首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Caecilians are exceptional among the vertebrates in that males retain the Mullerian duct as a functional glandular structure. The Mullerian gland on each side is formed from a large number of tubular glands connecting to a central duct, which either connects to the urogenital duct or opens directly into the cloaca. The Mullerian gland is believed to secrete a substance to be added to the sperm during ejaculation. Thus, the Mullerian gland could function as a male accessory reproductive gland. Recently, we described the male Mullerian gland of Uraeotyphlus narayani using light and transmission electron microscopy (TEM) and histochemistry. The present TEM study reports that the secretory cells of both the tubular and basal portions of the tubular glands of the male Mullerian gland of this caecilian produce secretion granules in the same manner as do other glandular epithelial cells. The secretion granules are released in the form of structured granules into the lumen of the tubular glands, and such granules are traceable to the lumen of the central duct of the Mullerian gland. This is comparable to the situation prevailing in the epididymal epithelium of several reptiles. In the secretory cells of the basal portion of the tubular glands, mitochondria are intimately associated with fabrication of the secretion granules. The structural and functional organization of the epithelium of the basal portion of the tubular glands is complicated by the presence of basal cells. This study suggests the origin of the basal cells from peritubular tissue leukocytes. The study also indicates a role for the basal cells in acquiring secretion granules from the neighboring secretory cells and processing them into lipofuscin material in the context of regression of the Mullerian gland during the period of reproductive quiescence. In these respects the basal cells match those in the epithelial lining of the epididymis of amniotes.  相似文献   

2.
Summary The epithelium of the fundic region mucosa of the hind stomach in the Llama guanacoe has been studied using morphological and histochemical methods. Morphology suggests that solute and water absorption may occur in the epithelium of the surface and of the foveolae, although this absorption can not be estimated because of the extensive secretion of the gastric glands. The same cells of the surface and foveolar epithelium show numerous secretory granules. The glands reveal neck cells, chief cells, a large number of oxyntic cells, four types of endocrine cells (A-like, ECL, D and EC), brush cells and wandering cells. PAS and Alcian blue reactions for light microscopy suggest a secretion of neutral and acidic mucosubstances in the surface and foveolar epithelium, of neutral mucosubstances only in the neck cells. Periodic acid-thiocarbohydrazide silver proteinate (PA-TCH-SP) reaction for electron microscopy confirms the presence of neutral mucosubstances within the secretory granules of the surface, foveolar and neck epithelial cells. In all these cells, the reaction product is also evident within sacculi and vesicles of the maturing surface of the Golgi apparatus. A positive PA-TCH-SP reaction also occurs on the membrane (and not on the contents) of the Golgi apparatus (maturing surface) and of the secretory granules of the chief cells as well as on the membrane of the Golgi apparatus and of apical vesicles and tubules of the oxyntic cells. In addition, silver granules slightly enhance the electron density of the contents of the secretory granules in the endocrine cells. Morphological and histochemical findings are discussed and compared with results described by others for monogastric mammals.  相似文献   

3.
The authors studied morphological and histochemically the mucopolysaccharides and proteins in the gallbladder tubular glands and epithelial cells of the capivara Hydrochoerus hydrochoeris. Based on the results the authors concluded: 1. the gallbladder single columnar epithelium consists of secretory, migrating, and goblet cells; 2. in the lamina propria are single coiled tubular glands; 3. goblet and tubular gland cells show neutral and sulphated mucopolysaccharides and sialic acid; 4. columnar cells show neutral mucopolysaccharides and protein radicals; 5. migrating cells show only protein radicals.  相似文献   

4.
日本七鳃鳗消化系统显微与超微结构   总被引:1,自引:0,他引:1  
采用光镜和电镜技术研究日本七鳃鳗(Lampetra japonica)消化系统的组织结构。结果显示,日本七鳃鳗食道褶皱处黏膜上皮为复层立方上皮,褶皱基部为变移上皮。由于生活方式的特化,其胃退化。前肠、中肠和后肠黏膜上皮均为单层柱状上皮,其中并未发现杯状细胞,有肠腺,肠上皮有密集的纤毛,上皮细胞内各种细胞器均较丰富,肌纤维斜行。肝小叶界限不清,肝内无胆管。内分泌性胰由若干个大小不等和形状不定的细胞团组成。口腔腺上皮细胞高柱状,游离端充满酶原颗粒和微管泡系,细胞间有分泌小管。日本七鳃鳗消化器官的组织结构特点与其特殊的取食方式和进化地位密切相关。  相似文献   

