首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zeng Y  Wang Y 《Nucleic acids research》2006,34(22):6521-6529
The replacement of thymidine with 5-bromo-2′-deoxyuridine (BrdU) is well-known to sensitize cells to ionizing radiation and photoirradiation. We reported here the sequence-dependent formation of intrastrand crosslink products from the UVB irradiation of duplex oligodeoxynucleotides harboring a BrdU or its closely related 5-bromo-2′-deoxycytidine (BrdC). Our results showed that two types of crosslink products could be induced from d(BrCG), d(BrUG), d(GBrU), or d(ABrU); the C(5) of cytosine or uracil could be covalently bonded to the N(2) or C(8) of its neighboring guanine, and the C(5) of uracil could couple with the C(2) or C(8) of its neighboring adenine. By using those crosslink product-bearing dinucleoside monophosphates as standards, we demonstrated, by using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), that all the crosslink products described above except d(G[N(2)-5]U) and d(G[N(2)-5]C) could form in duplex DNA. In addition, LC-MS/MS quantification results revealed that both the nature of the halogenated pyrimidine base and its 5′ flanking nucleoside affected markedly the generation of intrastrand crosslink products. The yields of crosslink products were much higher while the 5′ neighboring nucleoside was a dG than while it was a dA, and BrdC induced the formation of crosslink products much more efficiently than BrdU. The formation of intrastrand crosslink products from these halopyrimidines in duplex DNA may account for the photosensitizing effects of these nucleosides.  相似文献   

2.
Two dimensional (2D) NMR and molecular dynamics simulations have been used to determine the three dimensional (3D) structure of a hairpin DNA, d-CTA-GAGGATCC-TUTT-GGATCCT (22mer; abbreviated as U2-hairpin), which has uracil at the second position from the 5′ end of the tetraloop. The 1H resonances of this hairpin have been assigned almost completely. NMR restrained molecular dynamics and energy minimization procedures have been used to describe the 3D structure of U2-hairpin. This study establishes that the stem of the hairpin adopts a right-handed B-DNA conformation, while the T12 and T15 nucleotides stack upon 3′ and 5′ ends of the stem, respectively. Further, T14 stacks upon both T12 and T15. Though U13 partially stacks upon T14, no stacking interaction is observed between U13 and T12. All the individual nucleotide bases belonging to the stem and T12 and T15 of the loop adopt ‘anti’ conformation with respect to their sugar moiety, while the U13 and T14 of the loop are in ‘syn’ conformation. The turning phosphate in the loop is located between T13 and T14. This study and a concurrent NMR structural study on yet another hairpin DNA d-CTAGAGGAATAA-TTTU-GGATCCT (22mer; abbreviated as U4-hairpin), with uracil at the fourth position from the 5′ end of the tetraloop throw light upon various interactions which have been reported between Escherichia coli uracil DNA glycosylase (UDG) and uracil containing DNA. The of T12 and α, β, γ, and ζ of U13 and γ of T14, which partially influence the local conformation of U13 in U2-hairpin are all locked in ‘trans’ conformation. Such stretched out backbone conformation in the vicinity of U13 could be the reason as to why the U2-hairpin is found to be the poor substrate for its interaction with UDG compared to the other substrates in which the uracil is at first, third and fourth positions of the tetraloop from its 5′ end, as reported earlier by Vinay and Varshney. This study shows that UDG actively promotes the flipping of uracil from a stacked conformation and rules out the possibility of UDG recognizing the flipped out uracil bases.  相似文献   

3.
Given that our knowledge of DNA repair is limited because of the complexity of the DNA system, a technique called UVA micro-irradiation has been developed that can be used to visualize the recruitment of DNA repair proteins at double-strand break (DSB) sites. Interestingly, Hoechst 33258 was used under micro-irradiation to sensitize 5-bromouracil (BrU)-labelled DNA, causing efficient DSBs. However, the molecular basis of DSB formation under UVA micro-irradiation remains unknown. Herein, we investigated the mechanism of DSB formation under UVA micro-irradiation conditions. Our results suggest that the generation of a uracil-5-yl radical through electron transfer from Hoechst 33258 to BrU caused DNA cleavage preferentially at self-complementary 5′-AABrUBrU-3′ sequences to induce DSB. We also investigated the DNA cleavage in the context of the nucleosome to gain a better understanding of UVA micro-irradiation in a cell-like model. We found that DNA cleavage occurred in both core and linker DNA regions although its efficiency reduced in core DNA.  相似文献   

