首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
目的:观察甲状旁腺激素(PTH)对成骨细胞中Cl C-3氯通道表达及成骨分化影响,初步探索Cl C-3介导PTH在细胞成骨分化中的作用。方法:采用10-8M、10-9M、10-10M PTH持续刺激和间断刺激MC3T3-E1细胞72 h后,通过CCK-8试剂盒法检测MC3T3-E1细胞的增殖情况,Real-Time PCR法检测MC3T3-E1细胞中Clcn3及成骨相关基因Alp、Runx2的表达情况,免疫荧光法检测10-9M PTH不同给药方式下对Cl C-3蛋白表达的影响。结果 :经不同浓度PTH连续和间断处理72 h后,结果显示10-9 M PTH间断刺激的MC3T3-E1细胞的增殖能力最强,且其Alp、Runx2 m RNA表达均高于10-8 M组和10-10 M组(P<0.05),而相同浓度间断刺激的MC3T3-E1细胞成骨相关基因的表达均高于持续刺激组,以10-9M间断刺激组差异最显著(P<0.05),而10-8 M和10-10M均无统计学差异(P>0.05),10-9 M PTH刺激的MC3T3-E1细胞中Cl C-3蛋白表达也显著增加(P<0.05)。结论 :成骨细胞的Cl C-3氯通道能够响应PTH的刺激发生变化,并伴随着成骨相关基因Alp、Runx2表达的增强。  相似文献   

3.
In continuation of the investigation of osteogenic potential of solvent fractions of ethanolic extract of Cissus quadrangularis (CQ), an ancient medicinal plant, most notably known for its bone-healing properties, to isolate and identify antiosteoporotic compounds. In the current study, we report the effect of hexane fraction (CQ-H) and dichloromethane fraction (CQ-D) of CQ on the differentiation and mineralization of mouse preosteoblast cell line MC3T3-E1 (subclone 4). Growth, viability, and proliferation assays revealed that low concentrations (0.1, 1, and 100 ng/ml) of both solvent fractions were nontoxic, whereas higher concentrations were toxic to the cells. Differentiation and mineralization of MC3T3-E1 with nontoxic concentrations of CQ-D and CQ-H revealed that CQ-D delayed the mineralization of MC3T3-E1 cells. However, early and enhanced mineralization was observed in cultures treated with nontoxic concentrations of CQ-H, as indicated by Von Kossa staining and expression profile of osteoblast marker genes such as osterix, Runx2, alkaline phosphatase (ALP), collagen (Col1a1), integrin-related bone sialoprotein (IBSP), osteopontin (OPN), and osteocalcin (OCN). These findings suggest CQ-H as the most efficacious solvent fraction for further investigation to isolate and identify the active compounds in CQ-H.  相似文献   

4.
5.
6.
Naringin is considered the main effective compound of Drynaria Rhizome, which is used commonly in the treatment of osteoporosis in traditional Chinese medicine. However, we found neoeriocitrin, a new compound isolated from Drynaria Rhizome, showed a better activity than naringin on proliferation and osteogenic differentiation in MC3T3-E1. Both neoeriocitrin and naringin exhibited the best effect on proliferation and osteogenic differentiation at concentration of 2 μg/ml. Neoeriocitrin more significantly improved proliferation and alkaline phosphatase (ALP) activity as well as up-regulated Runx2, COLI and OCN expression by 56%, 37% and 14% respectively than naringin. Furthermore, neoeriocitrin could rescue the inhibition effect of cell differentiation induced by PD98059 to some degree. Therefore, neoeriocitrin may be a new promising candidate drug for treatment of osteoporosis.  相似文献   

7.
8.
Induction of osteoblast differentiation indices by statins in MC3T3-E1 cells   总被引:11,自引:0,他引:11  
Statins inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which catalyzes conversion of HMG-CoA to mevalonate, a rate-limiting step in cholesterol synthesis. The present study was undertaken to understand the events of osteoblast differentiation induced by statins. Simvastatin at 10(-7) M markedly increased mRNA expression for bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), alkaline phosphatase, type I collagen, bone sialoprotein, and osteocalcin (OCN) in nontransformed osteoblastic cells (MC3T3-E1), while suppressing gene expression for collagenase-1, and collagenase-3. Extracellular accumulation of proteins such as VEGF, OCN, collagenase-digestive proteins, and noncollagenous proteins was increased in the cells treated with 10(-7) M simvastatin, or 10(-8) M cerivastatin. In the culture of MC3T3-E1 cells, statins stimulated mineralization; pretreating MC3T3-E1 cells with mevalonate, or geranylgeranyl pyrophosphate (a mevalonate metabolite) abolished statin-induced mineralization. Statins stimulate osteoblast differentiation in vitro, and may hold promise drugs for the treatment of osteoporosis in the future.  相似文献   