5.
Human deep posterior lingual glands (von Ebner's glands) are located beneath the circumvallate papillae. They are formed by tubuloalveolar adenomeres, intercalated ducts and excretory ducts coming together in the main excretory duct. The tubuloalveolar cells, pyramid-shaped, show large and dense secretory granules (clear cored) throughout the cytoplasm, rare basal folds and packed cisternae of rough endoplasmic reticulum (RER) at the basal pole. The columnar cells of the intercalated ducts are arranged in a monolayer. They are characterized by dense, clear-core secretory granules (mostly in the apical cytoplasm), a basal nucleus, well-developed RER and Golgi apparatus, and thin filaments distributed in supra- and perinuclear cytoplasm. Striated ducts are absent. Excretory ducts, coming together in the main duct, are lined by a bistratified epithelium. The inner layer consists of columnar cells showing bundles of tonofilaments with scarce secretory activity. The outer layer is composed of basal cells lying on the basal lamina. The main excretory duct, which opens at the bottom of the vallum, shows a stratified epithelium. The outer side is composed of 2-3 layers of malpighian cells lying on the basal lamina. The inner side consists of a single layer of cuboidal-columnar cells with dense apical granules and well-developed organelles synthesizing and condensing secretions. These cells interpolate with goblet cells, rare mitochondria-rich cells, ciliated cells and numerous small globous cells showing a clear matrix and lacking secretory granules. The cilia show a 9 + 2 microtubular structure with basal bodies provided with striated rootlets. Myoepithelial cells surround with their processes the basal portions of the secretory cells and the intercalated ducts. The conclusions concern some comparative aspects and some hypothesis on the functional role of goblet cells, ciliated cells and epithelial cells lining the different ducts, also in relation to the final secretory product.  相似文献   

6.
This article is the first ultrastructural study on the annual oviducal cycle in a snake. The ultrastructure of the oviduct was studied in 21 females of the viviparous natricine snake Seminatrix pygaea. Specimens were collected and sacrificed in March, May, June, July, and October from one locale in South Carolina during 1998-1999. The sample included individuals: 1) in an inactive reproductive condition, 2) mated but prior to ovulation, and 3) from early and late periods of gravidity. The oviduct possesses four distinct regions from cranial to caudal: the anterior infundibulum, the posterior infundibulum containing sperm storage tubules (SSTs), the uterus, and the vagina. The epithelium is simple throughout the oviduct and invaginations of the lining form tubular glands in all regions except the anterior infundibulum and the posterior vagina. The tubular glands are not alveolar, as reported in some other snakes, and simply represent a continuation of the oviducal lining with no additional specializations. The anterior infundibulum and vagina show the least amount of variation in relation to season or reproductive condition. In these regions, the epithelium is irregular, varying from squamous to columnar, and cells with elongate cilia alternate with secretory cells. The secretory product of the infundibulum consists largely of lipids, whereas a glycoprotein predominates in the vagina; however, both products are found in these regions and elsewhere in the oviduct. In the SST area and the anterior vagina, tubular glands are compound as well as simple. The epithelium of the SST is most active after mating, and glycoprotein vacuoles and lipid droplets are equally abundant. When present, sperm form tangled masses in the oviducal lumen and glands of the SST area. The glands of the uterus are always simple. During sperm migration, a carrier matrix composed of sloughed epithelial cells, a glycoprotein colloid, lipids, and membranous structures surround sperm in the posterior uterus. During gravidity, tubular glands, cilia, and secretory products diminish with increasing development of the fetus, and numerous capillaries abut the basal lamina of the attenuated epithelial lining of the uterus.  相似文献   

