首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The accumulation of atmospheric CO2, primarily due to combustion of fossil fuels, has been implicated in potential global climate change. The high rate of CO2 bioremediation by microalgae has emerged as a favourable method for reducing coal-fired power plant emissions. However, coal-fired power station flue gas contains other chemicals such as SOx which can inhibit microalgal growth. In the current study, the effect of untreated flue gas as a source of inorganic carbon on the growth of Tetraselmis in a 1000 L industrial-scale split-cylinder internal-loop airlift photobioreactor was examined. The culture medium was recycled after each harvest. Tetraselmis suecica grew very well in this airlift photobioreactor during the 7-month experiment using recycled medium from an electroflocculation harvesting unit. Increased medium SO4 2? concentration as high as 870 mg SO4 2??L?1 due to flue gas addition and media recycling had no negative effect on the overall growth and productivity of this alga. The potential organic biomass productivity and carbon sequestration using an industrial-scale airlift PBR at International Power Hazelwood, Gippsland, Victoria, Australia, are 178.9?±?30 mg L?1 day?1 and 89.15?±?20 mg?‘C’?L?1 day?1, respectively. This study clearly indicates the potential of growing Tetraselmis on untreated flue gas and using recycled medium for the purpose of biofuel and CO2 bioremediation.  相似文献   

2.
The present research is focused on cultivation of microalgae strain Chlorella vulgaris for bio-fixation of CO2 coupled with biomass production. In this regard, a single semi-batch vertical tubular photobioreactor and four similar photobioreactors in series have been employed. The concentration of CO2 in the feed stream was varied from 2 to 12 % (v/v) by adjusting CO2 to air ratio. The amount of CO2 capture and algae growth were monitored by measuring decrease of CO2 concentration in the gas phase, microalgal cell density, and algal biomass production rate. The results show that 4 % CO2 gives maximum amount of biomass (0.9 g L?1) and productivity (0.118 g L?1 day?1) of C. vulgaris in a single reactor. In series reactors, average productivity per reactor found to be 0.078 g L?1 day?1. The maximum CO2 uptake for single reactor also found with 4 % CO2, and it is around 0.2 g L?1 day?1. In series reactors, average CO2 uptake is 0.13 g L?1 day?1 per reactor. TOC analysis shows that the carbon content of the produced biomass is around 40.67 % of total weight. The thermochemical characteristics of the cultivated C. vulgaris samples were analyzed in the presence of air. All samples burn above 200 °C and the combustion rate become faster at around 600 °C. Almost 98 wt% of the produced biomass is combustible in this range.  相似文献   

3.
A new strain of cyanobacteria was isolated from seawater samples collected near Jimo hot springs, Qingdao, China, and was identified as Cyanobacterium aponinum by 16S rDNA analysis. This study examined the effects of temperature, pH, light quality and high CO2 concentration on the growth of the cyanobacteria. Results showed that the strain exhibited a higher growth rate (about 168.4 mg L?1 day?1) at 35 °C than other temperatures (surviving at up to 50 °C) and a wide growth tolerance to acidic stress (pH 3.0 to 4.0) resulting from either H2SO4 or HNO3. The four light qualities, ranked by greatest to least biomass effect, were as follows: LED white light (LW) > LED red light (LR) > fluorescent white light (FW) > LED blue light (LB), achieving a higher lighting effect at a LW light intensity (60 μmol photons m?2 s?1) lower than other light qualities, which implied less energy consumption therewith. This strain demonstrates excellent CO2 tolerance at least 10% CO2 with the highest productivity in biomass (about 337.8 mg L?1 day?1) measured at 1% CO2 level. Results indicate that this strain is a promising candidate for use in biofixation of CO2 from flue gases emitted by thermoelectric plants.  相似文献   