4.
Oligonucleotides containing 5-(N-aminohexyl)carbamoyl-modified uracils have promising features for applications as antigene and antisense therapies. Relative to unmodified DNA, oligonucleotides containing 5-(N-aminohexyl)carbamoyl-2′-deoxyuridine (NU) or 5-(N-aminohexyl)carbamoyl-2′-O-methyluridine (NUm), respectively exhibit increased binding affinity for DNA and RNA, and enhanced nuclease resistance. To understand the structural implications of NU and NUm substitutions, we have determined the X-ray crystal structures of DNA:DNA duplexes containing either NU or NUm and of DNA:RNA hybrid duplexes containing NUm. The aminohexyl chains are fixed in the major groove through hydrogen bonds between the carbamoyl amino groups and the uracil O4 atoms. The terminal ammonium cations on these chains could interact with the phosphate oxygen anions of the residues in the target strands. These interactions partly account for the increased target binding affinity and nuclease resistance. In contrast to NU, NUm decreases DNA binding affinity. This could be explained by the drastic changes in sugar puckering and in the minor groove widths and hydration structures seen in the NUm containing DNA:DNA duplex structure. The conformation of NUm, however, is compatible with the preferred conformation in DNA:RNA hybrid duplexes. Furthermore, the ability of NUm to render the duplexes with altered minor grooves may increase nuclease resistance and elicit RNase H activity.  相似文献   

5.
5-Bromouracil (BrU) was incorporated into three types of synthetic RNA and the products of the photoirradiated BrU-containing RNAs were investigated using HPLC and MS analysis. The photoirradiation of r(GCABrUGC)2 and r(CGAABrUUGC)/r(GCAAUUCG) in A-form RNA produced the corresponding 2′-keto adenosine (ketoA) product at the 5′-neighboring nucleotide, such as r(GCketoAUGC) and r(CGAketoAUUGC), respectively. The photoirradiation of r(CGCGBrUGCG)/r(CmGCACmGCG) in Z-form RNA produced the 2′-keto guanosine (ketoG) product r(CGCketoGUGCG), whereas almost no products were observed from the photoirradiation of r(CGCGBrUGCG)/r(CmGCACmGCG) in A-form RNA. The present results indicate clearly that hydrogen (H) abstraction by the photochemically generated uracil-5-yl radical selectively occurs at the C2′ position to provide a 2′-keto RNA product.  相似文献   

6.
The carbonate radical anion is a biologically important one-electron oxidant that can directly abstract an electron from guanine, the most easily oxidizable DNA base. Oxidation of the 5′-d(CCTACGCTACC) sequence by photochemically generated CO3·− radicals in low steady-state concentrations relevant to biological processes results in the formation of spiroiminodihydantoin diastereomers and a previously unknown lesion. The latter was excised from the oxidized oligonucleotides by enzymatic digestion with nuclease P1 and alkaline phosphatase and identified by LC-MS/MS as an unusual intrastrand cross-link between guanine and thymine. In order to further characterize the structure of this lesion, 5′-d(GpCpT) was exposed to CO3·− radicals, and the cyclic nature of the 5′-d(G*pCpT*) cross-link in which the guanine C8-atom is bound to the thymine N3-atom was confirmed by LC-MS/MS, 1D and 2D NMR studies. The effect of bridging C bases on the cross-link formation was studied in the series of 5′-d(GpCnpT) and 5′-d(TpCnpG) sequences with n = 0, 1, 2 and 3. Formation of the G*-T* cross-links is most efficient in the case of 5′-d(GpCpT). Cross-link formation (n = 0) was also observed in double-stranded DNA molecules derived from the self-complementary 5′-d(TTACGTACGTAA) sequence following exposure to CO3·− radicals and enzymatic excision of the 5′-d(G*pT*) product.  相似文献   

