首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Iron is an important nutrient in N2-fixing legume root nodules. Iron supplied to the nodule is used by the plant for the synthesis of leghemoglobin, while in the bacteroid fraction, it is used as an essential cofactor for the bacterial N2-fixing enzyme, nitrogenase, and iron-containing proteins of the electron transport chain. The supply of iron to the bacteroids requires initial transport across the plant-derived peribacteroid membrane, which physically separates bacteroids from the infected plant cell cytosol. In this study, we have identified Glycine max divalent metal transporter 1 (GmDmt1), a soybean homologue of the NRAMP/Dmt1 family of divalent metal ion transporters. GmDmt1 shows enhanced expression in soybean root nodules and is most highly expressed at the onset of nitrogen fixation in developing nodules. Antibodies raised against a partial fragment of GmDmt1 confirmed its presence on the peribacteroid membrane (PBM) of soybean root nodules. GmDmt1 was able to both rescue growth and enhance 55Fe(II) uptake in the ferrous iron transport deficient yeast strain (fet3fet4). The results indicate that GmDmt1 is a nodule-enhanced transporter capable of ferrous iron transport across the PBM of soybean root nodules. Its role in nodule iron homeostasis to support bacterial nitrogen fixation is discussed.  相似文献   

2.
3.
共生根瘤的固氮效率受外界氮素的严格调控。除固氮酶活性外,豆血红蛋白(Lb)浓度亦是反应固氮能力的重要指标。为明确氮水平对生物固氮作用的影响,以大豆(Glycine max)为材料,在低氮(0.53 mmol·L–1)条件下接种根瘤菌,30天后再进行高氮(5.3、10、20、30和40 mmol·L–1)处理7天,分析L...  相似文献   

4.
Expression of Bradyrhizobium japonicum wild-type strain USDA110 nirK , norC and nosZ denitrification genes in soybean root nodules was studied by in situ histochemical detection of β -galactosidase activity. Similarly, PnirK- lacZ , PnorC- lacZ , and PnosZ- lacZ fusions were also expressed in bacteroids isolated from root nodules. Levels of β -galactosidase activity were similar in both bacteroids and nodule sections from plants that were solely N2-dependent or grown in the presence of 4 m M KNO3. These findings suggest that oxygen, and not nitrate, is the main factor controlling expression of denitrification genes in soybean nodules. In plants not amended with nitrate, B. japonicum mutant strains GRK308, GRC131, and GRZ25, that were altered in the structural nirK , norC and nosZ genes, respectively, showed a wild-type phenotype with regard to nodule number and nodule dry weight as well as plant dry weight and nitrogen content. In the presence of 4 m M KNO3, plants inoculated with either GRK308 or GRC131 showed less nodules, and lower plant dry weight and nitrogen content, relative to those of strains USDA110 and GRZ25. Taken together, the present results revealed that although not essential for nitrogen fixation, mutation of either the structural nirK or norC genes encoding respiratory nitrite reductase and nitric oxide reductase, respectively, confers B. japonicum reduced ability for nodulation in soybean plants grown with nitrate. Furthermore, because nodules formed by each the parental and mutant strains exhibited nitrogenase activity, it is possible that denitrification enzymes play a role in nodule formation rather than in nodule function.  相似文献   