7.
The paired tubular accessory glands in Haemaphysalis longicornis open at the junction of the cervical and the vestibular parts of vagina via short and narrow ducts. The pseudostratified columnar glandular epithelium covered by the muscle layer consists of both secretory and supporting cells. As feeding proceeds, the secretory cells increase in volume. In ovipositing females, well-developed rough endoplasmic reticulum, the Golgi complex, and membranebound granules that are undergoing exocytosis suggest that the secretory cells are involved in protein synthesis. However, in virgin females that fed 10 days, only small dense granules and no secretion activity were observed. The secretions from the tubular accessory gland may be released into the genital tract during the egg passage through the vagina. However, the supporting cells located between the secretory cells become slender during feeding, cohere to each other at the luminal side, and have a very narrow attachment at the basement membrane. Supporting cells probably help maintain secretory cell shape especially during granular discharge into the lumen. © 1994 Wiley-Liss, Inc.  相似文献   

8.
S Geleff  P B?ck 《Histochemistry》1984,81(6):543-549
Complex carbohydrate components of secretory granules and the glycocalix were analysed in surface epithelia, endoepithelial glands and exoepithelial tubuloalveolar glands of the biliary-ductular system (guinea pig). Brunner glands and pyloric glands were studied for comparison. The columnar epithelial cells of the gallbladder and biliary ducts displayed a well-developed PAS-positive apical glycocalix. These materials strongly bound Ricinus communis A I, Ulex europaeus I, Lotus tetragonolobus A and wheat-germ-A lectins. With the exception of Lotus A lectin which did not bind at all, the same lectins stained the basolateral cell surface. The secretory granules in the supranuclear regions of surface epithelia and in the exoepithelial glands strongly bound Ricinus A I, Ulex europaeus I, wheat-germ-A and Helix pomatia lectins. Concanavalin A was less intensively bound by the secretions of tubuloalveolar glands than by the secretory granules in surface epithelia. The luminal and basolateral cell surfaces of glandular cells in the exoepithelial glands were stained by the same spectrum of lectins as were the columnar cells of surface epithelia, but the staining was less distinct. In the guinea pig, the lectin-binding patterns of tubuloalveolar glands in the biliary ducts closely resembled those of Brunner glands and pyloric glands. The secretions of the tubuloalveolar glands were different from the secretion of surface epithelia, as they bound Concanavalin A less intensively.  相似文献   

9.
The normal ventral and dorsal prostatic lobes of the young adult Syrian hamster were examined at the light and electron microscopic levels. Each lobe is composed of branched tubular secretory units separated from each other by loose interacinar connective tissue and draining into the urethra. The lumen of each acinus is lined by a simple epithelium composed of columnar secretory cells with occasional small basal cells. The epithelial layer, with the thin underlying lamina propria, forms a mucosa that is often highly folded. The whole acinus is bounded by a thick muscular stroma. In each of the ventral lobes, there are three main ducts, each one formed of tubular branched tributary secretory units. The walls of the secretory acini are moderately folded. Microvilli dominate the lumenal surface of the secretory epithelial cells. The Golgi complex is very extensive and shows dilated cisternae and secretory vesicles and vacuoles of various sizes. Membrane-bounded secretory granules populate the Golgi and apical areas and are released into the acinar lumen by exocytosis. The rough endoplasmic reticulum is dispersed throughout the cytoplasm, except in the region of the Golgi apparatus. In each of the dorsal lobes, there are several main tubular ducts that open into the urethra. Both proximal (ductal) and distal portions of the glandular tree are secretory in nature. Microvilli and cytoplasmic bulges and blebs dominate the lumenal surface of the secretory cells. The cells are also characterized by highly dilated cisternae of rough endoplasmic reticulum. The secretory cells show heterogeneity in the degree of dilation and distribution of rough endoplasmic reticulum, and this heterogeneity may reflect location in the glandular tree.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Three different types of lingual papilla were observed by scanning electron microscopy on the dorsal lingual epithelium of the lizard Gekko japonicus. Dome-shaped lingual papillae were located at the apex. Flat, fan-shaped lingual papillae were seen in the widest area of the lingual body. Long, scale-like lingual papillae were arranged on the latero-posterior dorsal surface. At higher magnification, microvilli and microridges were seen to be widely distributed over the surface of the papillae. By light microscopy, the epithelium of the dome-shaped papillae was composed of single, columnar epithelial cells filled with secretory granules. The tip of the epithelium of the fan-shaped and scale-like papillae was composed of stratified squamous epithelial cells without granules. The major part of the epithelium of these two types of papilla, except the tip area, was also composed of single, columnar epithelial cells with secretory granules. By transmission electron microscopy, a nucleus without a defined shape was seen to be located in the basal part of each of the single, columnar epithelial cells. Rough-surfaced endoplasmic reticulum and Golgi apparatus were well developed around the nucleus. The other, major part of the cytoplasm was filled with the spherical secretory granules, a large number of which had very electron-dense cores and moderately electron-dense peripheral regions. In the stratified squamous epithelium, a nucleus, which tended to be condensed on the free-surface side, was located in the center of each cell. Mitochondria, endoplasmic reticulum, and vesicles were observed in the cytoplasm.  相似文献   

