首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of 2,4-O-benzylidene-1,6-di-O-tosyl-D-glucitol (1) with potassium thiolbenzoate afforded the 6-S-benzoyl compound 2 and its 5-benzoate 4, the structure of which was proved chemically. When 1 was acetylated and then treated with the thiolate, the acetylated 6-S-benzoyl compound 19 was obtained in good yield in addition to some 1,6-di-S-benzoyl derivative 21. Treatment of 19 with acetic anhydride-acetic acid-sulfuric acid afforded 2,3,4,5-tetra-O-acetyl-6-S-acetyl-1-O-tosyl-D-glucitol (26), which was converted by sodium methoxide into a mixture of 1,5-anhydro-6-thio-D-glucitol (28) and 1,6-thioanhydro-D-glucitol (29). These two compounds were isolated as their acetates (30 and 31) by column chromatography, or by converting 28 into its S-trityl derivative (32).  相似文献   

2.
Acetalation of 1,6-anhydro-1(6)-thio-D-glucitol (1a) with acetone, formaldehyde, or benzaldehyde afforded 2,3:4,5-diacetals (2a, 2b, and 2c) whose structure, after desulfurization, was proved by mass spectrometry. Upon partial hydrolysis of 2a, one of the isopropylidene groups was split off, and the other migrated to O-3,O-4 to give 4b. In 4b, in the stable conformation, OH-2 occupies an equatorial position, whereas OH-5 is axially oriented. Accordingly, OH-2 reacts faster than OH-5 on methylation of 4b, giving 4e. Hydrolysis of the isopropylidene group of the 2,5-di-O-methyl derivative 4d and subsequent mesylation afforded the corresponding 3,4-di-O-mesyl compound 1c, which showed significant ulcerostatic activity.  相似文献   

3.
2,3,4-Tri-O-acetyl-1,6-anhydro-,β-D-talopyranose gave, in the presence of trifluoromethanesulfonic acid, the two talo ions 7 and 8, which are formed in approximately equal amounts. The hydrolytic ring-opening of the two ions proceeds stereoselectively. From 7 was formed 2,3-di-O-acetyl-1,6-anhydro-β-D-talopyranose and from 8 3,4-di-O-acetyl-1,6-anhydro-β-D-talopyranose, both having an axial, acetoxyl group. The talo ion 9 can undergo ring-contraction to the 1,6-anhydrotalofuranose ion 2. The doubly ring-contracted 1,5-anhydrotalofuranose ion 3, which can arise from 2 and 8, was also formed, and afforded the tri-O-acetyl derivatives of the furanose compounds 5 and 11. The mechanism of the ring-contraction reactions is discussed. 2,3,4-Tri-O-acetyl-1,6-anhydro-β-D-glucopyranose gave preferentially with trifluoromethanesulfonic acid and antimony pentachloride the manno ion 33, which rearranged for the most part into the altro ion 34. The equilibrium between the manno ion 33 and the altro ion 34 is approximately 1:3.  相似文献   

4.
Monotosylation of 1,6-anhydro-β-D-glucofuranose is a highly selective process, which yields the 5-O-tosyl derivative 2 preferentially (77%). By-products of the reaction are the 2-O-monotosyl derivative (6%) and the 2,5- and 3,5-di-O-tosyl derivatives (both 5%). The substitution pattern of all compounds was derived from n.m.r. spectra, especially from those of the acetylated compounds. Attempts to use 2 in the synthesis of 1,6-anhydro-α-L-idofuranose by intermolecular nucleophilic substitution failed, but instead yielded 1,6:3,5-dianhydro-α-L-idofuranose. This first representative of a new class of dianhydrohexoses was characterized by n.m.r. and m.s. Acetylation gave the 2-monoacetate showing an n.m.r. spectrum in agreement with the proposed structure. This tricyclic structure is expected to be very rigid and is composed of four-, five-, six-, seven-, and eight-membered rings.  相似文献   

