首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fast-Transported Glycoproteins and Nonglycosylated Proteins Contain Sulfate   总被引:7,自引:6,他引:1  
35SO4-labeled fast-transported proteins of bullfrog dorsal root ganglion neurons were separated by two-dimensional gel electrophoresis, and their mobilities were compared to similar species labeled with [3H]mannose or [3H]fucose. Fluorography revealed regions of poorly resolved, high molecular weight material, likely to represent sulfated proteoglycans, as well as many well resolved spots that corresponded in mobility to individual [35S]methionine-labeled fast-transported proteins. The majority of these well resolved spots appeared as "families," previously identified as glycoproteins based on their labeling with sugars. Thus, sulfate can be a contributor to the carbohydrate side-chain charge that underlies microheterogeneity. The most heavily 35SO4-labeled species, however, corresponded to fast-transported proteins that were not labeled by either sugar. The relative acid labilities of 35SO4 associated with individual species cut from the gel confirmed the assignments of these spots as glycoproteins or nonglycoproteins. A group of spots intermediate in their acid lability was also detected, suggesting that some proteins may contain sulfate linked to carbohydrate as well as to amino acid residues.  相似文献   

2.
The role carbohydrate residues may play in the sorting of newly synthesized fast-transported proteins during the initiation of fast axonal transport has been examined by identifying individual fast-transported glycoproteins that contain either or both fucose and galactose. [3H]Fucose or [3H]galactose was incorporated together with [35S]methionine in vitro in bullfrog dorsal root ganglia. Fast-transported proteins that accumulated proximal to a ligature on the spinal nerve were separated via two-dimensional gel electrophoresis, and 92 gel spots were analyzed quantitatively for the presence of 35S and 3H. Of these spots, 56 (61%) contained either or both fucose and galactose. Glycomoieties were generally associated with families of charged spots whose isoelectric points could be altered with neuraminidase treatment. Single spots tended to be unglycosylated and were unaffected by neuraminidase. The prevalence of glycoproteins was considerably greater in the higher-molecular weight range. Of the 55 spots analyzed with molecular weight greater than approximately 35,000 daltons, 89% were glycosylated, whereas only 19% of the 37 spots with lower molecular weight contained sugar moieties. When considered in light of previous studies in which similar subpopulations have been described, the current findings suggest that the presence or absence of glycomoieties may represent another criterion by which proteins are sorted during the initiation of fast axonal transport.  相似文献   

3.
The presence of a subset of fast-transported proteins containing sulfate while lacking carbohydrate residues [Stone et al. (1983). J. Neurochem. 41:1085-1089] was confirmed by two-dimensional gel electrophoretic analysis of individual fast-transported proteins double-labeled with 35SO4 and [3H]mannose. Analysis by high-pressure liquid chromatography revealed that the sulfate moieties of these "sulfoproteins" are linked to tyrosine residues. Separation of fast-transported 35SO4-labeled proteins delivered to local regions of axon from proteins en route toward terminal regions demonstrated, on the basis of acid lability of tyrosine-bound sulfate, that the sulfoproteins were localized preferentially in the wavefront of fast-transported proteins. Analysis of individual sulfoproteins confirmed differential transport in that sulfoproteins were present at threefold greater amount in the wavefront than in material off-loaded to local regions of the axon. By contrast, nonsulfated species of molecular weights similar to those of the sulfoproteins were detected in nearly equal amounts in both regions of the transport profile. Treatment of nerve segments containing total 35SO4-labeled fast-transported proteins with sodium carbonate led to solubilization of half the protein-bound sulfate. Exposure of the solubilized proteins to mild acid resulted in the release of approximately 80% of the 35SO4 associated with this fraction. Two-dimensional gel patterns displaying carbonate releasable or nonreleasable fractions are consistent with the most abundantly labeled sulfoproteins being transported within membrane-bound organelles. In terms of apparent destination and subcellular compartmentalization, the sulfoproteins meet critical requirements for consideration as secretable fast-transported proteins.  相似文献   