7.
A necessary feature of the natural base triads for triplex formation is the requirement of a purine (A or G) in the central position, since only these provide sets of two hydrogen bond donors/acceptors in the major groove of the double helix. Pyrimidine bases devoid of this feature have incompatible complementarity and lead to triplexes with lower stability. This paper demonstrates that 5-aminouracil (U#) (I), a pyrimidine nucleobase analogue of T in which 5-methyl is replaced by 5-amino group, with hydrogen bonding sites on both sides, is compatible in the central position of triplex triad X*U#·A, where X = A/G/C/T/2-aminopurine (AP), and * and · represent Hoogsteen and Watson–Crick hydrogen bonding patterns respectively. A novel recognition selectivity based on the orientation (parallel/antiparallel) of the third strand purines A, G or AP with A in the parallel motif (Ap*U#·A), and G/AP in the antiparallel motif (Gap/APap*U#·A) is observed. Similarly for pyrimidines in the third strand, C is accepted only in a parallel mode (Cp*U#·A). Significantly, T is recognised in both parallel and antiparallel modes (Tp/Tap*U#·A), with the antiparallel mode being stable compared to the parallel one. The ‘U#’ triplexes are also more stable than the corresponding control ‘T’ triplexes. The results expand the lexicon of triplex triads with a recognition motif consisting of pyrimidine in the central strand.  相似文献   

8.
UDGb belongs to family 5 of the uracil DNA glycosylase (UDG) superfamily. Here, we report that family 5 UDGb from Thermus thermophilus HB8 is not only a uracil DNA glycosyase acting on G/U, T/U, C/U, and A/U base pairs, but also a hypoxanthine DNA glycosylase acting on G/I, T/I, and A/I base pairs and a xanthine DNA glycosylase acting on all double-stranded and single-stranded xanthine-containing DNA. Analysis of potentials of mean force indicates that the tendency of hypoxanthine base flipping follows the order of G/I > T/I, A/I > C/I, matching the trend of hypoxanthine DNA glycosylase activity observed in vitro. Genetic analysis indicates that family 5 UDGb can also act as an enzyme to remove uracil incorporated into DNA through the existence of dUTP in the nucleotide pool. Mutational analysis coupled with molecular modeling and molecular dynamics analysis reveals that although hydrogen bonding to O2 of uracil underlies the UDG activity in a dissociative fashion, Tth UDGb relies on multiple catalytic residues to facilitate its excision of hypoxanthine and xanthine. This study underscores the structural and functional diversity in the UDG superfamily.  相似文献   

9.
In contrast to all other known tRNAs, mammalian tRNAVal1 contains two adenosines A59 and A60, opposite to U54 and ψ55 in the UψCG sequence of the TψC loop, which could form unusual A:U (or A:ψ) pairs in addition to the five “normal” G:C pairs. In order to measure the number of G:C and A:U (A:ψ) pairs in the TψC stem, we prepared the 30 nucleotide long 3′-terminal fragment of this tRNA by “m7G-cleavage”. From differentiated melting curves and temperature jump experiments it was concluded that the TψC stem in this fragment is in fact extended by an additional A60:U54 pair. A dimer of this fragment with 14 base pairs was characterized by gel electrophoresis and by the same physical methods. An additional A:U pair in the tRNAVal1 fragment does not necessarily mean that this is also true for intact tRNA. However, we showed that U54 is far less available for enzymatic methylation in mammalian tRNAVal1 compared to tRNA from TE. coli. This clear difference in U54 reactivity, together with the identification of an extra A60:U54 pair in the UψCG containing fragment suggests the presence of a 6 base pair TψC stem and a 5 nucleotide TψC loop in this tRNA.  相似文献   