5.
1,6-Diamino-2,5-anhydro-1,6-dideoxy-l-iditol (31) and its derivatives were synthesized, starting from 2,4-O-benzylidene-1,6-di-O-tosyl-d-glucitol. The 1,6-bis-(acetamido)-l-talo epoxide was readily hydrolyzed to the corresponding l-iditol derivative under anchimeric assistance of the 1-acetamido group. On treatment with formaldehyde-formic acid, diamine 31 gave a tricyclic, 1,4:3,6-bis(N,O-methylene) derivative which was stable under acidic conditions but, according to 13C-n.m.r. spectroscopy, was readily hydrolyzed to an equilibrium mixture in neutral, aqueous solution. The corresponding 1,6-bis(dimethylamino) derivative could be obtained by reducing this equilibrium mixture with borohydride. The different, quaternary salts obtained on methylation of the corresponding 1,6-bis(dimethylamino) derivatives with methyl iodide (aiming at the structure of epi-allo-muscarine) showed no muscarine-like, biological activity.  相似文献   

6.
The synthesis, pharmacological evaluation and molecular modelling study of novel naphthalen-2-yl acetate and 1,6-dithia-4,9-diazaspiro [4.4]nonane-3,8-dione derivatives as potential anticonvulsant agents are described. The newly synthesized compounds were characterized by both analytical and spectral data. Alkylation of 1H-imidazole or substituted piperazine with 1-(2-naphthyl)-2-bromoethanone (2) gave naphthalen-2-yl 2-(1H-imidazol-1-yl) acetate (3) and naphthalen-2-yl 2-(substituted piperazin-1-yl) acetate (48). Moreover, condensation of naphthalen-2-yl 2-bromoacetate or 2-bromo-1-(naphthalen-2-yl) ethanone with hydrazine hydrate and acetylacetone resulted in the formation of the cyclic pyrazole products 9 and 13. Sonication of naphthalen-2-yl acetate (1) with 2-chloropyridine, 2-chloropyrimidine and 2-(chloromethyl) oxirane gave naphthalen-2-yl 2-(pyridin-2-yl) acetate (10), naphthalen-2-yl 2-(pyrimidin-2-yl) acetate (11) and naphthalen-2-yl-3-(oxiran-2-yl) propanoate (12) respectively. Cyclocondensation reaction of 2-iminothiazolidin-4-one (14) with thioglycolic acid, thiolactic acid and thiomalic acid gave 1,6-dithia-4,9-diazaspiro [4.4]nonane-3,8-dione derivatives (1517). The compounds were tested in vivo for the anticonvulsant activity by delaying strychnine-induced seizures. The diazaspirononane (17) and 1-(2-naphthyl)-2-bromoethanone (2) showed a high significant delay in the onset of convulsion and prolongation of survival time compared to phenobarbital. The molecular modelling study of anticonvulsant activity of synthesized compounds showed a CNS depressant activity via modulation of benzodiazepine allosteric site in GABA-A receptors.  相似文献   

7.
A new, four-step synthesis of 2,5:3,6-dianhydro-1-deoxy-d-glucitol 16 was worked out, starting from 1,6-dibromo-1,6-dideoxy-d-mannitol. Compound 16 was converted into different 4-O-acyl derivatives, the 3,6-anhydro rings of which where opened with hydrogen bromide, yielding the corresponding 6-bromo compounds. These were converted, via the 6-azides, into the 6-(dimethylamino) derivatives, the sulfonic esters of which gave, on treatment with base, the 2,5:3,4-dianhydro-d-allitol and -d-galactitol derivatives. These were converted with methyl iodide into the corresponding quaternary salts. On biological testing, only the d-allitol derivative showed weak, muscarine-like activity.  相似文献   