5.
不同花生品种根瘤固氮特点及其与产量的关系   总被引:1,自引:0,他引:1  
花生根系着生根瘤,能够直接利用大气中的氮气作为氮源,在花生氮素供应中占有举足轻重的地位.而有关根瘤高效固氮的机理研究甚少.本研究在盆栽条件下,利用15N示踪技术,研究了19个花生品种根瘤固氮特点及其与产量的关系.结果表明: 不同品种根瘤数量、鲜质量、内含物质和固氮量等指标品种间存在显著差异.根瘤数量和鲜质量变异幅度分别为每盆170.59~696.15个和0.83~3.74 g,变异系数分别为36.1%和41.1%;豆血红蛋白含量和固氮酶活性变异幅度分别为每盆15.51~23.23 mg和2.75~20.46 μmol C2H4·h-1,变异系数分别为13.1%和57.2%,后者明显高于前者,表明固氮酶活性除受豆血红蛋白含量影响外,同时受到其他因素的影响.根瘤固氮和全氮积累量变异幅度分别为每盆0.71~1.82和2.16~3.72 g,变异系数分别为21.6%和12.9%,前者明显高于后者,表明花生根瘤固氮不足时,其他氮源在一定程度上能自动补偿根瘤留下的匮缺.花生以根瘤固氮为主,供氮比例平均占总氮量的2/5以上,最高可达50%,培育高供氮比例的品种,可作为花生减氮栽培的途径之一.上述指标中,除根瘤数量外,其余指标间以及这些指标与产量均呈极显著正相关,表明根瘤固氮生理指标与根瘤供氮能力及最终产量密切相关,提高这些指标有助于同时实现高产和化肥减施.  相似文献   

6.
Legumes can control the number of symbiotic nodules that form on their roots, thus balancing nitrogen assimilation and energy consumption. Two major pathways participate in nodulation: the Nod factor(NF)signaling pathway which involves recognition of rhizobial bacteria by root cells and promotion of nodulation, and the autoregulation of nodulation(AON) pathway which involves long-distance negative feedback between roots and shoots. Although a handful of genes have a clear role in the maintenance of nodule number, additional unknown factors may also be involved in this process. Here, we identify a novel function for a Lotus japonicus ALOG(Arabidopsis LSH1 and Oryza G1) family member, LjALOG1,involved in positively regulating nodulation. LjALOG1 expression increased substantially after inoculation with rhizobia, with high levels of expression in whole nodule primordia and in the base of developing nodules. The ljalog1 mutants, which have an insertion of the LORE1 retroelement in LjALOG1, had significantly fewer nodules compared with wild type, along with increased expression of LjCLE-RS1(L. japonicus CLE Root Signal 1), which encodes a nodulation suppressor in the AON pathway. In summary,our findings identified a novel factor that participates in controlling nodulation, possibly by suppressing the AON pathway.  相似文献   

7.
A clone of Alnus incana (L.) Moench was grown in symbiosis with a local source of Frankia or with Frankia Ar14. Seven to 9-week-old plants were given 20 m M NH4Cl (20 m M KCl = control) for 3 days. Nitrogenase activity of intact plants decreased gradually within the 3 days of treatment to about 10% of the initial rates. Hydrogen evolution in air and total nitrogenase activity responded similarly to the treatment. Relative efficiency of nitrogenase thus remained the same throughout the study period. Control plants were not affected. Measurements of nitrogenase activity in root nodule homogenates (in vitro measurements) indicated loss of active nitrogenase rather than shortage of energy for nitrogenase activity in Frankia from ammonium-treated plants. Shoots were exposed to 14CO2 and translocation of 14C to Frankia vesicle clusters prepared from root nodules was studied. Frankia vesicle clusters from ammonium-treated plants contained about half as much 14C as those of control plants during all 3 days studied. One explanation for the observed effects is that a reduced supply of carbon to Frankia vesicles in the root nodules caused a reduced metabolic rate, including reduced protein synthesis and synthesis of nitrogenase.  相似文献   

