首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Visceral Leishmaniasis is a serious human disease transmitted, in the New World, by Lutzomyia longipalpis sand flies. Natural resistance to Leishmania transmission in residents of endemic areas has been attributed to the acquisition of immunity to sand fly salivary proteins. One theoretical way to accelerate the acquisition of this immunity is to increase the density of antigen-presenting cells at the sand fly bite site. Here we describe a novel tissue platform that can be used for this purpose.

Methodology/Principal Findings

BluePort is a well-vascularized and macrophage-rich compartment induced in the subcutaneous tissue of mice via injection of agarose beads covered with Cibacron blue. We describe the sequence of inflammatory events leading to its formation and how it can be used to study the dermal response to the bite of L. longipalpis sand flies. Results presented indicate that a shift in the inflammatory response, from neutrophilic to eosinophilic, is the main histopathological feature associated with the immunity acquired through repeated exposure to the bite of sand flies, and that the BluePort tissue compartment could be used to accelerate this process. In addition, changes observed inside the BluePort parenchyma indicate that it could be used to study complex immunobiological processes, and to develop ectopic secondary lymphoid structures.

Conclusions/Significance

Understanding the characteristics of the dermal response to the bite of sand flies is a critical element of strategies to control leishmaniasis using vaccines that target salivary proteins. Finding that dermal eosinophilia is such a prominent component of the anti-salivary immunity induced by repeated exposure to sand fly bites raises one important consideration: how to avoid the immunological conflict derived from a protective Th2-driven immunity directed to sand fly saliva with a protective Th1-driven immunity directed to the parasite. The BluePort platform is an ideal tool to address experimentally this conundrum.  相似文献   

3.
Bartonella bacilliformis is a pathogenic bacterium transmitted to humans presumably by bites of phlebotomine sand flies, infection with which results in a bi-phasic syndrome termed Carrión’s disease. After constructing a low-passage GFP-labeled strain of B. bacilliformis, we artificially infected Lutzomyia verrucarum and L. longipalpis populations, and subsequently monitored colonization of sand flies by fluorescence microscopy. Initially, colonization of the two fly species was indistinguishable, with bacteria exhibiting a high degree of motility, yet still confined to the abdominal midgut. After 48h, B. bacilliformis transitioned from bacillus-shape to a non-motile, small coccoid form and appeared to be digested along with the blood meal in both fly species. Differences in colonization patterns became evident at 72h when B. bacilliformis was observed at relatively high density outside the peritrophic membrane in the lumen of the midgut in L. verrucarum, but colonization of L. longipalpis was limited to the blood meal within the intra-peritrophic space of the abdominal midgut, and the majority of bacteria were digested along with the blood meal by day 7. The viability of B. bacilliformis in L. longipalpis was assessed by artificially infecting, homogenizing, and plating for determination of colony-forming units in individual flies over a 13-d time course. Bacteria remained viable at relatively high density for approximately seven days, suggesting that L. longipalpis could potentially serve as a vector. The capacity of L. longipalpis to transmit viable B. bacilliformis from infected to uninfected meals was analyzed via interrupted feeds. No viable bacteria were retrieved from uninfected blood meals in these experiments. This study provides significant information toward understanding colonization of sand flies by B. bacilliformis and also demonstrates the utility of L. longipalpis as a user-friendly, live-vector model system for studying this severely neglected tropical disease.  相似文献   

4.

Background

The scarcity of information on the immature stages of sand flies and their preferred breeding sites has resulted in the focus of vectorial control on the adult stage using residual insecticide house-spraying. This strategy, along with the treatment of human cases and the euthanasia of infected dogs, has proven inefficient and visceral leishmaniasis continues to expand in Brazil. Identifying the breeding sites of sand flies is essential to the understanding of the vector''s population dynamic and could be used to develop novel control strategies.