8.
Selective esterification reactions of 1,6-anhydro-3-deoxy-β-D-xylo-hexopyranose(1), 1,6-anhydro-β-D-glucopyranose (7), and several derivatives of 7, were conducted with an acid chloride or acid anhydride in pyridine. Reaction of 1 with p-toluenesulfonyl chloride and with benzoyl chloride gave 70 and 63%, respectively, of the 2-esters. The 2-methyl and 2-benzyl ethers of 7, both having strongly hydrogen-bonded C-4 hydroxyl group, reacted with p-toluenesulfonyl chloride to yield the 4-monosulfonates (71 and 74%, respectively). Esterification of the 2-methyl ether and 2-p-toluenesulfonate of 7 with p-toluenesulfonic anhydride instead of with p-toluenesulfonyl chloride led to increased yields of the 4-p-toluenesulfonates after a shorter reaction-time.  相似文献   

9.
Pyrazolo[5,1-f][1,6]naphthyridine-carboxamide derivatives were synthesized and evaluated for the affinity at CB1 and CB2 receptors. Based on the AgOTf and proline-cocatalyzed multicomponent methodology, the ethyl 5-(p-tolyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxylate (12) and ethyl 5-(2,4-dichlorophenyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxylate (13) intermediates were synthesized from the appropriate o-alkynylaldehydes, p-toluenesulfonyl hydrazide and ethyl pyruvate. Most of the novel compounds feature a p-tolyl (8ai) or a 2,4-dichlorophenyl (8j) motif at the C5-position of the tricyclic pyrazolo[5,1-f][1,6]naphthyridine scaffold. Structural variation on the carboxamide moiety at the C2-position includes basic monocyclic, terpenoid and adamantine-based amines. Among these derivatives, compound 8h (N-adamant-1-yl-5-(p-tolyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxamide) exhibited the highest CB2 receptor affinity (Ki = 33 nM) and a high degree of selectivity (KiCB1/KiCB2 = 173:1), whereas a similar trend in the near nM range was seen for the bornyl analogue (compound 8f, Ki = 53 nM) and the myrtanyl derivative 8j (Ki = 67 nM). Effects of 8h, 8f and 8j on forskolin-stimulated cAMP levels were determined, showing antagonist/inverse agonist properties for such compounds. Docking studies conducted for these derivatives and the reference antagonist/inverse agonist compound 4 (SR144528) disclosed the specific pattern of interactions probably related to the pyrazolo[5,1-f][1,6]naphthyridine scaffold as CB2 inverse agonists.  相似文献   

10.
The 6-O-mesyl, 6-O-tosyl, 6-bromo-6-deoxy, and 6-deoxy-6-iodo derivatives of 1,4-anhydro-DL-allitol were obtained by treatment of the corresponding 1,6-di-substituted derivatives (2, 3, 6, 4) of 2,3,4,5-tetra-O-acetylallitol with hot, methanolic hydrogen chloride. Compounds 2 and 3 were prepared by the acetolysis of the 1,6-di-O-mesyl and 1,6-di-O-tosyl derivatives (8 and 11) of di-O-benzylideneallitol. Iodide displacement on 2 gave 4, and detritylation-bromination of 2,3,4,5-tetra-O-acetyl-1,6-di-O-tritylallitol (5) gave 6. The acetal residues of di-O-benzylideneallitol have been shown to span the secondary carbon atoms.  相似文献   

11.
Acetonation of dimeric 1,6-anhydro-β-D-arabino-hexopyranos-3-ulose yields, besides a monomeric di-O-isopropylidene compound, the dimer 2, which crystallizes in space group P212121 with a  1.3680 (9), b  1.0686 (7), and c  1.0319 (7) nm, Z  4. The crystal and molecular structure of 2 have been determined by X-ray analysis with direct methods and was refined to a final Rw of 5.55% for 2468 reflections. Compound 2 has not the same dimeric structure as the parent compound with a central 1,4-dioxane ring, but contains instead a central 1,3-dioxolane ring. The pyranose ring bearing the isopropylidene group adopts an almost ideal sofa conformation, with a nearly planar arrangement of C-1, C-2, C-3, C-4, and C-5. By analogy, it was concluded that the dimeric mono-O-isopropylidene derivative 7 of 1,6-anhydro-β-D-xylo-hexopyranos-3-ulose has the same asymmetric structure. The 360-MHz 1H-n.m.r. spectra of both compounds are in full agreement with the proposed structures.  相似文献   