8.
Root nodule ontogeny was followed in different parts of the root system of field peas (Pisum sativum L. cv. Century) to investigate the contribution to total nitrogen fixation by different nodule subpopulations. Seed-inoculated plants were grown to maturity in controlled-environment growth chambers. In a flow-through system nitrogenase activity (H2-evolution in air) and nodulated-root respiration (net CO2-evolution) were measured weekly or biweekly in different parts (top and mid) of the root system. Root nodule extracts were assayed for total soluble cytosolic protein, total heme, proteolytic capacity (at pH 7.0), soluble carbohydrates and starch. Total nitrogenase activity and nodule respiration were higher in the top zone, which was explained by differences in root and nodule mass. Nodule specific nitrogenase activity was similar in both zones, and gradually declined throughout the experiment. No differences were found between nodule subpopulations in the dry-matter specific concentrations of glucose, fructose, sucrose or starch. Neither did nodule concentrations of protein or leghemoglobin differ between the zones. Throughout reproductive growth, no decline was found in total or nodule specific nitrogenase activity, in any of the nodule subpopulations. Growth of the root nodules continued throughout the experiment, though growth of shoot and roots had ceased. The data gives no support for carbohydrate limitation in root nodules during pod-filling, since nodule respiration remained high, the concentration of soluble carbohydrates increased significantly, and the amount of starch was not reduced. We conclude that when this symbiosis is grown under controlled conditions, nitrogenase activity in nodules sub-sampled from the crown part of the root system is representative for the whole nodule population.  相似文献   

9.
The effect of genetic factors in Rhizobium on host plant biomass production and on the carbon costs of N2 fixation in pea root nodules was studied. Nine strains of Rhizobium leguminosarum were constructed, each containing one of three symbiotic plasmids in combination with one of three different genomic backgrounds. The resulting strains were tested in symbiosis with plants of Pisum sativum using a flow-through apparatus in which nodule nitrogenase activity and respiration were measured simultaneously under steady state conditions. Nodules formed by strains containing the background of JI6015 had the lowest carbon costs of N2 fixation (7.10–8.10 μmol C/μmol N2), but shoot dry weight of those plants was also smaller than that of plants nodulated by strains with the background of B151 or JI8400. Nodules formed by these two strain types had carbon costs of N2 fixation varying between 11.26 and 13.95 μmol C/μmol N2. The effect of symbiotic plasmids on the carbon costs was relatively small. A time-course experiment demonstrated that nodules formed by a strain derived from JI6015 were delayed in the onset of nitrogenase activity and had a lower rate of activity compared to nodules induced by a strain with the background of B151. The relationship between nitrogenase activity, carbon costs of N2 fixation and host plant biomass production is discussed.  相似文献   

10.
The purification and characterization of trehalase from common bean nodules as well as the role of this enzyme on growth, nodulation nitrogen fixation by examining the effects of the trehalase inhibitor validamycin A, was studied. Validamycin A did not affect plant and nodule mass, neither root trehalase and nitrogenase activity; however this treatment applied at the time of sowing increased nodule number about 16% and decreased nodule trehalase activity (16-fold) and the size of nodules. These results suggest that nodule trehalase activity of Phaseolus vulgaris could be involved in nodule formation and development. In addition, acid trehalase (EC 3.2.1.28) was purified from root nodules by fractionating ammonium sulfate, column chromatography on DEAE-sepharose and sephacryl S-300, and finally on native polyacrylamide gel electrophoresis. The purified homogeneous preparation of native acid trehalase exhibited a molecular mass of 42 and 45 kDa on SDS-PAGE. The enzyme has the optimum pH 3.9, Km of 0.109 mM, Vmax of 3630 nkat mg-1 protein and is relatively heat stable. Besides trehalose, it shows maximal activity with sucrose and maltose and, to a lesser degree melibiose, cellobiose and raffinose, and it does not hydrolyze on lactose and turanose. Acid trehalase was activated by Na+, Mn2+, Mg2+, Li+, Co2+, K+ and inhibited by Fe3+, Hg+ and EDTA.  相似文献   