10.
Sen1p from Saccharomyces cerevisiae is a nucleic acid helicase related to DEAD box RNA helicases and type I DNA helicases. The temperature-sensitive sen1-1 mutation located in the helicase motif alters the accumulation of pre-tRNAs, pre-rRNAs, and some small nuclear RNAs. In this report, we show that cells carrying sen1-1 exhibit altered accumulation of several small nucleolar RNAs (snoRNAs) immediately upon temperature shift. Using Northern blotting, RNase H cleavage, primer extension, and base compositional analysis, we detected three forms of the snoRNA snR13 in wild-type cells: an abundant TMG-capped 124-nucleotide (nt) mature form (snR13F) and two less abundant RNAs, including a heterogeneous population of ~1,400-nt 3′-extended forms (snR13R) and a 108-nt 5′-truncated form (snR13T) that is missing 16 nt at the 5′ end. A subpopulation of snR13R contains the same 5′ truncation. Newly synthesized snR13R RNA accumulates with time at the expense of snR13F following temperature shift of sen1-1 cells, suggesting a possible precursor-product relationship. snR13R and snR13T both increase in abundance at the restrictive temperature, indicating that Sen1p stabilizes the 5′ end and promotes maturation of the 3′ end. snR13F contains canonical C and D boxes common to many snoRNAs. The 5′ end of snR13T and the 3′ end of snR13F reside within C2U4 sequences that immediately flank the C and D boxes. A mutation in the 5′ C2U4 repeat causes underaccumulation of snR13F, whereas mutations in the 3′ C2U4 repeat cause the accumulation of two novel RNAs that migrate in the 500-nt range. At the restrictive temperature, double mutants carrying sen1-1 and mutations in the 3′ C2U4 repeat show reduced accumulation of the novel RNAs and increased accumulation of snR13R RNA, indicating that Sen1p and the 3′ C2U4 sequence act in a common pathway to facilitate 3′ end formation. Based on these findings, we propose that Sen1p and the C2U4 repeats that flank the C and D boxes promote maturation of the 3′ terminus and stability of the 5′ terminus and are required for maximal rates of synthesis and levels of accumulation of mature snR13F.  相似文献   

11.
We report that photo-excitation of one-electron-oxidized adenine [A(-H)•] in dAdo and its 2′-deoxyribonucleotides leads to formation of deoxyribose sugar radicals in remarkably high yields. Illumination of A(-H)• in dAdo, 3′-dAMP and 5′-dAMP in aqueous glasses at 143 K leads to 80-100% conversion to sugar radicals at C5′ and C3′. The position of the phosphate in 5′- and 3′-dAMP is observed to deactivate radical formation at the site of substitution. In addition, the pH has a crucial influence on the site of sugar radical formation; e.g. at pH ~5, photo-excitation of A(-H)• in dAdo at 143 K produces mainly C5′• whereas only C3′• is observed at high pH ~12. 13C substitution at C5′ in dAdo yields 13C anisotropic couplings of (28, 28, 84) G whose isotropic component 46.7 G identifies formation of the near planar C5′•. A β-13C 16 G isotropic coupling from C3′• is also found. These results are found to be in accord with theoretically calculated 13C couplings at C5′ [DFT, B3LYP, 6-31(G) level] for C5′• and C3′•. Calculations using time-dependent density functional theory [TD-DFT B3LYP, 6-31G(d)] confirm that transitions in the near UV and visible induce hole transfer from the base radical to the sugar group leading to sugar radical formation.  相似文献   

12.
We have recently reported a disease-causing substitution (+5G > C) at the donor site of NF-1 exon 3 that produces its skipping. We have now studied in detail the splicing mechanism involved in analyzing RNA–protein complexes at several 5′ splice sites. Characteristic protein patterns were observed by pulldown and band-shift/super-shift analysis. Here, we show that hnRNP H binds specifically to the wild-type GGGgu donor sequence of the NF-1 exon 3. Depletion analyses shows that this protein restricts the accessibility of U1 small nuclear ribonucleoprotein (U1snRNA) to the donor site. In this context, the +5G > C mutation abolishes both U1snRNP base pairing and the 5′ splice site (5′ss) function. However, exon recognition in the mutant can be rescued by disrupting the binding of hnRNP H, demonstrating that this protein enhances the effects of the +5G > C substitution. Significantly, a similar situation was found for a second disease-causing +5G > A substitution in the 5′ss of TSHβ exon 2, which harbors a GGgu donor sequence. Thus, the reason why similar nucleotide substitutions can be either neutral or very disruptive of splicing function can be explained by the presence of specific binding signatures depending on local contexts.  相似文献   