11.
The wall of the stomach of the tigerfish is described and compared with that of other vertebrates. Light microscopic and ultrastructural characteristics of the stomach wall correspond to a large extent to those of other vertebrates, although some differences are found. The mucosa contains (1) surface epithelium characterized by narrow columnar cells with abundant mucous granules; (2) gastric glands consisting of pepsinogenic cells of variable height, containing tubulovesicles and bearing microvilli; (3) five granulated cell types located basally in the epithelium (types 1–5); and (4) lamina propria and muscularis mucosae. Connective tissue separating smooth muscle fibers of the muscularis mucosae constitutes a stratum compactum. The submucosa contains a loose connective tissue, a tunica muscularis of inner circular and outer longitudinal layers, and a serosa of mesothelium and subjacent connective tissue. Immunocytochemical tests with antisera to five polypeptides show gastrin/cholecystokinin (CCK), vasoactive intestinal polypeptide (VIP) immunoreactivities in some cells of the gastric glands, and somatostatin in cells lying among epithelial cells lining the gastric luminal surface or gastric pits.  相似文献   

12.
The morphological features of boar seminal vesicles were examined by light and transmission microscopy. Boar seminal vesicles consist of glandular tissue arranged in multiple lobules containing a system of ramified secretory tubules. The secretory tubules are composed of a mucosa formed by an epithelium and an underlying lamina propria and, are surrounded by a muscular layer. The epithelium is made up of columnar cells and occasional basal cells. Mast cells are frequently found among epithelial cells. Three types of columnar cells, considered different stages of the secretory cell cycle, are present: principal cells, clear cells and dense cells. Principal cells are functionally differentiated cells characterised by abundant mitochondria, great development of the rough endoplasmic reticulum and presence of secretory granules in their cytoplasm. The apical surface of many principal cells shows apical blebs filled with PAS-positive material. No acid mucosubstances are detected. Microvilli cover the apical surface except in the apical blebs. Dense cells, arranged between principal cells, are also functional differentiated cells but with signs of cellular degeneration. Clear cells are an initial differentiated stage of columnar cells and are characterised by the presence of a poorly developed rough endoplasmic reticulum and by the absence of secretory granules. Proliferating cells are present among columnar cells. Basal cells contain scarce cytoplasm, few organelles and no secretory granules. The lack of mitotic activity in these cells suggests that they do not act as precursors of columnar cells.  相似文献   

13.
The morphological features of boar bulbourethral glands were examined by light and transmission microscopy. Bulbourethral glands are compound tubuloalveolar glands surrounded by a capsule of dense connective tissue and arranged in multiple lobules formed by endpieces and excretory ducts. Endpieces and excretory ducts are both lined by a single epithelium of mucous cells with a basal nucleus. Epithelial cells accumulate secretory granules containing neutral and carboxylated acid mucosubstances and a small amount of sulphated acid mucosubstances. The ultrastructure of epithelial cells varies according to the secretory cycle. In initial stages, the cells show a columnar shape and secretory granules unevenly distributed in the cytoplasm. As the synthesis of mucosubstances progresses, the amount of the secretory granules increases and the cellular shape becomes pyramidal. Secretory granules can contain inclusions and present differences among them according to their different phases of formation. In pyramidal cells, secretory products are released into the lumen by a merocrine mechanism.  相似文献   