11.
Several beta-proteobacteria have been isolated from legume root nodules and some of these are thought to be capable of nodulating and fixing N2. However, in no case has there been detailed studies confirming that they are the active symbionts. Here, Ralstonia taiwanensis LMG19424, which was originally isolated from Mimosa pudica nodules, was transformed to carry the green fluorescent protein (gfp) reporter gene before being used to inoculate axenically-grown seedlings of M. pudica and M. diplotricha. Plants were harvested at various intervals for 56 days after inoculation, then examined for evidence of infection and nodule formation. Nodulation of both Mimosa spp. was abundant, and acetylene reduction assays confirmed that nodules had nitrogenase activity. Confocal laser scanning microscopy (CLSM) showed that fresh M. pudica nodules with nitrogenase activity had infected cells containing bacteroids expressing gfp. In parallel, fixed and embedded nodules from both Mimosa spp. were sectioned for light and electron microscopy, followed by immunogold labeling with antibodies raised against gfp and nitrogenase Fe (nifH) protein. Significant immunolabeling with these antibodies confirmed that R. taiwanensis LMG19424 is an effective N2-fixing symbiont of Mimosa spp. Both species were infected via root hairs and, in all respects, the nodule ontogeny and development was similar to that described for other mimosoid legumes. The nodules were indeterminate with a persistent meristem, an invasion zone containing host cells being invaded via prominent infection threads, and an N2-fixing zone with infected cells containing membrane-bound symbiosomes.  相似文献   

12.
Carbon and nitrogen partitioning was examined in a wild-type and a nitrate reductase-deficient mutant (A317) of Pisum sativum L. (ev. Juneau), effectively inoculated with two strains of Rhizobium leguminosarum (128C23 and 128C54) and grown hydroponically in medium without nitrogen for 21 days, followed by a further 7 days in medium without and with 5 mM NH4NO3. In wild-type symbioses the application of NH4NO3 significantly reduced nodule growth, nitrogenase (EC 1.7.99.2) activity, nodule carbohydrates (soluble sugars and starch) and allocation of [14C]-labelled (NO3, NH4+, amino acids) in roots. In nodules, there was a decline in amino acids together with an increase in inorganic nitrogen concentration. In contrast, symbioses involving A317 exhibited no change in nitrogenase activity or nodule carbohydrates, and the concentrations of all nitrogenous solutes measured (including asparagine) in roots and nodules were enhanced. Photosynthate allocation to the nodule was reduced in the 128C23 symbiosis. Nitrite accumulation was not detected in any case. These data cannot be wholly explained by either the carbohydrate deprivation hypothesis or the nitrite hypothesis for the inhibition of symbiotic nitrogen fixation by combined nitrogen. Our result with A317 also provided evidence against the hypothesis that NO3 and NH4+ or its assimilation products exert a direct effect on nitrogenase activity. It is concluded that more than one legume host and Rhizobium strain must be studied before generalizations about Rhizobium /legume interactions are made.  相似文献   

13.
The effects of NH4NO3 on the development of root nodules of Pisum sativum after infection with Rhizobium leguminosarum (strain PRE) and on the nitrogenase activity of the bacteroids in the nodule tissue were studied. The addition of NH4NO3 decreased the nitrogenase activity measured on intact nodules. This reduction of nitrogen fixation did not result from a reduced number of bacteroids or a decreased amount of bacteroid proteins per gram of nodule. The synthesis of nitrogenase, measured as the relative amount of incorporation of [35S]sulfate into the components I and II of nitrogenase was similarly not affected. The addition of NH4NO3 decreased the amount of leghemoglobin in the nodules and there was a quantitative correlation between the leghemoglobin content and the nitrogen-fixing capacity of the nodules. The conclusion is that the decrease of nitrogen-fixing capacity is caused by a decrease of the leghemoglobin content of the root nodules and not by repression of the nitrogenase synthesis.  相似文献   