Methodology/Principal finding

In the present study, an intensive search for the breeding sites of Lutzomyia longipalpis was conducted in urban and peri-urban areas of two municipalities, Promissão and Dracena, which are endemic for visceral leishmaniasis in São Paulo State, Brazil. During an exploratory period, a total of 962 soil emergence traps were used to investigate possible peridomiciliary breeding site microhabitats such as: leaf litter under tree, chicken sheds, other animal sheds and uncovered debris. A total of 160 sand flies were collected and 148 (92.5%) were L. longipalpis. In Promissão the proportion of chicken sheds positive was significantly higher than in leaf litter under trees. Chicken shed microhabitats presented the highest density of L. longipalpis in both municipalities: 17.29 and 5.71 individuals per square meter sampled in Promissão and Dracena respectively. A contagious spatial distribution pattern of L. longipalpis was identified in the emergence traps located in the chicken sheds.

Conclusion

The results indicate that chicken sheds are the preferential breeding site for L. longipalpis in the present study areas. Thus, control measures targeting the immature stages in chicken sheds could have a great effect on reducing the number of adult flies and consequently the transmission rate of Leishmania (Leishmania) infantum chagasi.  相似文献   

5.

Background

Leishmania is transmitted by female sand flies and deposited together with saliva, which contains a vast repertoire of pharmacologically active molecules that contribute to the establishment of the infection. The exposure to vector saliva induces an immune response against its components that can be used as a marker of exposure to the vector. Performing large-scale serological studies to detect vector exposure has been limited by the difficulty in obtaining sand fly saliva. Here, we validate the use of two sand fly salivary recombinant proteins as markers for vector exposure.

Methodology/principal findings

ELISA was used to screen human sera, collected in an area endemic for visceral leishmaniasis, against the salivary gland sonicate (SGS) or two recombinant proteins (rLJM11 and rLJM17) from Lutzomyia longipalpis saliva. Antibody levels before and after SGS seroconversion (n = 26) were compared using the Wilcoxon signed rank paired test. Human sera from an area endemic for VL which recognize Lu. longipalpis saliva in ELISA also recognize a combination of rLJM17 and rLJM11. We then extended the analysis to include 40 sera from individuals who were seropositive and 40 seronegative to Lu. longipalpis SGS. Each recombinant protein was able to detect anti-saliva seroconversion, whereas the two proteins combined increased the detection significantly. Additionally, we evaluated the specificity of the anti-Lu. longipalpis response by testing 40 sera positive to Lutzomyia intermedia SGS, and very limited (2/40) cross-reactivity was observed. Receiver-operator characteristics (ROC) curve analysis was used to identify the effectiveness of these proteins for the prediction of anti-SGS positivity. These ROC curves evidenced the superior performance of rLJM17+rLJM11. Predicted threshold levels were confirmed for rLJM17+rLJM11 using a large panel of 1,077 serum samples.

Conclusion

Our results show the possibility of substituting Lu. longipalpis SGS for two recombinant proteins, LJM17 and LJM11, in order to probe for vector exposure in individuals residing in endemic areas.  相似文献   

6.

Background

Canine Visceral Leishmaniasis (CVL) is a zoonotic disease caused by Leishmania infantum, transmitted by the bite of Lutzomyia longipalpis sand flies. Dogs are the main domestic reservoir of the parasite. The establishment of an experimental model that partially reproduces natural infection in dogs is very important to test vaccine candidates, mainly regarding those that use salivary proteins from the vector and new therapeutical approaches.

Methodology/Principal Findings

In this report, we describe an experimental infection in dogs, using intradermal injection of Leishmania infantum plus salivary gland homogenate (SGH) of Lutzomyia longipalpis. Thirty-five dogs were infected with 1×107 parasites combined with five pairs of Lutzomyia longipalpis salivary glands and followed for 450 days after infection and clinical, immunological and parasitological parameters were evaluated. Two hundred and ten days after infection we observed that 31,4% of dogs did not display detectable levels of anti-Leishmania antibodies but all presented different numbers of parasites in the lymph nodes. Animals with a positive xenodiagnosis had at least 3,35×105 parasites in their lymph nodes. An increase of IFN-γ and IL-10 levels was detected during infection. Twenty two percent of dogs developed symptoms of CVL during infection.