4.
Effects of the sodium ionophore, monensin, were examined on the passage from neuronal cell body to axon of materials undergoing fast intracellular transport. In vitro exposure of bullfrog dorsal root ganglia to concentrations of drug less than 1.0 micron led to a dose-dependent depression in the amount of fast-transported [3H]leucine- or [3H]glycerol-labeled material appearing in the nerve trunk. Incorporation of either precursor was unaffected. Exposure of a desheathed nerve trunk to similar concentrations of monensin, while ganglia were incubated in drug-free medium, had no effect on transport. With [3H]fucose as precursor, fast transport of labeled glycoproteins was depressed to the same extent as with [3H]leucine; synthesis, again, was unaffected. By contrast, with [3H]galactose as precursor, an apparent reduction in transport of labeled glycoproteins was accounted for by a marked depression in incorporation. The inference from these findings, that monensin acts to block fast transport at the level of the Golgi apparatus, was supported by ultrastructural examination of the drug-treated neurons. An extensive and selective disruption of Golgi saccules was observed, accompanied by an accumulation of clumped smooth membranous cisternae. Quantitative analyses of 48 individual fast-transported protein species, after separation by two-dimensional gel electrophoresis, revealed that monensin depresses all proteins to a similar extent. These results indicate that passage through the Golgi apparatus is an obligatory step in the intracellular routing of materials destined for fast axonal transport.  相似文献   

5.
The compartmentation of fast-transported proteins that possess sulfated tyrosine residues--sulfoproteins--has been examined for further resolution of the possible significance of sulfated tyrosine in routing and delivery of fast-transported proteins. In vitro fast axonal transport of [35S]methionine- or 35SO4-labeled proteins was measured in dorsal root ganglion neurons for analysis of protein compartmentation en route and in synaptic regions. When membrane fractions were exposed to Na2CO3 for separation of "lumenal" and peripheral membrane proteins from integral components of the membrane, approximately 20% of the [35S]methionine incorporated into fast-transported proteins was present in a carbonate-releasable form in the axon, whereas 53% of the incorporated 35SO4 was released by carbonate. Eighty percent of the 35SO4 in this releasable fraction was acid labile, typical of sulfate ester-linked to tyrosine. Sulfoproteins were also detected in synaptosomes and were released into the extracellular medium in a calcium-dependent fashion, an observation suggesting that fast-transported sulfoproteins are secreted. Of the remaining 47% of the fast-transported 35SO4-labeled proteins resistant to carbonate treatment (the integral membrane protein fraction), nearly 60% of the 35SO4 was acid labile. Other membrane stripping agents, such as 0.1 M NaOH, 0.5 M NaCl, or mild trypsin treatment, failed to remove acid-labile 35SO4-labeled species from carbonate-treated membrane. Quantitative comparisons of several of the most abundant sulfoproteins resolved via two-dimensional gel electrophoresis confirmed that approximately 7% of each of the species remained associated with carbonate-treated membranes, presumably as integral membrane components.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Total protein was released from isolated HeLa cell nucleoli by guanidine hydrochloride, purified by cesium chloride density gradient centrifugation, and analyzed by two-dimensional polyacrylamide gel electrophoresis. Conditions of electrophoresis restricted attention to proteins that are positively charged at pH 8.6. Most of the major nucleolar protein spots co-electrophoresed with ribosomal proteins; the majority of ribosomal proteins from both the large and small ribosomal subunits were represented. Several proteins found in association with polysomes but not on ribosomal subunits and several proteins unique to the nucleolus were also identified in these nucleolar protein patterns. In order to determine whether the ribosomal proteins found in the nucleolus represented sizable pools of ribosomal proteins, or merely ribosomal proteins contained in the preribosomal particles, [35S]methionine-labeled nucleoli were mixed with [3H]methionine-labeled polysomes. From analysis of isotopic ratios in individual protein spots it was possible to determine the stoidchiometry of individual ribosomal proteins in the nucleolus relative to their complement on cytoplasmic ribosomes. All but a few proteins exhibited relative nucleolar stoichiometry values of approximately one, indicating that there are not significant pools of most ribosomal proteins in isolated nucleoli.  相似文献   

