首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Residence time distribution studies of gas through a rotating drum bioreactor for solid-state fermentation were performed using carbon monoxide as a tracer gas. The exit concentration as a function of time differed considerably from profiles expected for plug flow, plug flow with axial dispersion, and continuous stirred tank reactor (CSTR) models. The data were then fitted by least-squares analysis to mathematical models describing a central plug flow region surrounded by either one dead region (a three-parameter model) or two dead regions (a five-parameter model). Model parameters were the dispersion coefficient in the central plug flow region, the volumes of the dead regions, and the exchange rates between the different regions. The superficial velocity of the gas through the reactor has a large effect on parameter values. Increased superficial velocity tends to decrease dead region volumes, interregion transfer rates, and axial dispersion. The significant deviation from CSTR, plug flow, and plug flow with axial dispersion of the residence time distribution of gas within small-scale reactors can lead to underestimation of the calculation of mass and heat transfer coefficients and hence has implications for reactor design and scale-up.  相似文献   

2.
Scale-up of cell culture bioreactors is a challenging engineering work that requires wide competence in cell biology, mechanical engineering and bioprocess design. In this article, a new approach for cell culture bioreactor scale-up is suggested that is based on biomechatronic design methodology. The approach differs from traditional biochemical engineering methodology by applying a sequential design procedure where the needs of the users and alternative design solutions are systematically analysed. The procedure is based on the biological and technical functions of the scaled-up bioreactor that are derived in functional maps, concept generation charts and scoring and interaction matrices. Basic reactor engineering properties, such as mass and heat transfer and kinetics are integrated in the procedure. The methodology results in the generation of alternative design solutions that are thoroughly ranked with help of the user needs. Examples from monoclonal antibodies and recombinant protein production illuminate the steps of the procedure. The methodology provides engineering teams with additional tools that can significantly facilitate the design of new production methods for cell culture processes.  相似文献   

3.
Heat transfer simulation in solid substrate fermentation   总被引:1,自引:0,他引:1  
A mathematical model was developed and tested to simulate the generation and transfer of heat in solid substrate fermentation (SSF). The experimental studies were realized in a 1-L static bioreactor packed with cassava wet meal and inoculated with Aspergillus niger. A simplified pseudohomogeneous monodimensional dynamic model was used for the energy balance. Kinetic equations taking into account biomass formation (logistic), sugar consumption (with maintenance), and carbon dioxide formation were used. Model verification was achieved by comparison of calculated and experimental temperatures. Heat transfer was evaluated by the estimation of Biot and Peclet heat dimensionless numbers 5-10 and 2550-2750, respectively. It was shown that conduction through the fermentation fixed bed was the main heat transfer resistance. This model intends to reach a better understanding of transport phenomena in SSF, a fact which could be used to evaluate various alternatives for temperature control of SSF, i.e., changing air flow rates and increasing water content. Dimensionless numbers could be used as scale-up criteria of large fermentors, since in those ratios are described the operating conditions, geometry, and size of the bioreactor. It could lead to improved solid reactor systems. The model can be used as a basis for automatic control of SSF for the production of valuable metabolites in static fermentors.  相似文献   

4.
Scale-up of bioreactors has the intrinsic difficulty of establishing a reliable relationship among physical parameters involved in the design of the new bioreactor and the physiology of the cultured cells. This is more critical in those cases where a more complex operation of the bioreactor is needed, such as in photobioreactors. A key issue in the operation of photobioreactors is establishing a quantification for the interaction between external illumination, internal light distribution and cell growth. In this paper an approach to the scale-up of a photobioreactor for the culture of Spirulina platensis, based on a mathematical model describing this interaction, and the operation of a previous reactor 10 times smaller is presented. The paper describes the approach followed in the scale-up, the analysis of different design constraints, the physical realization of the new bioreactor design, innovative use of plastic material walls to improve reactor safety, and finally the corroboration of its satisfactory operation.  相似文献   