Conclusion

The infection model described here shows some degree of similarity when compared with naturally infected dogs opening new perspectives for the study of CVL using an experimental model that employs the combination of parasites and sand fly saliva both present during natural transmission.  相似文献   

7.

Background

Although leishmaniases are regarded as serious public health issues in the State of Tocantins, as consequence of the impact of environmental changes, small advances in taxonomic and ecological studies of Phlebotominae fauna are taking place in this state. The present study aimed to improve the knowledge about the sand flies, as well as about the aspects of the bioecology of leishmaniases vectors from Porto Nacional, a city that was directly impacted by the construction of Luís Eduardo Magalhães Hydroelectric Plant (HEP – Lajeado).

Methodology/Principal Findings

Sand flies were collected monthly using CDC light traps and Shannon traps for a period of 40 consecutive months, at different monitoring stations, where 7162 specimens were collected and 48 species were detected. Among the species found, 22 are first records in the state and seven are considered important vectors of leishmaniases. Lutzomyia longipalpis, the vector of American Visceral Leishmaniasis (AVL) showed higher frequency in urban compared to rural areas, and Nyssomyia whitmani, the vector of American Cutaneous Leishmaniasis (ACL), predominated in rural areas. The frequency and habits of sand fly vectors are discussed considering environmental characteristics and climatic factors.

Conclusions/Significance

The construction of dams requires a great amount of labor, therefore attracting people from elsewhere. Increased migration, without adequate structure, leads to bad living conditions in new and unplanned settlements. It also leads to deforestation associated with environmental impacts, which can facilitate the spread of leishmaniases.This study discusses the importance of Lu. longipalpis and Ny. whitmani on the transmission cycles of leishmaniases in Porto Nacional and the record of Bi. flaviscutellata in periurban area of the city.  相似文献   

8.
9.

Background

Leishmaniasis remains a global health problem because of the substantial holes that remain in our understanding of sand fly ecology and the failure of traditional vector control methods. The specific larval food source is unknown for all but a few sand fly species, and this is particularly true for the vectors of Leishmania parasites. We provide methods and materials that could be used to understand, and ultimately break, the transmission cycle of zoonotic cutaneous leishmaniasis.

Methods and Findings

We demonstrated in laboratory studies that analysis of the stable carbon and nitrogen isotopes found naturally in plant and animal tissues was highly effective for linking adult sand flies with their larval diet, without having to locate or capture the sand fly larvae themselves. In a field trial, we also demonstrated using this technique that half of captured adult sand flies had fed as larvae on rodent feces. Through the identification of rodent feces as a sand fly larval habitat, we now know that rodent baits containing insecticides that have been shown in previous studies to pass into the rodents'' feces and kill sand fly larvae also could play a future role in sand fly control. In a second study we showed that rubidium incorporated into rodent baits could be used to demonstrate the level of bloodfeeding by sand flies on baited rodents, and that the elimination of sand flies that feed on rodents can be achieved using baits containing an insecticide that circulates in the blood of baited rodents.

Conclusions

Combined, the techniques described could help to identify larval food sources of other important vectors of the protozoa that cause visceral or dermal leishmaniasis. Unveiling aspects of the life cycles of sand flies that could be targeted with insecticides would guide future sand fly control programs for prevention of leishmaniasis.  相似文献   

10.

Background

As the reality of eliminating human African trypanosomiasis (HAT) by 2020 draws closer, the need to detect and identify the remaining areas of transmission increases. Here, we have explored the feasibility of using commercially available LAMP kits, designed to detect the Trypanozoon group of trypanosomes, as a xenomonitoring tool to screen tsetse flies for trypanosomes to be used in future epidemiological surveys.