7.
The proteins of the bioluminescent bacterium Beneckea harveyi have been labelled with [3H]leucine prior to the induction of bioluminescence, and with [14C]leucine during the development of the bioluminescent system. An aliphatic aldehyde dehydrogenase and a NAD(P)H:flavin oxidoreductase, two enzymes that may be directly involved in the metabolism of the substrates (aldehyde, FMNH2) for the luminescent reaction catalyzed by luciferase, were purified and the isotope ratios of their respective polypeptide chains determined after sodium dodecyl sufate gel electrophoresis. A comparison of these isotope ratios to (a) the isotope ratios of the induced polypeptide chains of luciferase, purified in the same experiment, and (b) the average isotope ratio for the proteins synthesized in concert with growth has provided direct evidence that the synthesis of aldehyde dehydrogenase but not NAD(P)H:flavin oxidoreductase is induced during the development of bioluminescence.  相似文献   

8.
C-1300 murine neuroblastoma cells release glycoproteins into the culture medium. The process was studied by prelabeling spinner cultures for 12 to 60 hours with [3H]glucosamine. Then, the medium was removed and replaced with fresh medium lacking radioactive isotope. Soluble material released into the medium during the subsequent 2-hour incubation was collected by trichloroacetic acid precipitation. The released proteins were then separated by discontinuous polyacrylamide gel electrophoresis in buffers containing sodium dodecyl sulfate. The electrophoretograms of glycoproteins obtained from cultures labeled for different lengths of time were very similar; three major radioactive regions centered about molecular weights 87,000, 66,000, and 55,000 were present. When spinner cells were transferred to monolayer culture in the presence of N6,O2' dibutyryl adenosine 3':5'-monophosphate (Bt2cAMP), differentiation (extension of neurites twice the diameter of the perikaryon) was observed. Monolayer cultures grown in the presence of Bt2cAMP and [3H]glucosamine for 12 hours released glycoproteins which gave a gel electrophoresis pattern similar to that obtained using spinner cultures. However, after 60 hours in the presence of Bt2cAMP and [3H]glucosamine, the released radioactive material consisted almost exclusively of glycoproteins of the 66,000 molecular weight class. Similar results were obtained if [3H]fucose was substituted for [3H]glucosamine, or if bromodeoxyuridine (which also induced differentiation) was substituted for Bt2cAMP. Similar experiments using radioactive amino acids were conducted with both spinner and monolayer cultures. Much of the released radioactive material was contained in the same three molecular weight classes as the glycoproteins released by spinner cells prelabeled with [3H]glucosamine, and this pattern did not vary with length of labeling period or type of culture. These results may imply that the glycosylation of released proteins is influenced by agents which can induce differentiation. The origin of this released material is discussed. [3H]Glucosamine-labeled glycoproteins of the molecular weight class centered about 55,000 (discussed above) were isolated by preparative gel electrophoresis. They co-migrated with authentic mouse brain microtubular protein as two closely spaced bands on a number of different electrophoretic systems. This protein fraction was also characterized as complexing with a monospecific antitubulin antibody.  相似文献   