5.
Miniature parallel bioreactors are becoming increasingly important as tools to facilitate rapid bioprocess design. Once the most promising strain and culture conditions have been identified a suitable scale-up basis needs to be established in order that the cell growth rates and product yields achieved in small scale optimization studies are maintained at larger scales. Recently we have reported on the design of a miniature stirred bioreactor system capable of parallel operation [Gill et al. (2008); Biochem Eng J 39:164-176]. In order to enable the predictive scale-up of miniature bioreactor results the current study describes a more detailed investigation of the bioreactor mixing and oxygen mass transfer characteristics and the creation of predictive engineering correlations useful for scale-up studies. A Power number of 3.5 for the miniature turbine impeller was first established based on experimental ungassed power consumption measurements. The variation of the measured gassed to ungassed power ratio, P(g)/P(ug), was then shown to be adequately predicted by existing correlations proposed by Cui et al. [Cui et al. (1996); Chem Eng Sci 51:2631-2636] and Mockel et al. [Mockel et al. (1990); Acta Biotechnol 10:215-224]. A correlation relating the measured oxygen mass transfer coefficient, k(L)a, to the gassed power per unit volume and superficial gas velocity was also established for the miniature bioreactor. Based on these correlations a series of scale-up studies at matched k(L)a (0.06-0.11 s(-1)) and P(g)/V (657-2,960 W m(-3)) were performed for the batch growth of Escherichia coli TOP10 pQR239 using glycerol as a carbon source. Constant k(L)a was shown to be the most reliable basis for predictive scale-up of miniature bioreactor results to conventional laboratory scale. This gave good agreement in both cell growth and oxygen utilization kinetics over the range of k(L)a values investigated. The work described here thus gives further insight into the performance of the miniature bioreactor design and will aid its use as a tool for rapid fermentation process development.  相似文献   

6.
Over the last decade there has been a significant improvement in understanding how to design, operate and scale-up solid-state fermentation bioreactors. The key to these advances has been the application of mathematical modeling techniques to describe the biological and transport phenomena within the system. This review focuses on the advances in understanding that have come from this modeling work, and the insights it has given us into bioreactor design, operation and scale-up. It also highlights two promising bioreactor designs that have emerged over the last decade or so. For processes in which the substrate bed must remain static throughout the fermentation, the most promising design is the Zymotis design of ORSTOM at Montpellier, France, which involves closely spaced internal heat transfer plates within a packed-bed bioreactor. For those processes in which mixing can be tolerated, the stirred bioreactor developed at INRA, in Dijon, France, has been successfully demonstrated at scales of 1–25 t of substrate. Theoretical work suggests that mathematical models will be useful tools in the scale-up process, however, there are no reports that they have been used in the development of any current large-scale process. Rather, the models have been validated against data obtained from laboratory-scale bioreactors. There is an urgent need to test the accuracy and robustness of the models by applying them within real process development.  相似文献   

7.
Commercial culturing of mammalian cell lines is increasing in importance as more biological products unique to mammals are being produced in genetically altered mammalian cells. Most mammalian cells are anchorage dependent, so they must be cultured on a support matrix. This limitation, along with the requirement of a low shear environment, severely effects the scale-up of bench-scale culture systems. The need to culture mammalian cells on a support matrix limits the increase in cell population to a factor of 10-20 before growth virtually stops due to contact inhibition. Commercial culturing systems for anchorage dependent cells are batch processes because of the combination of contact inhibition and support matrix requirements. Development of a continuous bioreactor system could allow both unlimited scale-up and continuous cell-mass production. To design a continuous reactor, a mathematical model to predict the reactor performance should be developed. This paper addresses the development of a mathematical model for predicting continuous bioreactor performance. It was found that anchorage dependent C2C12 mouse myoblast cells, a continuous cell line, followed Monod kinetics for glucose consumption and cell mass production in batch flask experiments, with wmax = 0.040 hrу and Km = 2.5 mM. Furthermore, it was found that these parameters could be used to predict the glucose consumption in a continuous bioreactor operated with constant feed of seeded microcarriers operated at two different residence times. The success of this model implies the possibility of developing a continuous cell harvesting and reinoculation system using a microcarrier bioreactor to produce cell mass.  相似文献   

