首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Summary Complementation and sequencing analyses revealed that the hopD mutants, which could not support stable maintenance of mini-F plasmids (Niki et al. 1988), had mutations in the hupB gene, and that the hopD410 mutation was an ochre mutation at the 5th Gln position of HU-1. Maintenance and stability of various plasmids, mini-P1 plasmids, mini-F plasmids, and oriC plasmids, were studied in the hupA and hupB mutants (HU mutants), and himA and hip mutants (IHF mutants). Mini-P1 plasmids and mini-F plasmids could not be introduced into the hupA-hupB double deletion mutant. Replication of mini-F plasmids was partially inhibited in the hupB mutants, including the hupB and hopD(hupB) mutants, whereas replication of oriC plasmids was not significantly affected even in the hupA-hupB double deletion mutant. The mini-P1 plasmid was slightly unstable in the himA-hip mutant, whereas the mini-F plasmid was stable.  相似文献   

5.
The O antigen of the Helicobacter pylori lipopolysaccharide is composed of repeating units of fucosylated Lewis (Le) antigens. The α(1,2)-fucosyltransferase (futC) of H. pylori, which catalyzes the conversion of Lex to Ley by addition of fucose, is subject to slipped-strand mispairing involving a homonucleotide (poly-C) tract. To explore the distribution of Le phenotypes within H. pylori cells grown in vitro, 379 single colonies of strain J166 were examined for Le expression. Two major populations with reciprocal Lex/Ley phenotypes were identified. Phenotypes correlated with futC frame status, suggesting that strain J166 represents a mixed population with respect to futC poly-C tract length, which was confirmed by a translational reporter. After hundreds of generations in vitro, phenotypes did not change significantly, indicating that the observed J166 Le diversity reflects the founding population. Since slipped-strand mispairing in the futC poly-C tract was postulated to explain the Ley phenotypic change observed in J166 derivative strain 98–169 isolated 10 months after rhesus monkey challenge, in trans complementation with in-frame futC was performed. Ley synthesis was restored and Lex expression was reciprocally lowered. From these studies, we confirmed the principal role of futC slipped-strand mispairing in Le antigenic variation in vitro and in vivo.  相似文献   

6.
Summary Strains of Escherichia coli K12 carrying a tolA, tolB, lky or exc mutation located at min 16.5 on the genetic map released periplasmic proteins into the extracellular medium. Wild-type genes defined by these mutations have been cloned from E. coli genomic bank made with plasmid pBR328. Subcloning experiments and complementation studies showed that lky and exc mutations were located either in the previously described tolA and tolB genes or in the newly characterized excC and excD genes. Using minicells, excC and excD gene products were identified as proteins with a molecular mass of 19 and 21 kDa, respectively.  相似文献   

7.
Summary Recombinant plasmids carrying ruvA, ruvB, or both were constructed and used to investigate the genetic defects in a collection of UV-sensitive ruv mutants. The results revealed that efficient survival of UV-irradiated cells depends on both ruvA and ruvB, and on a third gene, ruvC, located upstream of the ruvAB operon. Southern blotting analysis was used to locate insertions in ruv and to examine putative deletion mutants. Two Tn10 insertions were located to the region encoding ruvA. Since these insertions caused a deficiency in the activities of both ruvA and ruvB, we concluded that they must exert a polar effect on ruvB. Two putative ruv deletion mutants were shown to be the result of deletion-inversion events mediated during imprecise excision of Tn10. The relevant inversion breakpoints in these mutants were located to ruvA and ruvC.  相似文献   

8.
Summary The pstS gene belongs to the phosphate regulon whose expression is induced by phosphate starvation and regulated positively by the PhoB protein. The phosphate (pho) box is a consensus sequence shared by the regulatory regions of the genes in the pho regulon. We constructed two series of deletion mutations in a plasmid in vitro, with upstream and downstream deletions in the promoter region of pstS, which contains two pho boxes in tandem, and studied their promoter activity by connecting them with a promoterless gene for chloramphenicol acetyltransferase. Deletions extending into the upstream pho box but retaining the downstream pho box greatly reduced promoter activity, but the remaining activity was still regulated by phosphate levels in the medium and by the PhoB protein, indicating that each pho box is functional. No activity was observed in deletion mutants which lacked the remaining pho box or the-10 region. Therefore, the pstS promoter was defined to include the two pho boxes and the-10 region. The PhoB protein binding region in the pstS regulatory region was studied with the deletion plasmids by a gelmobility retardation assay. The results suggest the protein binds to each pho box on the pstS promoter. A phoB deletion mutant was constructed, and we demonstrated that expression of pstS was strictly dependent on the function of the PhoB protein.  相似文献   