Methods and Findings

The DNA extraction method was simplified and worked with the LAMP kits to detect a single positive fly when pooled with 19 negative flies, and the absolute lowest limit of detection that the kits were able to work at was the equivalent of 0.1 trypanosome per ml. The DNA from Trypanosoma brucei brucei could be detected six days after the fly had taken a blood meal containing dead trypanosomes, and when confronted with a range of non-target species, from both laboratory-reared flies and wild-caught flies, the kits showed no evidence of cross-reacting.

Conclusion

We have shown that it is possible to use a simplified DNA extraction method in conjunction with the pooling of tsetse flies to decrease the time it would take to screen large numbers of flies for the presence of Trypanozoon trypanosomes. The use of commercially-available LAMP kits provides a reliable and highly sensitive tool for xenomonitoring and identifying potential sleeping sickness transmission sites.  相似文献   

11.

Background

The Leishmania protozoan parasites cause devastating human diseases. Leishmania have been considered to replicate clonally, without genetic exchange. However, an accumulation of evidence indicates that there are inter-specific and intra-specific hybrids among natural populations. The first and so far only experimental proof of genetic exchange was obtained in 2009 when double drug resistant Leishmania major hybrids were produced by co-infecting sand flies with two strains carrying different drug resistance markers. However, the location and timing of hybridisation events in sand flies has not been described.

Methodology/Principal Findings

Here we have co-infected Phlebotomus perniciosus and Lutzomyia longipalpis with transgenic promastigotes of Leishmania donovani strains carrying hygromycin or neomycin resistance genes and red or green fluorescent markers. Fed females were dissected at different times post bloodmeal (PBM) and examined by fluorescent microscopy or fluorescent activated cell sorting (FACS) followed by confocal microscopy. In mixed infections strains LEM3804 and Gebre-1 reached the cardia and stomodeal valves more rapidly than strains LEM4265 and LV9. Hybrids unequivocally expressing both red and green fluorescence were seen in single flies of both vectors tested, co-infected with LEM4265 and Gebre-1. The hybrids were present as short (procyclic) promastigotes 2 days PBM in the semi-digested blood in the endoperitrophic space. Recovery of a clearly co-expressing hybrid was also achieved by FACS. However, hybrids could not sustain growth in vitro.

Conclusions/Significance

For the first time, we observed L. donovani hybrids in the sand fly vector, 2 days PBM and described the morphological stages involved. Fluorescence microscopy in combination with FACS allows visualisation and recovery of the progeny of experimental crosses but on this occasion the hybrids were not viable in vitro. Nevertheless, genetic exchange in L. donovani has profound epidemiological significance, because it facilitates the emergence and spread of new phenotypic traits.  相似文献   

12.

Background

Phlebotomine sand flies are the vectors of the leishmaniases, parasitic diseases caused by Leishmania spp. Little is known about the prevalence and diversity of sand fly microflora colonizing the midgut or the cuticle. Particularly, there is little information on the fungal diversity. This information is important for development of vector control strategies.

Methodology/Principal Findings

Five sand fly species: Phlebotomus papatasi, P. sergenti, P. kandelakii, P. perfiliewi and P. halepensis were caught in Bileh Savar and Kaleybar in North-Western Iran that are located in endemic foci of visceral leishmaniasis. A total of 35 specimens were processed. Bacterial and fungal strains were identified by routine microbiological methods. We characterized 39 fungal isolates from the cuticle and/or the midgut. They belong to six different genera including Penicillium (17 isolates), Aspergillus (14), Acremonium (5), Fusarium (1), Geotrichum (1) and Candida (1). We identified 33 Gram-negative bacteria: Serratia marcescens (9 isolates), Enterobacter cloacae (6), Pseudomonas fluorescens (6), Klebsiella ozaenae (4), Acinetobacter sp. (3), Escherichia coli (3), Asaia sp. (1) and Pantoea sp. (1) as well as Gram-positive bacteria Bacillus subtilis (5) and Micrococcus luteus (5) in 10 isolates.