14.
The histological characteristics of the digestive tract and the ultrastructure of mucosal cells of the stomach and intestine of rice field eel, Monopterus albus, are described to provide a basis for future studies on its digestive physiology. The digestive tract of the rice field eel is a long and coiled tube composed of four layers: mucosa, lamina propria‐submucosa, muscularis and serosa. The pharynx and oesophagus mucosa is lined with a stratified epithelium. The stomach includes the cardiac and pyloric portions and the fundus. Many gastric pits are formed by invaginations of the mucosal layer and tubular gastric glands formed by the columnar cells in the fundus. The intestine is separated from the stomach by a loop valve and divided into a proximal portion and a distal portion. The proximal intestinal epithelium consists of columnar cells with microvilli towards the lumen and goblet cells. The enterocytes are joined at the apical surface by the junctional complex, including the evident desmosomas. Numerous lysosomes and some vesicles are evident in the upper cytoplasm of the cells, and a moderate amount of endoplasmic reticulum and lysosomes are scattered in the supranuclear cytoplasm. The epithelium becomes progressively thicker and the folds containing large numbers of goblet cells are fewer and shorter in the distal portion of the intestine. At the ultrastuctural level, the columnar cells of the tubular gastric glands have numerous clear vacuoles and channels. A moderate amount of pepsinogen granules are present in the stomach. The enterocytes of the intestinal mucosa display a moderate amount of endoplasmic reticulum and lysosomes, and long and regular microvilli.  相似文献   

15.
The digestive tract of Hoplosternum thoracatum consists of an esophagus, gastric area, anterior digestive intestine with elaborate folds, digestive intestine with decreasing folds and thin, smooth-surfaced respiratory intestine. The upper tract has a mucoid columnar lining which is gently folded, whereas the gastric area has numerous pits opening into the tubular secretory glands. Striated muscle comprises the anterior muscularis but is replaced by inner circular and outer longitudinal smooth muscle layers in the gastric region. The digestive intestinal mucosa is elaborately folded, consisting of columnar cells with prominent brush borders. Mucosa, submucosa, circular and longitudinal muscularis and serosa layers are present throughout the tract. Goblet cells occur in both the digestive and respiratory intestine. Major changes that appear in the respiratory intestine are a drastic reduction in mucosa epithelial thickness and the penetration of an elaborate capillary bed into the epithelium. The other basic layers are not significantly reduced in thickness. The air-blood barrier consists of the thin epithelium, basement lamina and very thin capillary endothelium. Regional cellular composition and ultrastructural features are correlated with respective digestive and respiratory functions.  相似文献   

16.
The secretory activity of parathyroid glands in rats was stimulated by decreasing the serum Ca++ concentration through constant intravenous infusion of EGTA. The morphometric analysis of the nuclear and cytoplasmic volume and of the surface area of the rough endoplasmic reticulum, Golgi complex, secretory granules and plasma membrane revealed a membrane shift from secretory granules and Golgi complex to the plasma membrane within 1 hr of calcium depression. Subsequently, between 1 and 3 hr of calcium depression, the membrane shift was from the plasma membrane to the Golgi complex. It is considered likely that these membrane shifts are related to a rise in release of parathyroid hormone by exocytosis and a subsequent increase in retrieval of plasma membrane by endocytosis—probably through the compartment of coated pits and coated and uncoated vesicles.  相似文献   

17.
The epithelium of anterior midgut of adult Cenocorixa bifida was examined with light and electron microscopy. The folded epithelium is composed of tall columnar cells extending to the lumen, differentiating dark and light cells with interdigitating apices and regenerative basal cells in the nidi surrounded by villiform ridges that penetrate deeply into the epithelium. The columnar cells display microvilli at their luminal surface. Microvilli lined intercellular spaces and basal plasma membrane infoldings are associated with mitochondria. These ultrastructural features suggest their role in absorption of electrolytes and nutrients from the midgut lumen. The columnar cells contain large oval nuclei with prominent nucleoli. Their cytoplasm is rich in rough endoplasmic reticulum, Golgi complexes and electron-dense secretory granules indicating that they are also engaged in synthesis of digestive enzymes. The presence of secretory granules in close proximity of the apical plasma membrane suggests the release of secretion is by exocytosis. The presence of degenerating cells containing secretory granules at the luminal surface and the occurance of empty vesicles and cell fragments in the lumen are consistent with the holocrine secretion of digestive enzymes. Apical extrusions of columnar cells filled with fine granular material are most likely formed in response to the lack of food in the midgut. The presence of laminated concretions in the cytoplasm is indicative of storageexcretion of surplus minerals. The peritrophic membrane is absent from the midgut of C. bifida.  相似文献   