12.
Fructose-1,6-bisphosphatase (FBPase) is an attractive target for affecting the GNG pathway. In our previous study, the C128 site of FBPase has been identified as a new allosteric site, where several nitrovinyl compounds can bind to inhibit FBPase activity. Herein, a series of nitrostyrene derivatives were further synthesized, and their inhibitory activities against FBPase were investigated in vitro. Most of the prepared nitrostyrene compounds exhibit potent FBPase inhibition (IC50 < 10 μM). Specifically, when the substituents of F, Cl, OCH3, CF3, OH, COOH, or 2-nitrovinyl were installed at the R2 (meta-) position of the benzene ring, the FBPase inhibitory activities of the resulting compounds increased 4.5–55 folds compared to those compounds with the same groups at the R1 (para-) position. In addition, the preferred substituents at the R3 position were Cl or Br, thus compound HS36 exhibited the most potent inhibitory activity (IC50 = 0.15 μM). The molecular docking and site-directed mutation suggest that C128 and N125 are essential for the binding of HS36 and FBPase, which is consistent with the C128-N125-S123 allosteric inhibition mechanism. The reaction enthalpy calculations show that the order of the reactions of compounds with thiol groups at the R3 position is Cl > H > CH3. CoMSIA analysis is consistent with our proposed binding mode. The effect of compounds HS12 and HS36 on glucose production in primary mouse hepatocytes were further evaluated, showing that the inhibition was 71% and 41% at 100 μM, respectively.  相似文献   

13.
A series of [1,2,4]triazolo[3,4-f][1,6]naphthyridine allosteric dual inhibitors of Akt1 and 2 have been developed. These compounds have been shown to have potent dual Akt1 and 2 cell potency. The representative compound 13 provided potent inhibitory activity against Akt1 and 2 in vivo in a mouse model.  相似文献   

14.
The identification of a proper lead compound for fructose 1,6-bisphosphatase (FBPase) is a critical step in the process of developing novel therapeutics against type-2 diabetes. Herein, we have successfully generated a library of allosteric inhibitors against FBPase as potential anti-diabetic drugs, of which, the lead compound 1b was identified through utilizing a virtual high-throughput screening (vHTS) system, which we have developed. The thiazole-based core structure was synthesized via the condensation of α-bromo-ketones with thioureas and substituents on the two aryl rings were varied. 4c was found to inhibit pig kidney FBPase approximately fivefold better than 1b. In addition, we have also identified 10b, a tight binding fragment, which can be use for fragment-based drug design purposes.  相似文献   

15.
The action of α-1,6-glucan glucohydrolase on α-(1→6)-D-glucosidic linkages in oligosaccharides that also contain an α-(1→2)-, α-(1→3)-, or α-(1→4)-D-glucosidic linkage has been investigated. The enzyme could hydrolyse α-(1→6)-D-glucosidic linkages from the non-reducing end, including those adjacent to an anomalous linkage. α-(1→6)-D-Glucosidic linkages at branch points were not hydrolysed, and the enzyme could neither hydrolyse nor by-pass the anomalous linkages. These properties of α-1,6-glucan glucohydrolase explain the limited hydrolysis of dextrans by the exo-enzyme. Hydrolysis of the main chain of α-(1→6)-D-glucans will always stop one D-glucose residue away from a branch point. The extent of hydrolysis by α-1,6-glucan glucohydrolase of some oligosaccharide products of the action on dextran of Penicillium funiculosum and P. lilacinum dextranase, respectively, has been compared. Differences in the specificity of the two endo-dextranases were revealed. The Penicillium enzymes may hydrolyse dextran B-512 to produce branched oligosaccharides that retain the same 1-unit and 2-unit side-chains that occur in dextran.  相似文献   