4.
Impact of different levels of elevated CO 2 on the activity of Frankia (Nitrogen-fixing actinomycete) in Casuarina equisetifolia rooted stem cuttings has been studied to understand the relationship between C. equisetifolia, Frankia and CO2. The stem cuttings of C. equietifolia were collected and treated with 2000 ppm of Indole Butyric Acid (IBA) for rooting. Thus vegetative propagated rooted stem cuttings of C. equisetifolia were inoculated with Frankia and placed in the Open top chambers (OTC) with elevated CO2 facilities. These planting stocks were maintained in the OTC for 12 months under different levels of elevated CO2 (ambient control, 600 ppm, 900 ppm). After 12 months, the nodule numbers, bio mass, growth, and photosynthesis of C. equisetifolia rooted stem cuttings inoculated with Frankia were improved under 600 ppm of CO2. The rooted stem cuttings of C. equisetifolia inoculated with Frankia showed a higher number of nodules under 900 ppm of CO2 and cuttings without Frankia inoculation exhibited poor growth. Tissue Nitrogen (N) content was also higher under 900 ppm of CO2 than ambient control and 600 ppm levels. The photosynthetic rate was higher (17.8 μ mol CO2 m?2 s?1) in 900 ppm of CO2 than in 600 ppm (13.2 μ mol CO2 m?2 s?1) and ambient control (8.3 μ mol CO2 m?2 s?1). This study showed that Frankia can improve growth, N fixation and photosynthesis of C. equietifolia rooted stem cuttings under extreme elevated CO2 level conditions (900 ppm).  相似文献   

5.
Holtum JA  Winter K 《Planta》2003,218(1):152-158
Do short-term fluctuations in CO2 concentrations at elevated CO2 levels affect net CO2 uptake rates of plants? When exposed to 600 μl CO2 l?1, net CO2 uptake rates in shoots or leaves of seedlings of two tropical C3 tree species, teak (Tectona grandis L. f.) and barrigon [Pseudobombax septenatum (Jacq.) Dug.], increased by 28 and 52% respectively. In the presence of oscillations with half-cycles of 20 s, amplitude of ca. 170 μl CO2 l?1 and mean of 600 μl CO2 l?1, the stimulation in net CO2 uptake by the two species was reduced to 19 and 36%, respectively, i.e. the CO2 stimulation in photosynthesis associated with a change in exposure from 370 to 600 μl CO2 l?1 was reduced by a third in both species. Similar reductions in CO2-stimulated net CO2 uptake were observed in T. grandis exposed to 40-s oscillations. Rates of CO2 efflux in the dark by whole shoots of T. grandis decreased by 4.8% upon exposure of plants grown at 370 μl CO2 l?1 to 600 μl CO2 l?1. The potential implications of the observations on CO2 oscillations and dark respiration are discussed in the context of free-air CO2 enrichment (FACE) systems in which short-term fluctuations of CO2 concentration are a common feature.  相似文献   

6.
A green microalga, Acutodesmus sp., a close relative of Acutodesmus deserticola, was isolated from the wastewater discharges of an oil refinery in India. This study examined the effects of light intensity, temperature, pH, and high-CO2 treatments (up to 20 %) on the growth of the alga and investigated the effects of different CO2 treatments on its macromolecular composition (protein, carbohydrate, and lipids). Under controlled laboratory conditions, the alga showed high growth rates over a wide range of light (up to 700 μmol photons m?2 s?1), temperature (up to 40 °C), and pH (5–10) conditions. In the stationary phase, the highest protein and carbohydrate content was found to be 71.52 and 40.72 % of dry weight at 5 and 15 % CO2, respectively. After 5 days of cultivation, the maximum dry weight biomass attained in these cultures was 1.149, 1.99, 1.75, and 1.65 g L?1 at 5, 10, 15, and 20 % CO2, respectively, indicating that this strain has significant tolerance to CO2. These results indicate that this strain is a promising candidate for use in biofixation of CO2 from the flue gases emitted by industries, and it also has a strong potential as a feedstock for value-added substances.  相似文献   