14.
Legumes have the ability to form root nodules that fix atmospheric nitrogen through a symbiotic interaction with nitrogen-fixing bacteria. As a first step in dissecting the molecular process of nodulation, proteome reference maps of soybean roots and nodules were constructed. Time course analysis revealed that the transition from root to nodule was accompanied with downregulation of defense-response related proteins, including Mn-superoxide dismutase, peroxidase (Prx), PR10, and stress-induced protein, leading to the initiation of a symbiotic interaction between the two partners. Following nitrogenase biosynthesis, the host plant cooperated with the rhizobia to fix atmospheric nitrogen under microaerobic conditions via expression of leghemoglobins and antioxidant proteins. Comparative proteome analysis indicated lower expression of malate dehydrogenase (MDH), leghemoglobins and nitrogenase in the nodule development of the supernodulation mutant, SS2-2, as compared to the wild type, indicating that SS2-2 forms functionally immature nodules in higher numbers with the lower activity of nitrogen fixation.  相似文献   

15.
The permeability (P) of the gaseous diffusion barrier in the nodules of soybean [Glycine max (L.) Merr.] decreases when water deficits are extended over a 7 to 10 d period. The mechanism controlling P changes is unclear, but may result from the release of water to intercellular pathways, and an associated change in the nodule water potential. The purpose of these experiments was to impose water deficit treatments rapidly in order to determine the early sequence of the responses of nodule water potential and nodule gas exchange without the complications that arise from long-term water deficit treatments. A vertical, split-root system was used to separate nodule drying effects from plant water deficits by replacing humidified air that was passed over upper root nodules in well-watered plants with dry air, or by replacing the nutrient solution that surrounded lower roots with -1.0 MPa polyethylene glycol (PEG) solution, or by a combination of the dry air and PEG treatments. The PEG treatment caused large decreases in both the components of nodule water potential and nodule relative water content, but there was no indication that these factors had immediate, direct effects on either nitrogenase activity or P. After 7 h of the PEG treatment a significant decrease in nitrogenase activity was found but no decrease in P was detected. These results indicate that changes in nitrogenase activity in response to water deficits precede decreases in P. Exposure of nodules to dry air in well-watered plants had no significant effect on either nitrogenase activity or P during the 7 h treatment.  相似文献   

16.
Legumes have the ability to form root nodules that fix atmospheric nitrogen through a symbiotic interaction with nitrogen-fixing bacteria. As a first step in dissecting the molecular process of nodulation, proteome reference maps of soybean roots and nodules were constructed. Time course analysis revealed that the transition from root to nodule was accompanied with downregulation of defense-response related proteins, including Mn-superoxide dismutase, peroxidase (Prx), PR10, and stress-induced protein, leading to the initiation of a symbiotic interaction between the two partners. Following nitrogenase biosynthesis, the host plant cooperated with the rhizobia to fix atmospheric nitrogen under microaerobic conditions via expression of leghemoglobins and antioxidant proteins. Comparative proteome analysis indicated lower expression of malate dehydrogenase (MDH), leghemoglobins and nitrogenase in the nodule development of the supernodulation mutant, SS2-2, as compared to the wild type, indicating that SS2-2 forms functionally immature nodules in higher numbers with the lower activity of nitrogen fixation.  相似文献   

17.
Iron is vital for the establishment and function of symbiotic root nodules of legumes. Although abundant in the environment, Fe is often a limiting nutrient for plant growth due to its low solubility and availability in some soils. We have studied the mechanism of iron uptake in the root nodules of common bean to evaluate the role of nodules in physiological responses to iron deficiency. Based on experiments using full or partial submergence of nodulated roots in the nutrient solution, our results show that the nodules were affected only slightly under iron deficiency, especially when the nodules were submerged in nutrient solution in the tolerant cultivar. In addition, fully submerged root nodules showed enhanced acidification of the nutrient solution and showed higher ferric chelate reductase activity than that of partially submerged roots in plants cultivated under Fe deficiency. The main results obtained in this work suggest that in addition to preferential Fe allocation from the root system to the nodules, this symbiotic organ probably develops some mechanisms to respond to iron deficiency. These mechanisms were implied especially in nodule Fe absorption efficiency and in the ability of this organ to take up Fe directly from the medium.  相似文献   