Conclusion/Significance

Our study provides new data on the microbiotic diversity of field-collected sand flies and for the first time, evidence of the presence of Asaia sp. in sand flies. We have also found a link between physiological stages (unfed, fresh fed, semi gravid and gravid) of sand flies and number of bacteria that they carry. Interestingly Pantoea sp. and Klebsiella ozaenae have been isolated in Old World sand fly species. The presence of latter species on sand fly cuticle and in the female midgut suggests a role for this arthropod in dissemination of these pathogenic bacteria in endemic areas. Further experiments are required to clearly delineate the vectorial role (passive or active) of sand flies.  相似文献   

13.

Background

The binding of Leishmania promastigotes to the midgut epithelium is regarded as an essential part of the life-cycle in the sand fly vector, enabling the parasites to persist beyond the initial blood meal phase and establish the infection. However, the precise nature of the promastigote stage(s) that mediate binding is not fully understood.

Methodology/Principal Findings

To address this issue we have developed an in vitro gut binding assay in which two promastigote populations are labelled with different fluorescent dyes and compete for binding to dissected sand fly midguts. Binding of procyclic, nectomonad, leptomonad and metacyclic promastigotes of Leishmania infantum and L. mexicana to the midguts of blood-fed, female Lutzomyia longipalpis was investigated. The results show that procyclic and metacyclic promastigotes do not bind to the midgut epithelium in significant numbers, whereas nectomonad and leptomonad promastigotes both bind strongly and in similar numbers. The assay was then used to compare the binding of a range of different parasite species (L. infantum, L. mexicana, L. braziliensis, L. major, L. tropica) to guts dissected from various sand flies (Lu. longipalpis, Phlebotomus papatasi, P. sergenti). The results of these comparisons were in many cases in line with expectations, the natural parasite binding most effectively to its natural vector, and no examples were found where a parasite was unable to bind to its natural vector. However, there were interesting exceptions: L. major and L. tropica being able to bind to Lu. longipalpis better than L. infantum; L. braziliensis was able to bind to P. papatasi as well as L. major; and significant binding of L. major to P. sergenti and L. tropica to P. papatasi was observed.

Conclusions/Significance

The results demonstrate that Leishmania gut binding is strictly stage-dependent, is a property of those forms found in the middle phase of development (nectomonad and leptomonad forms), but is absent in the early blood meal and final stages (procyclic and metacyclic forms). Further they show that although gut binding may be necessary for parasite establishment, in several vector-parasite pairs the specificity of such in vitro binding alone is insufficient to explain overall vector specificity. Other significant barriers to development must exist in certain refractory Leishmania parasite-sand fly vector combinations. A re-appraisal of the specificity of the Leishmania-sand fly relationship is required.  相似文献   

14.

Background

Phlebotomine sand flies are blood-sucking insects that can transmit Leishmania parasites. Hosts bitten by sand flies develop an immune response against sand fly salivary antigens. Specific anti-saliva IgG indicate the exposure to the vector and may also help to estimate the risk of Leishmania spp. transmission. In this study, we examined the canine antibody response against the saliva of Phlebotomus perniciosus, the main vector of Leishmania infantum in the Mediterranean Basin, and characterized salivary antigens of this sand fly species.

Methodology/Principal Findings

Sera of dogs bitten by P. perniciosus under experimental conditions and dogs naturally exposed to sand flies in a L. infantum focus were tested by ELISA for the presence of anti-P. perniciosus antibodies. Antibody levels positively correlated with the number of blood-fed P. perniciosus females. In naturally exposed dogs the increase of specific IgG, IgG1 and IgG2 was observed during sand fly season. Importantly, Leishmania-positive dogs revealed significantly lower anti-P. perniciosus IgG2 compared to Leishmania-negative ones. Major P. perniciosus antigens were identified by western blot and mass spectrometry as yellow proteins, apyrases and antigen 5-related proteins.

Conclusions

Results suggest that monitoring canine antibody response to sand fly saliva in endemic foci could estimate the risk of L. infantum transmission. It may also help to control canine leishmaniasis by evaluating the effectiveness of anti-vector campaigns. Data from the field study where dogs from the Italian focus of L. infantum were naturally exposed to P. perniciosus bites indicates that the levels of anti-P. perniciosus saliva IgG2 negatively correlate with the risk of Leishmania transmission. Thus, specific IgG2 response is suggested as a risk marker of L. infantum transmission for dogs.  相似文献   

15.