7.
Cement plants account for significant emissions of CO2 and other pollutants into the atmosphere. As a means for its mitigation, we tested the effect of a cement industry-based flue gas simulation (FGS — 18% CO2, 9% O2, 300 ppm NO2, 140 ppm SO2) on the green alga, Chlorella sorokiniana. Culture pH, cell density, cell viability and productivity, specific growth rates, photosynthetic performance, and biochemical composition were monitored. The treatments consisted of different FGS volumes (0.1, 0.3, 0.8, 1.5, 6, and 48 L day?1) that were applied in a series of laboratory-scale semi-continuous batch cultures under controlled conditions. Controls were exposed to 18% CO2 enriched air. Cell density showed that C. sorokiniana was able to grow in all treatments, but compared to the controls, low pH (~ 5.0) caused by 48 L FGS day?1 led to 27% decrease in specific growth rate. Increasing FGS exposure decreased maximum and operational quantum yields obtained by pulse amplitude modulated fluorometry, while photochemical quenching remained constant (~ 0.93). The α and rETR max parameters calculated from rapid light curves decreased with increasing FGS exposure. Total proteins and carbohydrates (per cell basis) increased after 6 and 48 L FGS day?1, which can be advantageous for biotechnological applications, but cell productivity (cells L?1 day?1) decreased. Despite the effects in physiology, C. sorokiniana could withstand a pH range of 6.0–5.0 imposed by 48 L FGS day?1. Overall, C. sorokiniana can be considered a robust species in flue gas bioremediation.  相似文献   

8.
A magnetophoretic harvesting agent, a polypyrrole/Fe3O4 magnetic nanocomposite, is proposed as a cost and energy efficient alternative to recover biomass of the microalgae Botryococcus braunii, Chlorella protothecoides, and Chlorella vulgaris from their culture media. The maximal recovery efficiency reached almost 99 % for B. braunii, 92.4 % for C. protothecoides, and 90.8 % for C. vulgaris. The maximum adsorption capacity (Q 0) of the magnetic nanocomposite for B. braunii (63.49 mg dry biomass mg?1 PPy/Fe3O4) was higher than that for C. protothecoides (43.91 mg dry biomass mg?1 PPy/Fe3O4) and C. vulgaris (39.98 mg dry biomass mg?1 PPy/Fe3O4). The highest harvesting efficiency for all the studied microalgae were at pH 10.0, and measurement of zeta-potential confirmed that the flocculation was induced by charge neutralization. This study showed that polypyrrole/Fe3O4 can be a promising flocculant due to its high efficacy, low dose requirements, short settling time, its integrity with cells, and with great potential for saving energy because of its recyclability.  相似文献   

9.
This study aimed to culture the green alga Acutodesmus obliquus utilizing the gaseous emissions containing a high concentration of CO2 (99.13 %) from a methanol plant and study the tolerance of microalgae. The effect of CO2 concentration, aeration rate, inoculum concentration, intermittent sparging, and nitrogen sources on the growth of A. obliquus was examined. Acutodesmus obliquus also was cultivated in a 500-L pilot outdoor tubular photobioreactor (OTP) to advance the laboratory scale system to outdoor scale-up applications. The results showed that A. obliquus could tolerate high CO2 concentrations of 50 %, and a maximum biomass of 0.935 g L?1 (dry weight) was achieved at 20 % CO2. An aeration rate of 500 mL min?1, inoculum concentration (optical density at 680 nm [OD680]?=?0.3), and intermittent sparging of 10 min per 2 h enhanced growth to the optimum and influenced culture pH and photosynthesis. Urea as a nitrogen source was shown to be more beneficial to cell growth. A urea concentration of 0.3 g L?1 and an N/P ratio of 15 led to maximum biomass accumulation thus enhancing the gaseous emission utilization efficiency. In conclusion, this work demonstrated that gaseous emissions containing high concentration of CO2 from a methanol plant could be directly introduced into A. obliquus cultures and that A. obliquus was suitable well for large-scale outdoor cultivation in a tubular photobiorecator.  相似文献   