13.
Simple nucleotide templating activities are of interest as potential primordial reactions. Here we describe the acceleration of 5′-5′ AppA synthesis by 3′-5′ poly(U) under normal solution conditions. This reaction is apparently templated via complementary U:A base-pairing, despite the involvement of two different RNA backbones, because poly(U), unlike other polymers, significantly stimulates AppA synthesis. These interactions occur in moderate (K+) and (Mg2+) and are temperature sensitive, being more efficient at 10°C than at 4°C, but absent at 20°C. The reaction is only slightly pH sensitive, despite potentially relevant substrate pKa’s. Kinetic data explicitly support production of AppA by interaction of stacked 2MeImpA and pA nucleotides paired with a single molecule of U template. At a lower rate, AppA can also be produced by a chemical reaction between 2MeImpA and pA, without participation of poly(U). Molecular modeling suggests that 5′-5′ joining between stacked or concurrently paired A''s can occur without major departures from normal U-A helical coordinates. So, coenzyme-like 5′-5′ purine dinucleotides might be readily synthesized from 3′-5′ RNAs with complementary sequences.  相似文献   

14.
Platinum(II) and platinum(IV) complexes with 3-amino-5-methyl-5-(4-pyridyl)-2,4-imidazolidenedione (L) with general formulaе cis-[PtL2X2nH2O and [PtL2Cl4], where X = Cl, Br, I and n = 2-4) were synthesized. The novel compounds were fully characterized by elemental analysis, IR, 1H, 13C, 195Pt NMR spectra, thermal analysis and molar conductivity. The geometry of Pt(II) complexes and of the organic ligand in the gas phase were optimized using the hybrid DFT method B3LYP with LANL2DZ and 6-31G** basis sets. Some physicochemical parameters as dipole moment, HOMO, LUMO energies and ESP charges were calculated. The comparison of the bond length and angles, obtained from the X-ray analysis and DFT calculations is realized. The cytotoxic effects of these complexes in human T-cell leukemia KE-37 (SKW-3) are reported.  相似文献   

15.
The reference standards methyl 3-((2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)carbamoyl)benzoate (5a) and N-(2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)-3-methoxybenzamide (5c), and their corresponding desmethylated precursors 3-((2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)carbamoyl)benzoic acid (6a) and N-(2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)-3-hydroxybenzamide (6b), were synthesized from 5-amino-2,2-difluoro-1,3-benzodioxole and 3-substituted benzoic acids in 5 and 6 steps with 33% and 11%, 30% and 7% overall chemical yield, respectively. Carbon-11-labeled casein kinase 1 (CK1) inhibitors, [11C]methyl 3-((2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)carbamoyl)benzoate ([11C]5a) and N-(2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)-3-[11C]methoxybenzamide ([11C]5c), were prepared from their O-desmethylated precursor 6a or 6b with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 40–45% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (MA) at EOB was 370–740?GBq/μmol with a total synthesis time of ~40-min from EOB.  相似文献   

16.
The phosphate translocator was identified in the envelope membranes of both mesophyll and bundle sheath chloroplasts of Panicum miliaceum L. by labeling with [1,2-3H]1,2-(2,2′ -disulfo-4,4′ -diisothiocyano)diphenylethane ([3H]H2DIDS) and by using SDS-PAGE. Assay of 32Pi uptake by the chloroplasts showed that the phosphate translocators of both types of chloroplasts have a higher affinity for phosphoenolpyruvate than the C3 counterpart and can be regarded as C4 types.  相似文献   

17.
RNA molecules with internal 2′,5′-branches are intermediates in RNA splicing, and branched RNAs have recently been proposed as retrotransposition intermediates. A broadly applicable in vitro synthetic route to branched RNA that does not require self-splicing introns or spliceosomes would substantially improve our ability to study biochemical processes that involve branched RNA. We recently described 7S11, a deoxyribozyme that was identified by in vitro selection and has general RNA branch-forming ability. However, an important restriction for 7S11 is that the branch-site RNA nucleotide must be a purine (A or G), because a pyrimidine (U or C) is not tolerated. Here, we describe the compact 6CE8 deoxyribozyme (selected using a 20 nt random region) that synthesizes 2′,5′-branched RNA with any nucleotide at the branch site. The Mn2+-dependent branch-forming ligation reaction is between an internal branch-site 2′-hydroxyl nucleophile on one RNA substrate with a 5′-triphosphate on another RNA substrate. The preference for the branch-site nucleotide is U > C A > G, although all four nucleotides are tolerated with useful ligation rates. Nearly all other nucleotides elsewhere in both RNA substrates allow ligation activity, except that the sequence requirement for the RNA strand with the 5′-triphosphate is 5′-pppGA, with 5′-pppGAR (R = purine) preferred. These characteristics permit 6CE8 to prepare branched RNAs of immediate practical interest, such as the proposed branched intermediate of Ty1 retrotransposition. Because this branched RNA has two strands with identical sequence that emerge from the branch site, we developed strategies to control which of the two strands bind with the deoxyribozyme during the branch-forming reaction. The ability to synthesize the proposed branched RNA of Ty1 retrotransposition will allow us to explore this important biochemical pathway in greater detail.  相似文献   