16.
Several recently identified antifungal compounds share the backbone structure of acetophenones. The aim of the present study was to develop new isobutyrophenone analogs as new antifungal agents. A series of new 2,4-dihydroxy-5-methyl isobutyrophenone derivatives were prepared and characterized by 1H, 13C NMR and MS spectroscopic data. These products were evaluated for in vitro antifungal activities against seven plant fungal pathogens by the mycelial growth inhibitory rate assay. Compounds 3, 4a, 5a, 5b, 5e, 5f and 5g showed a broad-spectrum high antifungal activity. On the other hand, for the first time, these compounds were also assayed as potential inhibitors against Class II fructose-1,6-bisphosphate aldolase (Fba) from the rice blast fungus, Magnaporthe grisea. Compounds 5e and 5g were found to exhibit the inhibition constants (Ki) for 15.12 and 14.27?μM, respectively, as the strongest competitive inhibitors against Fba activity. The possible binding-modes of compounds 5e and 5g were further analyzed by molecular docking algorithms. The results strongly suggested that compound 5g could be a promising lead for the discovery of new fungicides via targeting Class II Fba.  相似文献   

17.
Novel 1,6-diaryl-5,7(1H)dioxo(dithio)-2,3-dihydroimidazo[1,2-a][1, 3, 5]triazines 8, and 9 were synthesized by cyclization of the respective 1-(imidazolin-2-yl)ureas 4 or thioureas 6 with phosgene or thiophosgene in the presence of bases. 1-Aryl-2-aminoimidazolines 1 reacting with arylisocyanates 2 or arylisothiocyanates 3 form a mixture of isomeric imidazolin-2-yl 4 and 6 and imidazolin-3-yl 5 and 7 urea or thiourea derivatives. Isomers 4 and 6 can be easily separated and used for the cyclization reaction. The structures of the main intermediates and the final target compounds were confirmed by 1H-NMR spectral analysis. Discussion of the possible course of the reactions is also presented.  相似文献   

18.
Two novel hederagenin type triterpene saponins, namely davisianoside A (1) and davisianoside B (2) together with ten known compounds (3–12) were isolated from the aerial parts of Cephalaria davisiana (Dipsacaceae). One new prosapogenin (1a) was also obtained after the alkaline hydrolysis of compound 1. The chemical structures of all compounds were established mainly by 1D-, 2D-NMR and HR-ESI/MS analysis as well as chemical methods.The antibacterial and antifungal effects of compounds 1–2 were evaluated against Gram-positive, Gram-negative bacteria and unicellular yeast C. albicans by MIC method.  相似文献   

19.
Modified heparin disaccharides were obtained by the alkaline treatment of a solution containing the disulfated heparin disaccharide DeltaHexA-alpha-(1-->4)-D-GlcNSO(3),6SO(3). Their structures were characterized by one- and two-dimensional NMR spectroscopy: DeltaHexA-alpha-(1-->4)-1,6-anhydro-GlcNSO(3), DeltaHexA-alpha-(1-->4)-1,6-anhydro-ManNSO(3) and DeltaHexA-alpha-(1-->4)-ManNSO(3),6OSO(3). NMR spectroscopy, in combination with HPLC, provided the composition of the mixture. Characteristic NMR signals of the disaccharides were identified, even at low levels, in a high field of (1)H-(13)C correlation NMR spectra (HSQC) of a low molecular weight heparin (LMWH) obtained by beta-elimination (alkaline hydrolysis) of heparin benzyl ester, providing a more complete structural profile of this class of compounds.  相似文献   

20.
Four new triterpenoid saponins, schekwangsiensides H–K (14) were isolated from the aerial parts of Schefflera kwangsiensis, together with fifteen esters (519) of known saponins. The structures of these compounds were elucidated on the basis of spectroscopic data analysis and chemical evidence. Furthermore, in in vitro assays, compounds 3, 8, 17, and 18 exhibited weak inhibitory activities against fructose-1,6-bisphosphatase (FBPase1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号