10.
Defoliation occurs in castor due to several reasons, but the crop has propensity to compensate for the seed yield. Photosynthetic efficiency in terms of functional (gas exchange and chlorophyll fluorescence) and structural characteristics (photosynthetic pigment profiles and anatomical properties) of castor capsule walls under light- and dark-adapted conditions was compared with that of leaves. Capsule wall showed high intrinsic efficiency of photosystem II (F v/F m, 0.82) which was comparable to leaves (F v/F m, 0.80). With increasing photon flux densities (PFD), actual quantum yields and photochemical quenching coefficients of the capsule walls were similar to that in leaves, while electron transport rates reached a maximum corresponding to about 118 % of the leaves. However, maximum net photosynthetic rate of the capsule walls (2.60 µmol CO2 m?2 s?1) was less than one-fourth of the leaves (15.67 µmol CO2 m?2 s?1) at the CO2 concentration of 400 µmol mol?1, and the difference was attributed to about 80 % lower stomatal density and the 75 % lower total chlorophyll content of capsule walls than the leaves. Furthermore, seed weight in dark-adapted capsules was 2.70–12.42 % less as compared to the capsules developed under light. The results indicate that castor capsule walls are photosynthetically active (about 15–30 % of the leaves) and contribute significantly to carbon fixation and seed yield accounting for 10 % photoassimilates towards seed weight.  相似文献   

11.
The new paradigm is to view wastes as resources for sustainable development. In this regard, the feasibility of poultry waste and CO2 utilization for cultivation of a filamentous nitrogen-fixing cyanobacterium, Nostoc muscorum Agardh, was investigated for production polyhydroxyalkanoates, the biodegradable polymers. This cyanobacterium showed profound rise in biomass yield with up to 10 % CO2 supply in airstream with an aeration rate of 0.1 vvm. Maximum biomass yield of 1.12 g L?1 was recorded for 8 days incubation period, thus demonstrating a CO2 biofixation rate of 0.263 g L?1 day?1 at 10 % (v/v) CO2-enriched air. Poultry litter (PL) supplementation also had a positive impact on the biomass yield. The nutrient removal efficiency of N. muscorum was reflected in the significant reduction in nutrient load of PL over the experimental period. A maximum poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) [P(3HB-co-3HV)] copolymer yield of 774 mg L?1 (65 % of dry cell wt.), the value almost 11-fold higher than the control, was recorded in 10 g L?1 PL-supplemented cultures with 10 % CO2 supply under the optimized condition, thus demonstrating that N. muscorum has good potential for CO2 biomitigation and poultry waste remediation while simultaneously producing eco-friendly polymers.  相似文献   

12.

Background

The greenhouse gas (GHG) mitigation is one of the most important environmental benefits of using bioenergy replacing fossil fuels. Nitrous oxide (N2O) and methane (CH4) are important GHGs and have drawn extra attention for their roles in global warming. Although there have been many works of soil emissions of N2O and CH4 from bioenergy crops in the field scale, GHG emissions in large area of marginal lands are rather sparse and how soil temperature and moisture affect the emission potential remains unknown. Therefore, we sought to estimate the regional GHG emission based on N2O and CH4 releases from the energy crop fields.

Results

Here we sampled the top soils from two Miscanthus fields and incubated them using a short-term laboratory microcosm approach under different conditions of typical soil temperatures and moistures. Based on the emission measurements of N2O and CH4, we developed a model to estimate annual regional GHG emission of Miscanthus production in the infertile Loess Plateau of China. The results showed that the N2O emission potential was 0.27 kg N ha?1 year?1 and clearly lower than that of croplands and grasslands. The CH4 uptake potential was 1.06 kg C ha?1 year?1 and was slightly higher than that of croplands. Integrated with our previous study on the emission of CO2, the net greenhouse effect of three major GHGs (N2O, CH4 and CO2) from Miscanthus fields was 4.08 t CO2eq ha?1 year?1 in the Loess Plateau, which was lower than that of croplands, grasslands and shrub lands.