9.
Summary Comparative analyses were made between plasmid pSa17, a deletion derivative of pSa that is capable of replicating efficiently in Escherichia coli and plasmid pSa3, a derivative that is defective for replication. By comparing the restriction maps of these two derivatives, the regions essential for replication and for stable maintenance of the plasmid were determined. A 2.5 kb DNA segment bearing the origin of DNA replication of pSa17 was sequenced. A 36 kDa RepA protein was encoded in the region essential for replication. Downstream of the RepA coding region was a characteristic sequence including six 17 bp direct repeats, the possible binding sites of RepA protein, followed by AT-rich and GC-rich sequences. Furthermore, an 8 bp incomplete copy of the 17 bp repeat was found in the promoter region of the repA gene. Based on the hypothesis that RepA protein binds to this partial sequence as well as to intact 17 bp sequences, an autoregulatory system for the synthesis of RepA protein may be operative. Another open reading frame (ORF) was found in the region required for the stability of the plasmid. The putative protein encoded in this ORF showed significant homology to several site-specific recombination proteins. A possible role of this putative protein in stable maintenance of the plasmid is discussed.  相似文献   

10.
11.
12.
13.
14.
LacI mutants obtained following 2 and 6 h of thymine deprivation were cloned and sequenced. The mutational spectra recovered were dissimilar. After 2 h of starvation the majority of mutations were base substitutions, largely G: C→C: G transversions. Frameshift mutations but not deletions were observed. In contrast, following 6 h of starvation, with the exception of the G: C→C: G transversion, all possible base substitutions were recovered. Moreover, several deletions but no frameshift events were observed. The differences in the mutational spectra recovered after two periods of thymine deprivation highlight the role of altered nucleotide pools and the potential influence of DNA replication mechanisms.  相似文献   

15.
Summary A broad host range plasmid containing an operon fusion between the recA and lacZ genes of Escherichia coli was introduced into various aerobic and facultative gram-negative bacteria — 30 species belonging to 20 different genera — to study the expression of the recA gene after DNA damage. These included species of the families Enterobacteriaceae, Pseudomonadaceae, Rhizobiaceae, Vibrionaceae, Neisseriaceae, Rhodospirillaceae and Azotobacteraceae. Results obtained show that all bacteria tested, except Xanthomonas campestris and those of the genus Rhodobacter, are able to repress and induce the recA gene of E. coli in the absence and in the presence of DNA damage, respectively. All these data indicate that the SOS system is present in bacterial species of several families and that the LexA-binding site must be very conserved in them.  相似文献   

16.
Summary An Escherichia coli strain deficient in 1-acyl-sn-glycerol-3-phosphate acyltransferase activity has previously been isolated, and the gene (plsC) has been shown to map near min 65 on the chromosome. I precisely mapped the location of plsC on the chromosome, and determined its DNA sequence. plsC is located between parC and sufI, and is separated from sufI by 74 bp. Upstream of plsC is parC, separated by 233 bp, which includes an active promoter. parC, plsC, and sufI are all transcribed in the counterclockwise direction on the chromosome, possibly in an operon with multiple promoters. The amino-terminal sequence of the partially purified protein, combined with the DNA sequence, reveal 1-acyl-sn-glycerol-3-phosphate acyltransferase to be a 27.5 kDa highly basic protein. The plsC gene product, 1-acyl-sn-glycerol-3-phosphate acyltransferase, is localized to the cytoplasmic membrane of the cell. The amino-terminal sequence of the purified protein reveals the first amino acid to be a blocked methionine residue, most probably a formyl-methionine. The amino acid sequence of 1-acyl-sn-glycerol-3-phosphate acyltransferase has a short region of homology to two other E. coli acyltransferases that utilize acyl-acyl carrier protein as the acyl donor, sn-glycerol-3-phosphate acyltransferase and UDP-N-acetyl-glucosamine acyltransferase (involved in lipid A biosynthesis).  相似文献   

17.
Summary The fimD gene of Escherichia coli K12 was shown to be necessary for surface localization of type 1 fimbriae, since deletion of the gene resulted in a virtually bald phenotype. The FimD protein was found to be located in the outer membrane. Expressed alone, this protein had a very deleterious effect on cell growth. The DNA sequence of the fimD gene was determined; the corresponding amino acid sequence of the FimD protein was compared with those of the PapC and FaeD proteins. A deletion derivative of FimD gave clues as to which parts of the protein were necessary for outer membrane integration.  相似文献   

18.
The gene fimU, located on a recombinant plasmid carrying the Salmonella typhimurium type 1 fimbrial gene cluster is closely related to the Escherichia coli tRNA gene argU. The fimU gene complements an E. coli argU mutant that is a P2 lysogen, thereby allowing the phage P4 to grow in this strain but preventing the growth of phage lambda. In addition, fimU was shown to be involved in fimbrial expression since transformants of the E. coli argU mutant could produce fimbriae only in the presence of fimU but not in its absence, whereas in an E. coli argU+ strain fimbriation did not require the fimU gene.  相似文献   

19.
20.
Summary Mutations in the cysB and cysE genes of Escherichia coli K12 cause an increase in resistance to the gyrase inhibitor novobiocin but not to coumermycin, acriflavine and rifampicin. This unusual relationship was also observed among spontaneous novobiocin resistant (Novr) mutants: 10% of Novr mutants isolated on rich (LA) plates with novobiocin could not grow on minimal plates, and among those approximately half were cysB or cysE mutants. Further analyses demonstrated that cysB and cysE negative alleles neither interfere with transport of novobiocin nor affect DNA supercoiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号