Background

Old world Zoonotic Cutaneous Leishmaniasis (ZCL) is a vector-borne human disease caused by Leishmania major, a unicellular eukaryotic parasite transmitted by pool blood-feeding sand flies mainly to wild rodents, such as Psammomys obesus. The human beings who share the rodent and sand fly habitats can be subverted as both sand fly blood resource. ZCL is endemic in the Middle East, Central Asia, Subsaharan and North Africa. Like other vector-borne diseases, the incidence of ZCL displayed by humans varies with environmental and climate factors. However, so far no study has addressed the temporal dynamics or the impact of climate factors on the ZCL risk.

Principal Findings

Seasonality during the same epidemiologic year and interval between ZCL epidemics ranging from 4 to 7 years were demonstrated. Models showed that ZCL incidence is raising i) by 1.8% (95% confidence intervals CI:0.0–3.6%) when there is 1 mm increase in the rainfall lagged by 12 to 14 months ii) by 5.0% (95% CI: 0.8–9.4%) when there is a 1% increase in humidity from July to September in the same epidemiologic year.

Conclusion/Significance

Higher rainfall is expected to result in increased density of chenopods, a halophytic plant that constitutes the exclusive food of Psammomys obesus. Consequently, following a high density of Psammomys obesus, the pool of Leishmania major transmissible from the rodents to blood-feeding female sand flies could lead to a higher probability of transmission to humans over the next season. These findings provide the evidence that ZCL is highly influenced by climate factors that could affect both Psammomys obesus and the sand fly population densities.  相似文献   

16.

Background

Recombinant KSAC and L110f are promising Leishmania vaccine candidates. Both antigens formulated in stable emulsions (SE) with the natural TLR4 agonist MPL® and L110f with the synthetic TLR4 agonist GLA in SE protected BALB/c mice against L. major infection following needle challenge. Considering the virulence of vector-transmitted Leishmania infections, we vaccinated BALB/c mice with either KSAC+GLA-SE or L110f+GLA-SE to assess protection against L. major transmitted via its vector Phlebotomus duboscqi.

Methods

Mice receiving the KSAC or L110f vaccines were challenged by needle or L. major-infected sand flies. Weekly disease progression and terminal parasite loads were determined. Immunological responses to KSAC, L110f, or soluble Leishmania antigen (SLA) were assessed throughout vaccination, three and twelve weeks after immunization, and one week post-challenge.

Results

Following sand fly challenge, KSAC-vaccinated mice were protected while L110f-vaccinated animals showed partial protection. Protection correlated with the ability of SLA to induce IFN-γ-producing CD4+CD62LlowCCR7low effector memory T cells pre- and post-sand fly challenge.

Conclusions

This study demonstrates the protective efficacy of KSAC+GLA-SE against sand fly challenge; the importance of vector-transmitted challenge in evaluating vaccine candidates against Leishmania infection; and the necessity of a rapid potent Th1 response against Leishmania to attain true protection.  相似文献   

17.

Background

Sand flies are hematophagous arthropods that act as vectors of Leishmania parasites. When hosts are bitten they develop cellular and humoral responses against sand fly saliva. A positive correlation has been observed between the number of bites and antibody levels indicating that anti-saliva antibody response can be used as marker of exposure to sand flies. Little is known about kinetics of antibodies against Phlebotomus perniciosus salivary gland homogenate (SGH) or recombinant salivary proteins (rSP). This work focused on the study of anti-P. perniciosus saliva antibodies in sera of mice and rabbits that were experimentally exposed to the bites of uninfected sand flies.