9.
Oviduct tissue slices were incubated with [3H]-leucine or [3H]-mannose in the presence and absence of tunicamycin, a specific inhibitor of lipid-mediated protein glycosylation. Conditions were established where tunicamycin had maximal effect on [3H]-mannose incorporation (greater than 90% inhibition) but a minimal effect on [3H]-leucine incorporation (less than 10% inhibition) into total TCA-insoluble products. Analysis of incubated tissues by SDS-polyacrylamide gel electrophoresis revealed that in the absence of tunicamycin, [3H]-mannose was incorporated into only a few proteins, of which ovalbumin represented the major radiolabeled component. Tunicamycin markedly reduced the incorporation of [3H]-mannose into ovalbumin and other oviduct glycoproteins. In contrast, analysis by SDS-polyacrylamide gel electrophoresis showed that [3H]-leucine was incorporated into a variety of proteins in the absence of tunicamycin. The radioactivity profile of some of these proteins was shifted toward lower Mr when oviduct slices were incubated in the presence of tunicamycin, with only a minimal decrease in protein labeling. Light microscopic autoradiograms of tissue incubated with [3H]-leucine in either the presence or absence of tunicamycin exhibited extensive labeling of tubular gland and epithelial cells. In the absence of tunicamycin, these cell types also become markedly labeled with [3H]-mannose; however, incorporation of label in both cell types was substantially reduced in the presence of tunicamycin. Qualitatively, labeling of tubular gland cells appeared greater than that of epithelial cells, largely due to the concentration of silver grains over the dense population of secretory vesicles in the tubular gland cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
An easy to use and robust approach for amino acid type selective isotope labeling in insect cells is presented. It relies on inexpensive commercial media and can be implemented in laboratories without sophisticated infrastructure. In contrast to previous protocols, where either high protein amounts or high incorporation ratios were obtained, here we achieve both at the same time. By supplementing media with a well considered amount of yeast extract, similar protein amounts as with full media are obtained, without compromising on isotope incorporation. In single and dual amino acid labeling experiments incorporation ratios are consistently ≥90% for all amino acids tested. This enables NMR studies of eukaryotic proteins and their interactions even for proteins with low expression levels. We show applications with human kinases, where protein–ligand interactions are characterized by 2D [15N, 1H]- and [13C, 1H]-HSQC spectra.  相似文献   

11.
Retinol-binding protein and prealbumin were isolated from duck plasma by chromatography on DEAE-cellulose-and DEAE-Sephadex A-50, gel filtration on Sephadex G-100 and preparative Polyacrylamide gel electrophoresis. The molecular weights of the retinol-binding protein-prealbumin complex, prealbumin and retinol-binding protein were found to be 75,000, 55,0000 and 20,000, respectively. On sodium dodecyl sulphate Polyacrylamide gel electrophoresis, prealbumin dissociated into identical subunits exhibiting a molecular weight of 13,500. Retinol-binding protein exhibited microheterogeneity on electrophoresis, whereas prealbumin moved as a single band unlike the multiple bands observed in chicken and rat. The ultraviolet and fluorescence spectra of the two proteins were similar to those isolated from other species. No carbohydrate moiety was detected in either retinol-binding protein or prealbumin. Duck retinol-binding protein and prealbumin showed cross-reactivity with their counterparts in chicken but differed immunologically from those of goat and man. Retinol-binding protein and prealbumin could be dissociated at low ionic strength, in 2M urea, by CM-sephadex chromatography or on preparative electrophoresis. Although the transport of retinol in duck plasma is mediated by carrier proteins as in other species, it is distinguished by the absence of microheterogeneity in prealbumin and of an apo-retinol-binding protein form that could be transported in the plasma.  相似文献   

12.
We have studied the biosynthesis of rat gastric mucin in stomach segments using an antiserum against rat gastric mucin specific for peptide epitopes. Pulse-chase experiments were performed with [35S]methionine, [3H]galactose, and [35S]sulfate to label mucin precursors in different stages of biosynthesis, which were analyzed after immunoprecipitation. The earliest mucin precursor that could be detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was a 300-kDa protein. The occurrence of N-linked "high-mannose" oligosaccharides on this protein was shown by susceptibility to degradation by endo-beta-N-acetylglucosaminidase H. This precursor could be labeled with [35S]methionine and not with [3H]galactose or [35S]sulfate. The 300-kDa precursor was converted into mature mucin after extensive glycosylation and sulfation. The mature mucin but not the 300-kDa precursor was in part secreted into the medium. Specific inhibition of sulfation with sodium chlorate had no effect on rate and amount of mucin secretion. In addition, we show that two core proteins are expressed in rats, slightly varying in Mr among individual animals.  相似文献   