8.
The dynamic analysis of a continuous, aerobic, fixed-film bioreactor has been performed. Rigorous mathematical models have been developed for a fluidized-bed fermentor with biofilm growth. The transient performance of the reactor is appraised in terms of outlet penicillin concentration for constant, as well as variable carbon substrate feed rates. The effect of the reactor oxygen transfer capacity is elucidated for those cases employing substrate feeding strategies. The results show that penicillin production in a continuous, fixed-film bioreactor reaches a maximum with processing time, but subsequently decreases as cell mass accumulates and substrate deficiencies occur. The maximum production level can be maintained for increased operating times if the substrate supply is continuously increased. The duration of this prolonged production is a direct function of the rate of increase and the operating time at which the increase is initiated. The oxygen transfer capacity of the reactor was found to be important to the effectiveness of a feeding strategy.  相似文献   

9.
The objective of this research was to estimate differences in heat and mass transfer between freeze dryers due to inherent design characteristics using data obtained from sublimation tests. This study also aimed to provide guidelines for convenient scale-up of the freeze-drying process. Data obtained from sublimation tests performed on laboratory-scale, pilot, and production freeze dryers were used to evaluate various heat and mass transfer parameters: nonuniformity in shelf surface temperatures, resistance of pipe, refrigeration system, and condenser. Emissivity measurements of relevant surfaces such as the chamber wall and the freeze dryer door were taken to evaluate the impact of atypical radiation heat transfer during scale-up. “Hot” and “cold” spots were identified on the shelf surface of different freeze dryers, and the impact of variation in shelf surface temperatures on the primary drying time and the product temperature during primary drying was studied. Calculations performed using emissivity measurements on different freeze dryers suggest that a front vial in the laboratory lyophilizer received 1.8 times more heat than a front vial in a manufacturing freeze dryer operating at a shelf temperature of −25°C and a chamber pressure of 150 mTorr during primary drying. Therefore, front vials in the laboratory are much more atypical than front vials in manufacturing. Steady-state heat and mass transfer equations were used to study a combination of different scaleup issues pertinent during lyophilization cycles commonly used for the freeze-drying of pharmaceuticals.  相似文献   

10.
Gas hold-up and the oxygen transfer in the zones of the internal loop airlift reactor with rectangular cross-section was studied. It was found, that the downcomer to the riser gas hold-up ratio depends on the gas flow rate, the physicochemical properties of the system and on the reactor height. The ratio of the downcomer mass transfer coefficient to the global mass transfer coefficient was less than 6%. The ratio of the downcomer to the global mass transfer coefficient slightly increased with increase of the gas flow rate and decreased with increase of the liquid viscosity. The proposed correlation for the global overall mass transfer coefficient predicts the experimental data well within 16.6% deviation. It was confirmed that the reactor height is the important parameter for a design and a scale-up of the airlift reactors.  相似文献   

11.
There is a lack of research into bioreactor engineering and fermentation protocol design in the field of marine bacterial antibiotic production. Most production strategies are carried out at the shake-flask level and lack a mechanistic understanding of the antibiotic production process, offering poor prospects for successful scale-up. This review shows that data need to be collated on media and physical optima differences between the trophophase and idiophase, along with investigations into the control mechanisms for biosynthesis, to allow implementation of novel fermentation protocols. Immobilization may play a part in bioprocess intensification of marine bacterial antibiotic production, through again this area is understudied. Similarly, mass transfer and shear stress data of fermentations are needed to provide the bioreactor design requirements to intensify antibiotic biosynthesis, with process scale-up in mind. The application of bioprocess intensification methods to the production of antibiotics (and other metabolites) from marine microbes will become an important strategy for improving supply of natural products, in order to assess their suitability as chemotherapeutic drugs. Received March 11, 1999; accepted May 4, 1999.  相似文献   