Conclusions

Our study revealed that Miscanthus production may hold a great potential for GHG mitigation in the vast infertile land in the Loess Plateau of China and could contribute to the sustainable energy utilization and have positive environmental impact on the region.
  相似文献   

13.
As one of the promising species of microalgae for biofuel production, Chlorella vulgaris CS-42 was cultivated phototrophically in two cylindrical photobioreactors with aeration of 5 % (v/v) CO2 or air for 13 days to evaluate the effects of CO2 supplementation on biomass, CO2 fixation performance, and biochemical content. Significant increases of specific growth rate and total carbon content in biomass resulting in a higher CO2 fixation rate were found with 5 % CO2. The maximum biomass concentration, carbohydrate and fatty acid contents with 5 % CO2 were significantly higher than those with air, while carbohydrate biosynthesis was most affected as compared to other biochemical components. Cytomic analysis revealed a rapid accumulation of neutral lipid in the late growth phase with more lipid bodies visualized by confocal laser scanning microscopy (CLSM), when nitrate consumption was accelerated with CO2 supplementation. Gas chromatography mass spectrometry (GC-MS) analysis indicated that 5 % CO2 favored the formation of C18:2, which led to a decrease in the degree of lipid unsaturation (DLU). These results proved that CO2 supplementation was one of the most efficient methods to significantly prompt the growth of microalgae and increase the C/N ratio in the medium, which in turn regulated the carbon metabolic flux to enhance neutral lipid and fatty acid production in C. vulgaris.  相似文献   

14.
Peatlands are a critical carbon store comprising 30% of the Earth’s terrestrial soil carbon. Sphagnum mosses comprise up to 90% of peat in the northern hemisphere but impacts of climate change on Sphagnum mosses are poorly understood, limiting development of sustainable peatland management and restoration. This study investigates the effects of elevated atmospheric CO2 (eCO2) (800 ppm) and hydrology on the growth of Sphagnum fallax, Sphagnum capillifolium and Sphagnum papillosum and greenhouse gas fluxes from moss–peat mesocosms. Elevated CO2 levels increased Sphagnum height and dry weight but the magnitude of the response differed among species. The most responsive species, S. fallax, yielded the most biomass compared to S. papillosum and S. capillifolium. Water levels and the CO2 treatment were found to interact, with the highest water level (1 cm below the surface) seeing the largest increase in dry weight under eCO2 compared to ambient (400 ppm) concentrations. Initially, CO2 flux rates were similar between CO2 treatments. After week 9 there was a consistent three-fold increase of the CO2 sink strength under eCO2. At the end of the experiment, S. papillosum and S. fallax were greater sinks of CO2 than S. capillifolium and the ? 7 cm water level treatment showed the strongest CO2 sink strength. The mesocosms were net sources of CH4 but the source strength varied with species, specifically S. fallax produced more CH4 than S. papillosum and S. capillifolium. Our findings demonstrate the importance of species selection on the outcomes of peatland restoration with regards to Sphagnum’s growth and GHG exchange.  相似文献   

15.
In this work, the structural, compositional, optical, and dielectric properties of Ga2S3 thin films are investigated by means of X-ray diffraction, scanning electron microscopy, energy dispersion X-ray analysis, and ultraviolet—visible light spectrophotometry. The Ga2S3 thin films which exhibited amorphous nature in its as grown form are observed to be generally composed of 40.7 % Ga and 59.3 % S atomic content. The direct allowed transitions optical energy bandgap is found to be 2.96 eV. On the other hand, the modeling of the dielectric spectra in the frequency range of 270–1,000 THz, using the modified Drude-Lorentz model for electron-plasmon interactions revealed the electrons scattering time as 1.8 (fs), the electron bounded plasma frequency as ~0.76–0.94 (GHz) and the reduced resonant frequency as 2.20–4.60 ×1015 (Hz) in the range of 270–753 THz. The corresponding drift mobility of electrons to the terahertz oscillating incident electric field is found to be 7.91 (cm 2/Vs). The values are promising as they nominate the Ga2S3 thin films as effective candidates in thin-film transistor and gas sensing technologies.  相似文献   

