首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
We previously obtained somaclonal variants of the important French fry processing cultivar Russet Burbank with significantly enhanced resistance to common scab disease. In this study we have shown the commercial merit of a proportion of these variants through comparison of relative yield and tuber quality with the parent cultivar Russet Burbank. Whilst we showed a weak negative correlation between tuber yield (as assessed by weight of tubers per plant) and relative disease resistance within selected variants, we identified several with equivalent yields to the parent cultivar. Furthermore, two disease-resistant variants (TC-RB8 and NZ-24B) consistently yielded more tuber mass than the parent. The majority of our Russet Burbank variants showed equivalent tuber quality characteristics (occurrence of defects, tuber specific gravity and dry matter content, and flesh colour) and cooking qualities (fry colour and presence of dark end defects) to the parent cultivar. Independent testing by a commercial French fry processor confirmed these quality characteristics. We present data demonstrating that highly common scab disease-resistant somaclonal variants of Russet Burbank have commercially acceptable tuber yield and quality characteristics, comparable to the industry standard and parent Russet Burbank cultivar. We also demonstrate the value of in vitro cell selection techniques for potato cultivar improvement.  相似文献   

2.
Mature fruit of ‘Dangshansuli’ pear has yellow-green skin, while its mutant ‘Xiusu’ has russet fruit skin, which is a genetic variation. To explore the mechanism underlying the russet formation, the fruit spot and epidermal structure were observed, the color, texture, and wax and suberin components were evaluated, and the gene expression levels were confirmed. In the present study, the color, texture and fruit spot of the epidermis differed significantly between ‘Dangshansuli’ and ‘Xiusu’ at 25 days after full bloom (DAFB). The cuticular wax components were alkanes, olefins, alkanoic acids, alcohols and terpenes, and the suberin was composed of fatty acid, α,ω-diacids, ω-hydroxy fatty acids, mainly ferulic acid and primary alcohols in the epidermis of ‘Dangshansuli’ and ‘Xiusu’, which exhibited significant differences at most stages of the development of pear fruits. Moreover, the expression levels of genes involved in wax and suberin were consistent with morphological and biochemical analyses. The results indicated that the suberization of epidermal cells occurred when pear fruit was young and that wax and suberin might contribute to the russet formation on the epidermis of ‘Xiusu’, leading to the significant differences in color, texture, fruit spot, and exocarp structure between ‘Dangshansuli’ and ‘Xiusu’ pears.  相似文献   

3.
The aim of this study was to determine if endophytic bacteria could contribute to cultivar specific interactions between red clover (Trifolium pratense L.) and potatoes (Solanum tuberosum L.) in crop rotations. Endophytic bacteria were isolated from the roots of four red clover cultivars (AC Charlie, Altaswede, Marino and Tempus) grown in the field. Populations of bacteria from each cultivar were similar. The most abundant genus was Rhizobium, but species of Curtobacterium, Pseudomonas, and Xanthomonas were common to all cultivars. Plantlets of two potato cultivars, Russet Burbank and Shepody, were inoculated individually with the seven bacterial isolates most frequently recovered from each red clover cultivar, and grown in Magenta vessels for 6 wk. Significant differences were found for plant height, and wet weights of roots, shoots and their total. Potato cultivars differed for root wet weight only, while red clover cultivar, as a source of bacteria, had a significant effect on all traits except plant height. Differences among bacteria were significant for all traits except shoot wet weight. There was a significant interaction of potato cultivar by red clover cultivar. The potato cultivar Russet Burbank did best with bacteria from the red clover cultivar, Marino; and Shepody, with bacteria from Altaswede.  相似文献   

4.
分枝的数量及角度是决定作物株型的重要农艺性状。有效分枝数决定着作物的穗数或荚果数,进而决定着作物的产量;而分枝角度与光合效率、种植密度和抗病性密切相关,不仅影响作物的产量,也会影响作物的品质。由于分枝在作物生产中具有十分重要的作用,吸引了越来越多的研究者的注意,多个与分枝性状相关的关键基因被鉴定,分枝数目调控的分子机制研究取得了重要进展。过去的研究表明作物分枝受严格的遗传调控,同时也受环境条件的影响。综述了与作物分枝性状相关的基因克隆、表达、功能和分子调控机理方面的研究进展,以及环境因素对分枝的影响,探讨分枝调控在作物品种改良中的应用。  相似文献   