9.
While the role of p75NTR signaling in the regulation of nerve-related cell growth and survival has been well documented, its actions in osteoblasts are poorly understood. In this study, we examined the effects of p75NTR on osteoblast proliferation and differentiation using the MC3T3-E1 pre-osteoblast cell line. Proliferation and osteogenic differentiation were significantly enhanced in p75NTR-overexpressing MC3T3-E1 cells (p75GFP-E1). In addition, expression of osteoblast-specific osteocalcin (OCN), bone sialoprotein (BSP), and osterix mRNA, ALP activity, and mineralization capacity were dramatically enhanced in p75GFP-E1 cells, compared to wild MC3T3-E1 cells (GFP-E1). To determine the binding partner of p75NTR in p75GFP-E1 cells during osteogenic differentiation, we examined the expression of trkA, trkB, and trkC that are known binding partners of p75NTR, as well as NgR. Pharmacological inhibition of trk tyrosine kinase with the K252a inhibitor resulted in marked reduction in the level of ALPase under osteogenic conditions. The deletion of the GDI binding domain in the p75NTR-GFP construct had no effect on mineralization. Taken together, our studies demonstrated that p75NTR signaling through the trk tyrosine kinase pathway affects osteoblast functions by targeting osteoblast proliferation and differentiation.  相似文献   

10.
In a sequel to investigate osteogenic potential of ethanolic extract of Cissus quadrangularis (CQ), the present study reports the osteoblast differentiation and mineralization potential of ethyl acetate (CQ-EA) and butanol (CQ-B) extracts of CQ on mouse pre-osteoblast cell line MC3T3-E1 (sub-clone 4) with an objective to isolate an antiosteoporotic compound. Growth curve, proliferation, and viability assays showed that both the extracts were nontoxic to the cells even at high concentration (100 µg/ml). The cell proliferation was enhanced at low concentrations (0.1 µg/ml and 1 µg/ml) of both the extracts. They also upregulated the osteoblast differentiation and mineralization processes in MC3T3-E1 cells as reflected by expression profile of osteoblast marker genes such as RUNX2, Osterix, Collagen (COL1A1), Alkaline Phosphatase (ALP), Integrin-related Bone Sialoprotein (IBSP), Osteopontin (OPN), and Osteocalcin (OCN). CQ-EA treatment resulted in early differentiation and mineralization as compared with the CQ-B treatment. These findings suggest that low concentrations of CQ-EA and CQ-B have proliferative and osteogenic properties. CQ-EA, however, is more potent osteogenic than CQ-B.  相似文献   

11.
12.
13.
Prolyl-hydroxyproline (Pro-Hyp) is one of the major constituents of collagen-derived dipeptides. We previously reported that Pro-Hyp promotes the differentiation of osteoblasts by increasing Runx2, osterix and Col1α1 mRNA expression levels. Here, to elucidate the mechanism of Pro-Hyp promotion of osteoblast differentiation, we focus on the involvement of Foxo1 in osteoblast differentiation via Runx2 regulation and the role of Foxg1 in Foxo1 regulation. The addition of Pro-Hyp had no effect on MC3T3-E1 cell proliferation in Foxo1- or Foxg1-knockdown cells. In Foxo1-knockdown cells, the addition of Pro-Hyp increased ALP activity, but in Foxg1-knockdown cells, it had no effect on ALP activity. An enhancing effect of Pro-Hyp on the Runx2 and osterix expression levels was observed in Foxo1-knockdown cells. However, no enhancing effect of Pro-Hyp on osteoblastic gene expression was observed when Foxg1 was knocked down. These results demonstrate that Pro-Hyp promotes osteoblastic MC3T3-E1 cell differentiation and upregulation of osteogenic genes via Foxg1 expression.  相似文献   

14.
15.
16.
17.
18.
We investigated the effects of acerogenin A, a natural compound isolated from Acer nikoense Maxim, on osteoblast differentiation by using osteoblastic cells. Acerogenin A stimulated the cell proliferation of MC3T3-E1 osteoblastic cells and RD-C6 osteoblastic cells (Runx2-deficient cell line). It also increased alkaline phosphatase activity in MC3T3-E1 and RD-C6 cells and calvarial osteoblastic cells isolated from the calvariae of newborn mice. Acerogenin A also increased the expression of mRNAs related to osteoblast differentiation, including Osteocalcin, Osterix and Runx2 in MC3T3-E1 cells and primary osteoblasts: it also stimulated Osteocalcin and Osterix mRNA expression in RD-C6 cells. The acerogenin A treatment for 3 days increased Bmp-2, Bmp-4, and Bmp-7 mRNA expression levels in MC3T3-E1 cells. Adding noggin, a BMP specific-antagonist, inhibited the acerogenin A-induced increase in the Osteocalcin, Osterix and Runx2 mRNA expression levels. These results indicated that acerogenin A stimulates osteoblast differentiation through BMP action, which is mediated by Runx2-dependent and Runx2-independent pathways.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号