13.
A set of non-histone proteins has been identified in the nuclei from liver, brain, spleen and testis tissues of the rat. Following moderate digestion of thoroughly washed nuclei with DNase I or micrococcal nuclease, EDTA was added to 5 mM to the reaction mixture and the preparation centrifuged. We found that the supernatant contained a limited amount of non-histone proteins (fraction S1). Sodium dodecyl sulfate (SDS) gel electrophoresis revealed S1 to be composed of a remarkably simple set of proteins resolved into four groups (A-D) each possessing closely spaced doublets or a triplet. Their molecular weights were A, 76 100-80 000; B, 48 200-49 500; C, 44 500-45 200 and D, 39 500-41 500. The yield suggested that these proteins were structural constituents; however, they did not coincide with the known structural proteins of the cell nucleus. Two-dimensional gel electrophoresis further resolved each of the SDS bands into as many as nine spots, according to various charges. Some were labelled with [32P]orthophosphate in vivo, or with [gamma-32P]ATP and purified nuclear protein kinase NII in vitro. The released proteins B-D had fairly constant relative molar ratios at various times of digestion, thereby indicating possible localizations at similar sites in the nucleus. The kinetic data together with the aggregation property at neutral pH values and the solubility in 5 mM EDTA suggest that proteins B-D constitute a group of proteins that have several common characteristics.  相似文献   

14.
Isoprenylated Proteins in Myelin   总被引:1,自引:0,他引:1  
Abstract: Incubation of rat brainstem slices with [3H]- mevalonate ([3H]MVA) in the presence of lovastatin resulted in the incorporation of label into three groups of myelin-associated proteins with molecular masses of 47, 21–27, and 8 kDa, as revealed on sodium dodecyl sulfate- polyacrylamide rod gel electrophoresis. Although the gel patterns of [3H]MVA-derived prenylated proteins were similar, the relative level of 3H incorporated into each protein species differed between myelin and the brainstem homogenate. Immunoprecipitation studies identified the 47-kDa prenylated protein as a 2′-3′-cyclic nucleotide phospho- diesterase, whereas the 8-kDa protein proved to be the γ subunit of membrane-associated guanine nucleotide regulatory protein. The 3H-labeled 21–27-kDa group in myelin corresponds to the molecular mass of the extensive Ras- like family of monomeric GTP-binding proteins known to be prenylated in other tissues. Increase in lovastatin concentration resulted in reduced levels of [3H]MVA-labeled species in myelin and concomitantly increased levels in the cytosol. A cold MVA chase restored to normality the appearance of [3H]MVA-labeled proteins in myelin. Furthermore, a high lovastatin concentration in the brainstem slice incubation mixture altered the appearance of newly synthesized nonprenylated myelin proteins, including proteolipid protein and the 17-kDa subspecies of myelin basic protein. Because other myelin proteins were unaffected by the high lovastatin concentration, restricting the availability of MVA in myelin-forming cells may selectively alter processes required for myelinogenesis. Although the molecular basis for the” different MVA requirements in myelin- forming cells remains undefined, it may involve an alteration in the biological activity of certain proteins that require prenylation to be functionally active, and that are responsible for promoting insertion of specific proteins into the myelin membrane.  相似文献   

15.
A strategy that facilitates the identification of substrates for protein carboxyl methyltransferases that form "stable" methyl esters, i.e., those that remain largely intact during conventional polyacrylamide gel electrophoresis is described. Rat PC12 cells were cultured in the presence of adenosine dialdehyde (a methylation inhibitor) to promote the accumulation of hypomethylated proteins. Nonidet P-40 cell extracts were then incubated in the presence of S-[methyl-3H]adenosyl-L-methionine to label methyl-accepting sites via endogenous methyltransferases. After labeled proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel slices were incubated in 4 N methanesulfonic acid or 6 N HCl to hydrolyze methyl esters. The resulting [3H]methanol was detected by trapping in liquid scintillation fluid. Seven carboxyl methylated proteins were observed with masses ranging from 18 to 96 kDa. Detection of five of these proteins required prior treatment of cells with adenosine dialdehyde, while methyl incorporation into one protein at 18 kDa was substantially enhanced by the treatment. The use of acidic conditions for methyl ester hydrolysis has an important advantage over assays that utilize alkaline hydrolysis conditions. In PC12 cells, and possibly other cell types where there are significant levels of arginine methylation, the methanol signal becomes obscured by high levels of volatile methylamines generated under the alkaline conditions. Carrying out diffusion assays under acidic conditions eliminates this interference. Adenosine dialdehyde, by virtue of increasing the methyl-accepting capacity of substrates for protein carboxyl methyltransferases, in combination with a more selective assay for carboxyl methylation, should prove useful in the isolation and characterization of new protein carboxyl methyltransferases and their substrates.  相似文献   