18.
The cardiac and pyloric glands in the gastric mucosa of the South African hedgehog, Atelerix frontalis, are described. The cardiac area of the stomach contains proper cardiac glands and lacks undifferentiated fundic glands. The cardiac glands are simple tubular, coiled, and lined with columnar cells ultrastructurally similar to those of the gastric surface epithelium. Secretory granules with varying electron densities fill the apical cytoplasm of these cells. In contrast to other mammals, these glands lack mucous neck cells. The neck of the pyloric glands contains only a single cell type, whereas the basal regions of these glands contain “light” and “dark” cells. The secretory granules in the “dark” cells and the pyloric neck cells have a moderate electron density and often contain an electron dense core. An electron-lucent cytoplasm with numerous polysomes is characteristic of the “light” cells. Some “light” cells contain electron-dense granules in the apical cytoplasm. The presence of only neutral mucins in the cardiac gland cells denotes the absence of mucous neck cells. The acidic mucins within the pyloric neck cells seem to indicate that these cells are mucous neck cells, whereas the neutral mucins within the basally located pyloric gland cells show at least a partial functional difference from the pyloric neck cells. © 1993 Wiley-Liss, Inc.  相似文献   

19.
The mucous gland of the red-spotted newt, Notophthalamus viridescens viridescens, Rafinesque was examined by histochemical and ultrastructural techniques and its cytological responses to various hormonal conditions were studied. Its secretory epithelial cells produce and release in merocrine fashion a neutral, unsulphated mucosubstance. The secretory epithelium is bounded peripherally by a thin, but apparent non-functional, myo-epithelium. The duct of this mucous gland consists of a single keratinized tubular cell that extends from the neck region of the gland to the surface of the epidermis. Mucous secretion is absent or greatly reduced on the skins of newts maintained under laboratory conditions for a few weeks but reappears after injection of ovine prolactin. Mucous glands in laboratory conditioned animals show a 4-fold increase in volume brought about by the engorgement of their epithelial cells with secretory granules. Ovine prolactin reduces the volume of the glands to unconditioned levels with a corresponding reduction in granular content, suggesting that prolactin functions in the release of the granules. This view is reinforced by the findings that autotransplantation of the pituitary gland prevents the conditioning effect and that glandular volume increases in auto-transplanted animals given ergocornine. Granular accumulation begins also in hypophysectomized newts but ceases after a week, indicating the need for some hypophyseal factor in the synthesis as well as the release of the granules. Ovine prolactin restores mucous glands of hypophysectomized newts to the unconditioned state. Contrary to earlier findings, ovine prolactin induces a reduction in the volume of the mucous gland in thyroidectomized newts.  相似文献   

20.
Summary Complex carbohydrate components of secretory granules and the glycocalix were analysed in surface epithelia, endoepithelial glands and exoepithelial tubuloalveolar glands of the biliary-ductular system (guinea pig). Brunner glands and pyloric glands were studied for comparison. The columnar epithelial cells of the gallbladder and biliary ducts displayed a well-developed PAS-positive apical glycocalix. These materials strongly bound Ricinus communis AI, Ulex europaeus I, Lotus tetragonolobus A and wheat-germ-A lectins. With the exception of Lotus A lectin which did not bind at all, the same lectins stained the basolateral cell surface. The secretory granules in the supranuclear regions of surface epithelia and in the exoepithelial glands strongly bound Ricinus A I, Ulex europaeus I, wheat-germ-A and Helix pomatia lectins. Concanavalin A was less intensively bound by the secretions of tubuloalveolar glands than by the secretory granules in surface epithelia. The luminal and basolateral cell surfaces of glandular cells in the exoepithelial glands were stained by the same spectrum of lectins as were the less distinct. In the guinea pig, the lectin-binding patterns of tubuloalveolar glands in the biliary ducts closely resembled those of Brunner glands and pyloric glands. The secretions of the tubuloalveolar glands were different from the secretion of surface epithelia, as they bound Concanavalin A less intensively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号