5.
Russet skin is a very important trait that allows pear fruits to defend themselves against biotic and abiotic stresses. Small RNAs from a russet skin mutant ‘Xiusu’ derived from a ‘Dangshansuli’ pear were sequenced by high-throughput sequencing to reveal the role of miRNAs in the regulation of pear russet skin formation. A total of 12,158,547 and 12,053,678 high-quality reads were obtained for ‘Dangshansuli’ and ‘Xiusu’, respectively, with the majority between 19 and 25 nt in size. Forty-four and 45 known miRNAs were identified in the ‘Dangshansuli’ and ‘Xiusu’ libraries, respectively, and these miRNAs belonged to 31 miRNA families. The expression levels of 534 miRNAs varied drastically, ranging from 0 to 493,274 reads with a logarithm of fold changes between ?9.33 and 12.71. In addition, 215 and 228 novel miRNAs with high-abundance were detected in ‘Dangshansuli’ and ‘Xiusu’, respectively. Many miRNAs, especially miR396, miR408, and the novel miRNAs, miR102, miR274, miR42, and miR442, were potentially involved in suberin biosynthesis and showed differential expression between the exocarp of ‘Dangshansuli’ and that of ‘Xiusu’. The relative expression levels of known and novel miRNAs as determined by quantitative PCR indicated that those miRNAs may contribute to the formation of mutant russet pear fruit skin.  相似文献   

6.
The phenomenon of morphogenesis observed in in vitro cultures, as the ability of cultured cells and/or plant tissues to regenerate into a complete plant, is used for propagation of orchard species plants of the genus Fragaria spp. Genetic mechanisms controlling the in vitro morphogenesis process are still not fully understood. Research has been conducted to broaden knowledge about the genetic control of this process. The aim of this study was to determine the effect of cytoplasmic loci on the inheritance of the cell morphogenetic potential within the species Fragaria x ananassa. The study included five strawberry cultivars—‘Dukat’, ‘Jota’, ‘Temptation’, ‘Pastel’ and ‘Senga Sengana’. The third Griffing method of diallel crossing was fully useful for achieving the purpose of the research, because it allowed, by comparing the effects of reciprocal crosses for each crossing combination, determining the possible impact of cytoplasmic loci on the inheritance of morphogenetic abilities in the analyzed cultivars. Evaluation of the effects of reciprocal crosses showed different modes of inheritance of the morphogenetic potential in vitro of plant cells of these strawberry cultivars. The strawberry cultivar ‘Dukat’ transmitted genetic determinants of the morphogenetic potential cytoplasmically. Nuclear transmission of the morphogenetic potential was recorded for the cultivar ‘Senga Sengana’. ‘Jota’, ‘Temptation’ and ‘Pastel’ cultivars passed on this trait in a cytoplasmic-nuclear mode. Morphogenesis efficiency of hybrids, whose maternal forms transmitted the morphogenetic potential in a cytoplasmic-nuclear mode, depended likely on the interaction between the maternal plasmotype and the paternal nuclear genes.  相似文献   

7.
Reconstructing the evolutionary history of crop plants is fundamental for understanding their adaptation profile and the genetic basis of yield-limiting factors, which in turn are critical for future crop improvement. A major topic in this field is the recent claim for a millennia-long ‘protracted’ domestication process. Here we evaluate the evidence for the protracted domestication model in light of published archaeobotanical data, experimental evidence and the biology of the Near Eastern crops and their wild progenitors. The crux of our discussion is the differentiation between events or ‘domestication episodes’ and the later following crop evolutionary processes under domestication (frequently termed ‘crop improvement stage’), which are by definition, still ongoing. We argue that by assuming a protracted millennia-long domestication process, one needlessly opts to operate within an intellectual framework that does not allow differentiating between the decisive (critical) domestication traits and their respective loci, and those that have evolved later during the crop dissemination and improvement following the episodic domestication event. Therefore, in our view, apart from the lack of experimental evidence to support it, the protracted domestication assumption undermines the resolution power of the study of both plant domestication and crop evolution, from the cultural as well as from the biological perspectives.  相似文献   