Methodology/Principal Findings

Anti-saliva antibodies were evaluated by ELISA and Western blot. In addition, antibody levels against two P. perniciosus rSP, apyrase rSP01B and D7 related protein rSP04 were determined in mice sera. Anti-saliva antibody levels increased along the immunizations and correlated with the number of sand fly bites. Anti-SGH antibody levels were detected in sera of mice five weeks after exposure, and persisted for at least three months. Anti-apyrase rSP01B antibodies followed similar kinetic responses than anti-SGH antibodies while rSP04 showed a delayed response and exhibited a greater variability among sera of immunized mice. In rabbits, anti-saliva antibodies appeared after the second week of exposure and IgG antibodies persisted at high levels, even 7 months post-exposure.

Conclusions/Significance

Our results contributed to increase the knowledge on the type of immune response P. perniciosus saliva and individual proteins elicited highlighting the use of rSP01B as an epidemiological marker of exposure. Anti-saliva kinetics in sera of experimentally bitten rabbits were studied for the first time. Results with rabbit model provided useful information for a better understanding of the anti-saliva antibody levels found in wild leporids in the human leishmaniasis focus in the Madrid region, Spain.  相似文献   

18.
19.

Background

Phlebotomine sand flies are blood-sucking insects transmitting Leishmania parasites. In bitten hosts, sand fly saliva elicits specific immune response and the humoral immunity was shown to reflect the intensity of sand fly exposure. Thus, anti-saliva antibodies were suggested as the potential risk marker of Leishmania transmission. In this study, we examined the long-term kinetics and persistence of anti-Phlebotomus papatasi saliva antibody response in BALB/c and C57BL/6 mice. We also tested the reactivity of mice sera with P. papatasi salivary antigens and with the recombinant proteins.

Methodology/Principal Findings

Sera of BALB/c and C57BL/6 mice experimentally bitten by Phlebotomus papatasi were tested by ELISA for the presence of anti-saliva IgE, IgG and its subclasses. We detected a significant increase of specific IgG and IgG1 in both mice strains and IgG2b in BALB/c mice that positively correlated with the number of blood-fed P. papatasi females. Using western blot and mass spectrometry we identified the major P. papatasi antigens as Yellow-related proteins, D7-related proteins, antigen 5-related proteins and SP-15-like proteins. We therefore tested the reactivity of mice sera with four P. papatasi recombinant proteins coding for most of these potential antigens (PpSP44, PpSP42, PpSP30, and PpSP28). Each mouse serum reacted with at least one of the recombinant protein tested, although none of the recombinant proteins were recognized by all sera.

Conclusions

Our data confirmed the concept of using anti-sand fly saliva antibodies as a marker of sand fly exposure in Phlebotomus papatasi–mice model. As screening of specific antibodies is limited by the availability of salivary gland homogenate, utilization of recombinant proteins in such studies would be beneficial. Our present work demonstrates the feasibility of this implementation. A combination of recombinant salivary proteins is recommended for evaluation of intensity of sand fly exposure in endemic areas and for estimation of risk of Leishmania transmission.  相似文献   

20.

Background

Leishmania major and an uncharacterized species have been reported from human patients in a cutaneous leishmaniasis (CL) outbreak area in Ghana. Reports from the area indicate the presence of anthropophilic Sergentomyia species that were found with Leishmania DNA.

Methodology/Principal Findings

In this study, we analyzed the Leishmania DNA positive sand fly pools by PCR-RFLP and ITS1 gene sequencing. The trypanosome was determined using the SSU rRNA gene sequence. We observed DNA of L. major, L. tropica and Trypanosoma species to be associated with the sand fly infections. This study provides the first detection of L. tropica DNA and Trypanosoma species as well as the confirmation of L. major DNA within Sergentomyia sand flies in Ghana and suggests that S. ingrami and S. hamoni are possible vectors of CL in the study area.

Conclusions/Significance

The detection of L. tropica DNA in this CL focus is a novel finding in Ghana as well as West Africa. In addition, the unexpected infection of Trypanosoma DNA within S. africana africana indicates that more attention is necessary when identifying parasitic organisms by PCR within sand fly vectors in Ghana and other areas where leishmaniasis is endemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号