16.
The development of high throughput utilities to identify proteins is a major challenge in present research in the field of proteomics. One such utility, the molecular scanner, uses proteins separated by two-dimensional polyacrylamide gel electrophoresis that are digested in the gel and during transfer onto a collecting membrane. After adding a matrix, the membrane is inserted into a matrix-assisted laser desorption/ionization-time of flight mass spectrometer and a peptide mass fingerprint (PMF) is measured for every scanned site. Since the spacing between scanned sites is much smaller than the size of the most abundant protein spots, there is a certain redundancy in the data that was used in an earlier experiment with Escherichia coli [1] to improve mass calibration and PMF identification results. It was observed that the signal intensity of a peptide mass as a function of the position on the membrane showed similar patterns if peptides stemmed from the same protein. Taking account of these similarities a clustering algorithm was used to find lists of experimental masses with similar intensity distributions, which provided clearer identification of the corresponding proteins. Here, these methods are applied to a human plasma scan, where proteins were highly modified and less separated. The presence of very abundant proteins like albumin and immunoglobulins added another difficulty. The calibration of the initial PMFs was not satisfactory and masses had to be recalibrated. After discarding chemical noise, the membrane was partitioned into regions and for each region protein identification was carried out separately. A new scoring method was used, where the PMF score was multiplied by a factor that measures the similarity of matching peptides. This method proved to be more robust than the method developed in [1] if the region where a protein was found had an extended, nonspherical shape and strong overlap with regions of other proteins. Many proteins annotated on the SWISS-2D PAGE human plasma master gel could be clearly identified and many interesting properties were observed.  相似文献   

17.
Synthesis of cytoplasmic DNA-binding proteins was investigated after a shift from the nonpermissive to the permissive temperature in NRK cells transformed by a temperature-sensitive mutant of Rous sarcoma virus [ts339(RSV)]. Cells were labeled for several generations in [3H]leucine and were pulse-labeled with [35S]methionine for 1 h at the nonpermissive temperature (39 degrees C) and at the permissive temperature (33 degrees C, 5 h after shift from 39 degrees C). Proteins binding to sequential columns of double-stranded and single-stranded DNA-cellulose were examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, and the 35S/3H ratios were obtained for each column fraction and for individual polypeptides. The protein fractions binding to single-stranded, but not double-stranded, DNA and eluting at high salt concentrations (greater than 0.60 M NaCl) showed elevated 35S/3H ratios. This indicated increased synthesis of these proteins within 5 h after the onset of transformation. The majority of the polypeptides in these fractions showed increased synthesis as a consequence of transformation. One prominent polypeptide among them constituted 0.1% of the cytosol protein and had a molecular weight of 93,000. We conclude that the synthesis of proteins binding tightly to single-stranded DNA is increased early after the onset of transformation.  相似文献   

18.
SDS-polyacrylamide gel electrophoresis was used to characterize labeled proteins transported in rat motor and sensory axons after application of 3H-leucine to the neuron cell bodies. Two types of experiments were performed: first, transported protein accumulating proximal to a ligature placed on the sciatic nerve was analyzed; second, the segment of sciatic nerve nearest to the "wavecrest" of transported protein travelling down the nerve was analyzed. In both cases, no significant differences in peak position or amplitude were found in gels containing labeled proteins from motor or sensory axons. This may mean that the majority of fast-transported protein is involved in an axonal function common to the two types of neuron.  相似文献   