12.
Monolith reactors combine good mass transfer characteristics with low-pressure drop, the principle factors affecting the cost effectiveness of industrial processes. Recently, these specific features of the monolith reactors have drawn the attention toward the application of the monolith reactor in multiphase reaction systems. In this study, we explore the potential application of monolith reactors as bioreactor requiring gas-liquid mass transfer for substrate supply. It is demonstrated on theoretical grounds that the monolith reactor is a competitive alternative to conventional gas-liquid bioreactors such as stirred tanks, packed beds, and airlift bioreactors because it allows for a significant reduction of the energy dissipation that is normally required for gas-liquid contacting. A potential problem of monolith reactors for biological processes is clogging due to biofilm formation. This paper presents experimental results of a study into the formation and possible removal of biofilms during operation of a monolith reactor as suspended cells bioreactor. The results indicate that biofilm formation may be minimized and postponed by a proper choice of operating conditions. Periodic biofilm removal could straightforwardly be achieved by rinsing with water at moderate pressures and allows for stable operation for prolonged periods of time.  相似文献   

13.
《Process Biochemistry》2007,42(1):93-97
Successful scale-up of Azadirachta indica suspension culture for azadirachtin production was done in stirred tank bioreactor with two different impellers. The kinetics of biomass accumulation, nutrient consumption and azadirachtin production of A. indica cell suspension culture were studied in a stirred tank bioreactor equipped with centrifugal impeller and compared with similar bioreactor with a setric impeller to investigate the role of O2 transfer efficiency of centrifugal impeller bioreactor on overall culture metabolism. The maximum cell mass for centrifugal impeller bioreactor and stirred tank bioreactor (with setric impeller) were 18.7 and 15.5 g/L (by dry cell weight) and corresponding azadirachtin concentrations were 0.071 and 0.05 g/L, respectively. Glucose and phosphate were identified as the major growth-limiting nutrients during the bioreactor cultivation. The centrifugal impeller bioreactor demonstrated less shearing and improved O2 transfer than the stirred tank bioreactor equipped with setric impeller with respect to biomass and azadirachtin production.  相似文献   

14.
Trickle-bed root culture reactors are shown to achieve tissue concentrations as high as 36 g DW/L (752 g FW/L) at a scale of 14 L. Root growth rate in a 1.6-L reactor configuration with improved operational conditions is shown to be indistinguishable from the laboratory-scale benchmark, the shaker flask (mu=0.33 day(-1)). These results demonstrate that trickle-bed reactor systems can sustain tissue concentrations, growth rates and volumetric biomass productivities substantially higher than other reported bioreactor configurations. Mass transfer and fluid dynamics are characterized in trickle-bed root reactors to identify appropriate operating conditions and scale-up criteria. Root tissue respiration goes through a minimum with increasing liquid flow, which is qualitatively consistent with traditional trickle-bed performance. However, liquid hold-up is much higher than traditional trickle-beds and alternative correlations based on liquid hold-up per unit tissue mass are required to account for large changes in biomass volume fraction. Bioreactor characterization is sufficient to carry out preliminary design calculations that indicate scale-up feasibility to at least 10,000 liters.  相似文献   

15.
A mini bioreactor (3.0 mL volume) has been developed and shown to be a versatile tool for rapidly screening and quantifying the response of organisms on environmental perturbations. The mini bioreactor is essentially a plug flow device transformed into a well-mixed reactor by a recycle flow of the broth. The gas and liquid phases are separated by a silicone membrane. Dynamic mass transfer experiments were performed to determine the mass transfer capacities for oxygen and carbon dioxide. The mass transfer coefficients for oxygen and carbon dioxide were found to be 1.55 +/- 0.17 x 10(-5) m/s and 4.52 +/- 0.60 x 10(-6) m/s, respectively. Cultivation experiments with the 3.0 mL bioreactor show that (i) it can maintain biomass in the same physiological state as the 4.0 L lab scale bioreactor, (ii) reproducible perturbation experiments such as changing substrate uptake rate can be readily performed and the physiological response monitored quantitatively in terms of the O2 and CO2 uptake and production rates.  相似文献   

