-DNA interactions, the detailed study of modified and unusual nucleic acid structures, insight into the influence of dynamics on the structure of DNA, and exploration of the interaction of solvent and ions with nucleic acids.  相似文献   

18.
19.
The innate immune system is important as the first line of defense to sense invading pathogens. Nucleic acids represent critical pathogen signatures that trigger a host proinflammatory immune response. Much progress has been made in understanding how DNA and RNA trigger host defense countermeasures, however, several aspects of how cytosolic nucleic acids are sensed remain unclear. This special issue reviews how the host innate immune system senses nucleic acids from Brucella abortus, Mycobacterium sp and Legionella pneumophila, viral DNA, the role of STING in DNA sensing and inflammatory diseases and the mechanism of viral RNA recognition by the small interfering RNA pathway in Drosophila melanogaster.  相似文献   

20.
Various methods for extracting nucleic acids from pollen were tested to find a suitable procedure for obtaining a pure preparation of nucleic acids uncontaminated by polysaccharides and polyphosphates without the use of ion exchangers. Extraction was carried out with perchloric acid, potassium hydroxide, ribonuclease and deoxyribonuclease, sodium tetraborate, and combinations of these. In all fractions, residues of precipitates and residues of extracted pollen matter, the quantity of RNA, DNA, proteins and concomitants,i.e. Polysaccharides and polyphosphates, was determined. The purity of preparations was checked by means of UV-spectra. The criterion of nucleic acid purity was agreement between the nucleic acid amounts calculated on the basis of measurement of absorption in UV-region, orcinol reaction and content of phosphorus. It was found that in our material only a few methods would be applicable and with great limitation, because many polysaccharides and polyphosphates appeared in nucleic acid fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号