19.
(1) Poly(A)-containing mRNAs from total polysomal RNA of regenerating rat liver were incubated with [3H]leucine in a wheat germ cell-free system. Ribosomal proteins were purified as described previously [1], and with two-dimensional gel electrophoresis. The proteins on the gel except for less basic protein had appreciable radioactivity, whereas the surrounding areas had very low radioactivity. Acetic acid-soluble proteins labeled in this system were subjected to three-dimensional gel electrophoresis [2]. Except for L1 and L2 proteins, each of the ribosomal proteins, including less basic ones, showed a major radioactive peak coinciding with the protein band on SDS gel. Thus, the wheat germ cell-free system completely translates almost all mRNAs for individual ribosomal proteins. Equimolar amounts of almost all ribosomal proteins were synthesized in the presence of the saturating concentration of mRNAs. (2) Free polysomes from regenerating rat liver were fractionated into three sizes. Each class of polysomes was incubated with [3H]leucine. Ribosomal proteins with molecular weights of 40 000 to 21 000 were mainly synthesized by Fraction B (5-14 monomeric ribosomes), L1 and L2 [2] with 60 000 and 54 000, by Fraction C (greater than 15 monomeric ribosomes) and B, and ribosomal proteins smaller than 20 000 by Fractions A (less than pentamer) and B. (3) mRNAs from rat liver total polysomes were fractionated into seven classes by size and each was translated in the wheat germ extract. Ribosomal proteins with molecular weights of 54 000 to 30 000 were mainly synthesized by mRNAs of 12 to 14.5 S, ribosomal proteins of 35 000 to 22 000 by those of 9.5 to 12 S, ribosomal proteins of 22 000 to 13 000 by those of 7 to 9.5 S, and smaller ribosomal proteins by those smaller than 7 S. These results indicate that individual ribosomal proteins are synthesized by monocistronic mRNAs, the lengths of which are proportional to the molecular weights of the corresponding ribosomal proteins.  相似文献   

20.
Models of the assembly of cytoskeletal and contractile proteins of eukaryotic cells require quantitative information about the rates of synthesis of individual component proteins. We applied the dual isotope technique of Clark and Zak (1981, J. Biol. Chem., 256:4863-4870) to measure the synthesis rates of cytoskeletal and contractile proteins in stationary and growing cultures of IMR-90 fibroblasts. Fibroblast proteins were labeled to equilibrium with [14C]leucine over several days, at the end of which there was a 4-h pulse with [3H]leucine. Fractional synthesis rates (percent per hour) were calculated from the 3H/14C ratio of cell protein extracts or protein purified by one- or two-dimensional polyacrylamide gel electrophoresis and the 3H/14C ratio of medium-free leucine. The average fractional synthesis rate for total, SDS- or urea-soluble; Triton-soluble; and cytoskeletal protein extracts in stationary cells each was approximately 4.0%/h. The range of values for the synthesis of individual proteins from total cell extracts or cytoskeletal extracts sliced from one-dimensional gels was similar, though this range was greater than that for major proteins of Triton-soluble protein extracts. Three specific cytoskeletal proteins--actin, vimentin, and tubulin--were synthesized at similar rates that were significantly slower than the average fractional synthesis rate for total protein. Myosin, on the other hand, was synthesized faster than average. Synthesis rates were the same for beta-and gamma-actin and polymerized (cytoskeletal extract) vs. Triton-soluble actin. The same was true for alpha- and beta-tubulin and two different forms of vimentin. Synthesis rates were uniformly higher in growing cells, though the same pattern of differential rates was observed as for stationary cells. Synthesis rates in growing cells were higher than the rate necessary to maintain the growth rate, even for those cytoskeletal proteins being synthesized slowly. Therefore, there appears to be some turnover of these cytoskeletal elements even during growth. We conclude that proteins in cytoskeletal extracts may have nonuniform rates of synthesis, but at least one important subclass of cytoskeletal proteins that comprise filament subunits have the same synthesis rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号