18.
In the present study, we examined the effects of iron deficiency in an acid solution and in an alkaline solution containing bicarbonate on the growth and nodulation of peanuts inoculated with different bradyrhizobial strains or supplied with fertilizer nitrogen.Inadequate iron supply in acid solution decreased the number of nodule initials, nodule number and nodule mass. Alleviating the iron deficiency increased acetylene reduction but not bacteroid numbers in nodules. Nitrogen concentrations in shoots of inoculated plants increased as iron concentrations in solution increased when determined at day 30 but not at day 50. Higher iron concentrations in solution were required for maximum growth of plants reliant on symbiotic nitrogen fixation than for those receiving fertilizer nitrogen.Adding bicarbonate to the solution with 7.5 M Fe markedly depressed nodule formation. This effect was much more severe than that of inadequate iron supply alone. Bicarbonate also decreased nitrogenase activity but did not decrease bacteroid concentrations in nodules.Both NC92 and TAL1000 nodulated peanuts poorly when bicarbonate was present. However, an interaction between iron concentrations in acid solutions and Bradyrhizobium strains on nodulation of peanuts was observed. Alleviating iron deficiency increased the number of nodule initials and nodules to a much greater extent for plants inoculated with TAL1000 than for plants inoculated with NC92.  相似文献   

19.
Changes in nodule growth and activity and in the concentrations of soluble N compounds in nodules, leaves and xylem sap under conditions of altered N nutrition in the actinorhizal plant Myrica gale L. are reported. Altering the N nutrition of symbiotic plants may alter the internal regulation of combined N which in turn may regulate nodule growth and activity. Flushing nodules daily with 100% O2 caused a decline in amide concentration and an increase in nodule growth although plants had recovered some nitrogenase activity within 4 h of exposure to O2. Samples of nodules, leaves and xylem sap were derivatized and amino acids identified and quantified using either reverse phase high performance liquid chromatography or gas chromatography-mass spectrometry in single ion monitoring mode. The ratio of asparagine in the nodules to that in the xylem was much higher in plants fed N (6.7 for NH+4-fed and 8.3 for NO3-fed plants) than for N2-fixing plants (2.5). Significant amounts of 15N added as 15NH+4 or 15NO3 accumulated in nodules following accumulation in the shoot which is consistent with the translocation of N to the nodules via the phloem. The uptake of 15NH+4 led to the synthesis and subsequent translocation of glutamine in the xylem sap. These results are discussed in terms of the feedback mechanisms that may regulate nitrogen fixation in Myrica root nodules.  相似文献   

20.
Control of nitrogen and carbon metabolism in root nodules   总被引:4,自引:0,他引:4  
Because legume root nodules have high rates of carbon and nitrogen metabolism, they are ideal for the study of plant physiology, biochemistry and molecular biology. Many plant enzymes involved in carbon and nitrogen assimilation have enhanced activity and enzyme protein in nodules as compared to other plant organs. For all intents and purposes the interior of the root nodule is O2 limited. Both plant and bacterial components of effective root nodules have unique adaptive features for maximizing carbon and nitrogen metabolism in an O2-limited environment. Plant glycolysis appears to be shunted to malic acid synthesis with further reductive synthesis to fumarate and succinate. Nodule bacteroids utilize these organic acids for the energy to fuel nitrogenase activity. Activities of the plant enzymes phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31), malate dehydrogenase (MDH, EC 1.1.1.37) and aspartate aminotransferase (AAT, EC 2.6.1.1), which are very high in nodules, may mediate the flux of carbon between organic and amino acid pools. Dark CO2 fixation via nodule PEPC can provide up to 25% of the carbon needed for malate and aspartate synthesis. At least three of the plant proteins showing enhanced expression in root nodules are O2 regulated. Isolation of alfalfa cDNAs encoding PEPC, AAT, NADH-glutamate synthase (NADH-GOGAT, EC 1.4.1.14) and aldolase (EC 4.1.2.13) will offer new tools to assess molecular events controlling nodule carbon and nitrogen metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号