8.
Trichomes have been implicated as a mechanism which can confer resistance to both plant pests and drought. A study was conducted to provide information regarding genetic variability for trichome distribution and density among three diverse dry bean (Phaseolus vulgaris L.) cultivars, and to characterize the types of trichomes present among the cultivars. Trichomes on the leaf surfaces were micrographed with a scanning electron microscope (SEM) and counted using a stereomicroscope on both the abaxial and adaxial leaf surfaces of the cultivars ‘Bill Z’, ‘Pompadour Checa’ and ‘Diacol Calima’. Straight, hooked, and glandular trichomes were observed on the leaf surfaces of each cultivar. SEM micrographs are presented for the leaf surfaces of each cultivar and trichome type. The abaxial leaf surface had more straight trichomes than the adaxial leaf surface for ‘Pompadour Checa’ and ‘Diacol Calima’, however ‘Bill Z’ had more on the adaxial surface. The opposite relationship existed among the cultivars and leaf surfaces for the hooked trichomes.  相似文献   

9.
Selection of transformed plants is a fundamental requirement for plant molecular breeding. We have developed the use of thesulI gene, whose application has already been described in tobacco [17] for selection in the important potato cultivar Russet Burbank. We found that theSulI marker is highly effective, with efficiency comparable to that ofnptII. Analysis of the effect of thesulI gene on folate metabolism in Russet Burbank under sulfa drug selection demonstrates thatsulI may be an important tool for analysis of folate metabolism in plants.  相似文献   

10.
Nitrogen (N) bioavailability is a primary limiting nutrient for crop and feedstock productivity. Associative nitrogen fixation (ANF) by diazotrophic bacteria in root‐zone soil microbial communities have been shown to provide significant amounts of N to some tropical grasses, but this potential in switchgrass, a warm‐season, temperate, US native, perennial tallgrass has not been widely studied. ‘Alamo’ and ‘Dacotah’ are cultivars of switchgrass, adapted to the southern and northern regions of the United States, respectively, and offer an opportunity to better describe this plant–bacterial association. The nitrogenase enzyme activity, microbial communities, and amino acid profiles in the root‐zones of the two ecotypes were studied at three different plant growth stages. Differences in the nitrogenase enzyme activity and free soluble amino acid profiles indicated the potential for greater nitrogen fixation in the high productivity Alamo compared with the lower productivity Dacotah. Changes in the amino acid profiles and microbial community structure (rRNA genes) of the root‐zone suggest different plant–bacterial interactions can help to explain differences in nitrogenase activity. PICRUSt analysis revealed functional differences, especially nitrogen metabolism, that supported ecotype differences in root‐zone nitrogenase enzyme activity. It is thought that the greater productivity of Alamo increased the belowground flow of carbon into roots and root‐zone habitats, which in turn support the high energy demands needed to support nitrogen fixation. Further research is thus needed to understand plant ecotype and cultivar trait differences that can be used to breed or genetically modify crop plants to support root‐zone associations with diazotrophs.  相似文献   

11.
Companion plants grown as ‘trap crops’ or ‘intercrops’ can be used to reduce insect infestations in field crops. The ways in which such reductions are achieved are being described currently using either a chemical approach, based on the ‘push‐pull strategy’, or a biological approach, based on the ‘appropriate/inappropriate landing theory’. The chemical approach suggests that insect numbers are reduced by chemicals from the intercrop ‘repelling’ insects from the main crop, and by chemicals from the trap‐crop ‘attracting’ insects away from the main crop. This approach is based on the assumptions that (1) plants release detectable amounts of volatile chemicals, and (2) insects ‘respond’ while still some distance away from the emitting plant. We discuss whether the above assumptions can be justified using the ‘appropriate/inappropriate landing theory’. Our tenet is that specialist insects respond only to the volatile chemicals released by their host plants and that these are released in such small quantities that, even with a heightened response to such chemicals, specialist insects can only detect them when a few metres from the emitting plant. We can find no robust evidence in the literature that plant chemicals ‘attract’ insects from more than 5 m and believe that ‘trap crops’ function simply as ‘interception barriers’. We can also find no evidence that insects are ‘repelled’ from landing on non‐host plants. Instead, we believe that ‘intercrops’ disrupt host‐plant finding by providing insects with a choice of host (appropriate) and non‐host (inappropriate) plant leaves on which to land, as our research has shown that, for intercropping to be effective, insects must land on the non‐host plants. Work is needed to determine whether non‐host plants are repellent (chemical approach) or ‘non‐stimulating’ (biological approach) to insects.  相似文献   