18.
Ownby JD  Ross CW 《Plant physiology》1975,55(2):346-351
The incorporation of adenosine-8-14C into adenosine cyclic 3′:5′-monophosphate in coleoptile-first leaf segments of Avena sativa L. was investigated. Homogenates of segments incubated in adenosine-8-14C for either 4 or 10 hours were partially purified by thin layer chromatography followed by paper electrophoresis. A radioactive fraction, less than 0.06% of the 14C present in the original homogenate, migrated as adenosine cyclic 3′:5′-monophosphate during electrophoresis. Upon treatment with cyclic nucleotide phosphodiesterase, however, less than 10% of this radioactive fraction appeared as 5′-AMP. Deamination with NaNO2 as well as further chromatographical purification also suggested that only a small fraction of the 14C in the partially purified samples could be in adenosine cyclic 3′:5′-monophosphate. The data suggest that levels of this nucleotide can probably be no greater than 7 to 11 picomoles per gram of fresh weight in oat coleoptiles. Treatment of such coleoptiles with physiologically active concentrations of indoleacetic acid, furthermore, had no significant effect on the 14C radioactivity in marker adenosine cyclic 3′:5′-monophosphate-containing fractions at any stage of purification during several experiments.  相似文献   

19.
Guanylyl- and methyltransferases, isolated from purified vaccinia virus, were used to specifically label the 5′ ends of the genome RNAs of influenza A and B viruses. All eight segments were labeled with [α-32P]guanosine 5′-triphosphate or S-adenosyl[methyl-3H]methionine to form “cap” structures of the type m7G(5′)pppNm-, of which unmethylated (p)ppN- represents the original 5′ end. Further analyses indicated that m7G(5′)pppAm, m7G(5′)pppAmpGp, and m7G(5′)pppAmpGpUp were released from total and individual labeled RNA segments by digestion with nuclease P1, RNase T1, and RNase A, respectively. Consequently, the 5′-terminal sequences of most or all individual genome RNAs of influenza A and B viruses were deduced to be (p)ppApGpUp. The presence of identical sequences at the ends of RNA segments of both types of influenza viruses indicates that they have been specifically conserved during evolution.  相似文献   

20.
The base-pairing fidelity of oligonucleotides depends on the identity of the nucleobases involved and the position of matched or mismatched base pairs in the duplex. Nucleobases forming weak base pairs, as well as a terminal position favor mispairing. We have searched for 5′-appended acylamido caps that enhance the stability and base-pairing fidelity of oligonucleotides with a 5′-terminal 2′-deoxyadenosine residue using combinatorial synthesis and MALDI-monitored nuclease selections. This provided the residue of 4-(pyren-1-yl)butyric acid as a lead. Lead optimization gave (S)-N-(pyren-1-ylmethyl)pyrrolidine-3-phosphate as a cap that increases duplex stability and base-pairing fidelity. For the duplex of 5′-AGGTTGAC-3′ with its fully complementary target, this cap gives an increase in the UV melting point Tm of +10.9°C. The Tm is 6.3–8.3°C lower when a mismatched nucleobase faces the 5′-terminal dA residue. The optimized cap can be introduced via automated DNA synthesis. It was combined with an anthraquinone carboxylic acid residue as a cap for the 3′-terminal residue. A doubly capped dodecamer thus prepared gives a melting point decrease for double-terminal mismatches that is 5.7–5.9°C greater than that for the unmodified control duplex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号