16.
Treatment of a gas contaminated with a mixture of benzene, toluene, ethylbenzene, and o-xylene (BTEX) compounds in a 40-cm-deep laboratory-scale bioreactor containing suspended biomass was investigated. Gas treatment efficiency was not significantly impacted by different BTEX mixtures, and approximately 99% removal was achieved for volumetric loadings of 11 to 18 mg-BTEX/L-reactor volume/hr (specific biomass loadings of 0.27 to 0.83 g-BTEX/g-VSS/d; inlet concentrations of total BTEX of 2.3 to 4.3 mg/L) and operational solids retention times (SRTs) of 1.7, 2.7, and 9.2 days. Maximum specific biodegradation rates of the reactor biomass increased as the reactor SRTs decreased. Under specific loadings greater than 1 g-BTEX/g-VSS/d the gas treatment became biokinetically limited, such that BTEX and unidentified BTEX metabolites accumulated in the bioreactor liquid over time. BTEX gas-liquid mass transfer was sufficient in the 40-cm-deep sparged liquid reactor to provide high BTEX treatment efficiency.  相似文献   

17.
Rheology of filamentous fermentations   总被引:1,自引:0,他引:1  
The performance of a bioreactor containing a filamentous fermentation broth is greatly influenced by the rheological properties of the broth. These properties are determined mainly by the concentration of biomass, its growth rate and morphology. Included in the morphology are such factors as the geometry of hyphae (length, diameter, branching frequency), hyphal flexibility and hyphal-hyphal interactions, which can all be affected by the operational design of the reactor. Thus, correlations describing viscosity as a function of biomass only are of limited value. A better understanding of the relations between morphology and rheology may be achieved by a combination of rheological and morphological studies.Rheological properties are normally determined using off-line measurements in-spite of associated problems with sample treatment influencing the results. Equipment for dynamic, on-line, measurement of morphology and rheology is available, but little used in filamentous fermentations. Controlling the rheological properties of mycelial fermentations may be difficult because of the great number of factors influencing mycelial development and/or hyphal-hyphal interactions.Polymer solutions are often used to simulate flow behaviour of filamentous fermentations and scale-up and mass transfer considerations are based on these studies. Although much information has been gained this way, the predictions developed do not include the effect of an active biomass on the mass transfer and flow properties of the culture. It is important to carry out studies on the non-homogeneous fermentation fluids, and develop correlations based on these studies.  相似文献   

18.
An enzymatic process using a packed bed bioreactor with recirculation was developed for the scale-up synthesis of 2-ethylhexyl palmitate with a lipase from Candida sp. 99–125 immobilized on a fabric membrane by natural attachment to the membrane surface. Esterification was effectively performed by circulating the reaction mixture between a packed bed column and a substrate container. A maximum esterification yield of 98% was obtained. Adding molecular sieves and drying the immobilized lipase both decreased the water content at the reactor outlet and around the enzyme, which led to an increase in the rate of esterification. The long-term stability of the reactor was tested by continuing the reaction for 30 batches (over 300 h) with an average esterification yield of about 95%. This immobilized lipase bioreactor is scalable and is thus suitable for industrial production of 2-ethylhexyl palmitate.  相似文献   

19.
Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. We have developed a modified gas lift loop bioreactor employing a defined consortium of Rhodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to Monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 163-169, 1997.  相似文献   

20.
Oxygen transfer measurements using a dynamic method and evaluated with an appropriate mathematical model have been made on a tubular loop bioreactor. Correlations of the type used in tank systems are used to describe the influence of power and aeration rate on the mass transfer coefficient. Yeast cultures grown on hydrocarbon and glucose substrates show growth characteristics similar to conventional tank results. Model considerations for large-scale tubular fermentors allow for the prediction of the steady-state oxygen profiles and maximum reactor length. Combination with two-phase flow and oxygen transfer correlations yields a design procedure for commercial scale tubular loop fermentors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号