12.
The development of durable and broad‐spectrum resistance is an economical and eco‐friendly approach to control crop diseases for sustainable agricultural production. Emerging knowledge of the molecular basis of pathogenesis and plant–pathogen interactions has contributed to the development of novel pathogen‐informed breeding strategies beyond the limits imposed by conventional breeding. Here, we review the current status of pathogen‐assisted resistance‐related gene cloning. We also describe how pathogen effector proteins can be used to identify resistance resources and to inform cultivar deployment. Finally, we summarize the main approaches for pathogen‐directed plant improvement, including transgenesis and genome editing. Thus, we describe the emerging role of pathogen‐related studies in the breeding of disease‐resistant varieties, and propose innovative pathogen‐informed strategies for future applications.  相似文献   

13.
As the human population has increased, so too has the demand for biotically pollinated crops. Bees (Apoidea) are essential for pollen transfer and fruit production in many crops, and their visit patterns can be influenced by floral morphology. Here, we considered the role of floral morphology on visit rates and behaviour of managed honey bees (Apis mellifera) and wild bumble bees (genus Bombus), for four highbush blueberry cultivars (Vaccinium corymbosum L.). We measured five floral traits for each cultivar, finding significant variation among cultivars. Corolla throat diameter may be the main morphological determinant of visit rates of honey bees, which is significantly higher on the wider flowers of cv. ‘Duke’ than on ‘Bluecrop’ or ‘Draper’. Honey bees also visited cv. ‘Duke’ legitimately but were frequent nectar robbers on the long, narrow flowers of cv. ‘Bluecrop’. Bumble bees were infrequent (and absent on cv. ‘Draper’) but all observed visits were legitimate. Crop yield was highest for the cultivar with the highest combined (honey bee + bumble bee) visit rate, suggesting that aspects of floral morphology that affect pollinator visit patterns should be considered in crop breeding initiatives.  相似文献   

14.
Physiological (metabolite analysis) and molecular (gene expression) approaches were used to understand the mechanism underlying russet formation in response to the application of GA3 and CPPU (Forchlorfenuron) in a Japanese table grape cultivar ‘Shine Muscat’. Several different concentrations of GA3 and GA3?+?CPPU [25?mg?L?1 GA3 (A), 25?mg?L?1 GA3?+?5?mg?L?1 CPPU (B), 25?mg?L?1 GA3?+?10?mg?L?1 CPPU (C), and 25?mg?L?1 GA3?+?15?mg?L?1 CPPU (D)] were applied to grape berry clusters at two weeks after flowering (WAF). No russet was observed on the berries treated with the ‘C’ combination. Lower levels of phenylalanine ammonia-lyase (PAL) activity was observed in the treated samples, relative to the untreated material. Reduced peroxide (POD) activity was also observed in response to different treatments, while the expression of Peroxidase 17 and Phenylalanine ammonia-lyase G1 genes mirrored lignin content. Increased activity of 4-coenzyme A ligase (4CL) may contribute to decreasing the level of russet and help to improve grape berry quality.  相似文献   

15.
The fruit of the ‘Dangshansuli’ pear has a greenish yellow skin, whereas its mutant, the ‘Xiusu’ pear, has a russet skin, which represents a genetic variation. It has been demonstrated that the formation of russet fruit in the ‘Xiusu’ pear is related to lignin accumulation in skin exocarp cells. In this study, we localized hydrogen peroxide (H2O2) to the cell wall using transmission electron microscopy (TEM) and quantified the concentrations of H2O2 and polyamines. In addition, the expression levels of genes involved in polyamine biosynthesis were measured in the exocarps of samples of young fruits of ‘Dangshansuli’, ‘Xiusu’, ‘Xiusu’ treated with methylglyoxal bis(guanylhydrazone), and ‘Xiusu’ treated with ethephon. The results obtained could explain the mechanism by which H2O2 participates in polyamine metabolism in the lignification of exocarp cells in the russet fruit mutant. The TEM results showed that free H2O2 is present near the cell wall, where lignin is primarily synthesized, and the H2O2 concentration was highly positively correlated with the lignin concentration. Although H2O2 related to lignification showed no significant correlation with the putrescine or spermine concentration, it was highly positively correlated with the spermidine (Spd) concentration. Additionally, the Spd concentration was significantly positively correlated with altered expression of the polyamine oxidase gene (PbPAO). Taken together, these results have demonstrated that H2O2 involved in lignification originates from the oxidation of Spd by the enzyme PAO, with high expression of the PbPAO gene, which suggests that H2O2 from polyamine metabolism affects lignification in the exocarp of the russet mutant pear.  相似文献   