16.
The interactive effects of light intensity, NaCl, nitrogen, and phosphorus on intracellular biomass content and extracellular polymeric substance production were assessed for Arthrospira sp. (Spirulina) in a two-phase culture process using principal component analysis and central composite face design. Under high light intensity (120 μmol photons m?2?s?1) and low NaCl (1 gL?1), NaNO3, and K2HPO4 (0.5 g L?1), the carbohydrate content was maximized to 26.61%. Interaction of both K2HPO4 (1.6 gL?1) and NaCl (1.19 gL?1) with low NaNO3 (0.5 gL?1) achieved the maximum content of lipids (15.62%), while high NaCl (40 gL?1), K2HPO4, and NaNO3 (4.5 gL?1) enhanced mainly total carotenoids (0.85%). Conversely, under low light intensity of 10 μmol photons m?2?s?1 combined with 11.76 gL?1 of NaCl, 0.5 gL?1 of NaNO3, and 2.68 gL?1 of K2HPO4, the phycobiliprotein content reached its highest level (16.09%). The maximum extracellular polymeric substance (EPS) production (0.902 gg?1?DW) was triggered under moderate light of 57.25 μmol photons m?2?s?1 and interaction of high NaCl (40 gL?1) and K2HPO4 (4.5 gL?1) with low NaNO3 (0.5 gL?1). The maximization ratios of intracellular biomass content in terms of carbohydrate, lipid, total carotenoid, phycobiliprotein, and EPS production were 3.55-, 1.73-, 9.55-, 2.92-, and 1.46-fold, respectively, greater than those obtained at optimal growth conditions. This study demonstrated that the multiple stress factors applied to the adopted two-phase culture process could be a promising strategy to produce biomass enriched in various high-value compound.  相似文献   

17.
Lumostatic operation was applied for efficient astaxanthin production in autotrophic Haematococcus lacustris cultures using 0.4-L bubble column photobioreactors. The lumostatic operation in this study was performed with three different specific light uptake rates (q e) based on cell concentration, cell projection area, and fresh weight as one-, two- and three-dimensional characteristics values, respectively. The q e value from the cell concentration (q e1D) obtained was 13.5 × 10?8 μE cell?1 s?1, and the maximum astaxanthin concentration was increased to 150 % compared to that of a control with constant light intensity. The other optimum q e values by cell projection area (q e2D) and fresh weight (q e3D) were determined to be 195 μE m?2 s?1 and 10.5 μE g?1 s?1 for astaxanthin production, respectively. The maximum astaxanthin production from the lumostatic cultures using the parameters controlled by cell projection area (2D) and fresh weight (3D) also increased by 36 and 22 % over that of the controls, respectively. When comparing the optimal q e values among the three different types, the lumostatic cultures using q e based on fresh weight showed the highest astaxanthin productivity (22.8 mg L?1 day?1), which was a higher level than previously reported. The lumostatic operations reported here demonstrated that more efficient and effective astaxanthin production was obtained by H. lacustris than providing a constant light intensity, regardless of which parameter is used to calculate the specific light uptake rate.  相似文献   

18.
The freshwater macrophyte, Ottelia alismoides, is a bicarbonate user performing C4 photosynthesis in the light, and crassulacean acid metabolism (CAM) when acclimated to low CO2. The regulation of the three mechanisms by CO2 concentration was studied in juvenile and mature leaves. For mature leaves, the ratios of phosphoenolpyruvate carboxylase (PEPC) to ribulose-bisphosphate carboxylase/oxygenase (Rubisco) are in the range of that of C4 plants regardless of CO2 concentration (1.5–2.5 at low CO2, 1.8–3.4 at high CO2). In contrast, results for juvenile leaves suggest that C4 is facultative and only present under low CO2. pH-drift experiments showed that both juvenile and mature leaves can use bicarbonate irrespective of CO2 concentration, but mature leaves have a significantly greater carbon-extracting ability than juvenile leaves at low CO2. At high CO2, neither juvenile nor mature leaves perform CAM as indicated by lack of diurnal acid fluctuation. However, CAM was present at low CO2, though the fluctuation of titratable acidity in juvenile leaves (15–17 µequiv g?1 FW) was slightly but significantly lower than in mature leaves (19–25 µequiv g?1 FW), implying that the capacity to perform CAM increases as leaves mature. The increased CAM activity is associated with elevated PEPC activity and large diel changes in starch content. These results show that in O. alismoides, carbon-dioxide concentrating mechanisms are more effective in mature compared to juvenile leaves, and C4 is facultative in juvenile leaves but constitutive in mature leaves.  相似文献   