16.
17.
18.
Translucent tissue defect (TTD) is an undesirable postharvest disorder of potato tubers characterized by the development of random pockets of semi-transparent tissue containing high concentrations of reducing sugars. Translucent areas turn dark during frying due to the Maillard reaction. The newly released cultivar, Premier Russet, is highly resistant to low temperature sweetening, but susceptible to TTD. Symptoms appeared as early as 170 days after harvest and worsened with time in storage (4–9 °C, 95 % RH). In addition to higher concentrations of glucose, fructose and sucrose, TTD resulted in lower dry matter, higher specific activities of starch phosphorylase and glc-6-phosphate dehydrogenase, higher protease activity, loss of protein, and increased concentrations of free amino acids (esp. asparagine and glutamine). The mechanism of TTD is unknown; however, the disorder has similarities with the irreversible senescent sweetening that occurs in tubers during long-term storage, where much of the decline in quality is a consequence of progressive increases in oxidative stress with advancing age. The respiration rate of non-TTD ‘Premier Russet’ tubers was inherently higher (ca. 40 %) than that of ‘Russet Burbank’ tubers (a non-TTD cultivar). Moreover, translucent tissue from ‘Premier Russet’ tubers had a 1.9-fold higher respiration rate than the average of non-translucent tissue and tissue from non-TTD tubers. Peroxidation of membrane lipids during TTD development resulted in increased levels of malondialdehyde and likely contributed to a measurable increase in membrane permeability. Superoxide dismutase and catalase activities and the ratio of oxidized to total glutathione were substantially higher in translucent tissue. TTD tubers also contained twofold less ascorbate than non-TTD tubers. TTD appears to be a consequence of oxidative stress associated with accelerated aging of ‘Premier Russet’ tubers.  相似文献   

19.
Two cherry tomato plant cultivars (Lycopersicon esculentum Miller, cultivars ‘Koko’ and ‘Pepe’) were supplied with high (395 ppm), medium (266 ppm) and low (199 ppm) concentrations of nitrogen to determine the influence of nitrogen fertilization on development, cultivar preference and honeydew production by greenhouse whiteflies, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). The nitrogen, protein, and chlorophyll contents of tomato leaves were higher in the high nitrogen supplied plants than in the medium or low nitrogen supplied plants, but the sugar content showed an inverse relationship. The developmental times of eggs and nymphs decreased as the nitrogen concentrations increased in both cultivars. The preference of T. vaporariorum was compared by counting the number of eggs deposited on leaves in choice and non-choice tests. In the non-choice test, no significant nitrogen treatment effects were observed but the upper plant stratum was preferred for egg laying. In the choice test, there were significant main effects of cultivar and nitrogen concentration. T. vaporariorum laid eggs more on leaves of plants with higher nitrogen at the upper stratum. In both experiments, T. vaporariorum preferred the ‘Koko’ cultivar to the ‘Pepe’ cultivar. The honeydew production of T. vaporariorum nymphs increased with decreasing nitrogen treatment concentrations. The largest honeydew production was detected in the ‘Pepe’ cultivar grown at low nitrogen concentration. It is concluded that cultivar ‘Pepe’ had an advantage over ‘Koko’ in term of T. vaporariorum management program in tomato greenhouses.  相似文献   

20.
Technology development is innovative to many aspects of basic and applied plant transgenic science. Plant genetic engineering has opened new avenues to modify crops, and provided new solutions to solve specific needs. Development of procedures in cell biology to regenerate plants from single cells or organized tissue, and the discovery of novel techniques to transfer genes to plant cells provided the prerequisite for the practical use of genetic engineering in crop modification and improvement. Plant transformation technology has become an adaptable platform for cultivar improvement as well as for studying gene function in plants. This success represents the climax of years of efforts in tissue culture improvement, in transformation techniques and in genetic engineering. Plant transformation vectors and methodologies have been improved to increase the efficiency of transformation and to achieve stable expression of transgenes in plants. This review provides a comprehensive discussion of important issues related to plant transformation as well as advances made in transformation techniques during three decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号