19.

Aims

Despite extensive studies on effects of elevated CO2 concentration ([CO2]e) on plant growth, few studies have investigated the responses of native grassland plant species to [CO2]e in terms of nutrient acquisition.

Methods

The effects of [CO2]e (769 ± 23 ppm) on Artemisia frigida and Stipa krylovii, two dominant species in Inner Mongolia steppe were investigated by growing them for 7 weeks in Open-Top Chambers (OTC).

Results

Exposure to [CO2]e enhanced shoot and root growth of A. frigida and S. krylovii. Elevated [CO2] increased photosynthetic rates (Pn) by 34 % in A. frigida but decreased Pn by 52 % in S. krylovii. Moreover, root-secreted acid phosphatase activity in A. frigida was stimulated by [CO2]e, while exudation of malate from roots of S. krylovii was suppressed by [CO2]e. Exposure to [CO2]e led to a decrease in P concentration in shoots and roots of A. frigida and S. krylovii, but total amount of P accumulated in shoots and roots of both species was increased by [CO2]e.

Conclusions

The two dominant species in temperate steppes differed in their responses to [CO2]e, such that A. frigida was more adapted to [CO2]e than S. krylovii under low availability of soil P.
  相似文献   

20.
The filamentous Cyanobacterium Arthrospira is commercially produced and is a functional, high-value, health food. We identified 5 low temperature and low light intensity tolerant strains of Arthrospira sp. (GMPA1, GMPA7, GMPB1, GMPC1, and GMPC3) using ethyl methanesulfonate mutagenesis and low temperature screening. The 5 Arthrospira strains grew rapidly below 14?°C, 43.75 μmol photons m?2 s?1 and performed breed conservation at 2.5?°C, 8.75 μmol photons m?2 s?1. We used morphological identification and molecular genetic analysis to identify GMPA1, GMPA7, GMPB1 and GMPC1 as Arthrospira platensis, while GMPC3 was identified as Arthrospira maxima. Growth at different culture temperatures was determined at regular intervals using dry biomass. At 16?°C and 43.75 μmol photons m?2 s?1, the maximum dry biomass production and the mean dry biomass productivity of GMPA1, GMPB1, and GMPC1 were 2057?±?80 mg l?1, 68.7?±?2.5 mg l?1 day?1, 1839?±?44 mg l?1, 60.6?±?1.8 mg l?1 day?1, and 2113?±?64 mg l?1, 77.7?±?2.5 mg l?1 day?1 respectively. GMPB1 was chosen for additional low temperature tolerance studies and growth temperature preference. In winter, GMPB1 grew well at mean temperatures <10?°C, achieving 3258 mg dry biomass from a starting 68 mg. In summer, GMPB1 grew rapidly at mean temperatures more than 28?°C, achieving 1140 mg l?1 dry biomass from a starting 240 mg. Phytonutrient analysis of GMPB1 showed high levels of C-phycocyanin and carotenoids. Arthrospira metabolism relates to terpenoids, and the methyl-d-erythritol 4-phosphate pathway is the only terpenoid biosynthetic pathway in Cyanobacteria. The 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) gene from GMPB1 was cloned and phylogenetic analysis showed that GMPB1 is closest to the Cyanobacterium Oscillatoria nigro-viridis PCC711. Low temperature tolerant Arthrospira strains could broaden the areas suitable for cultivation, extend the seasonal cultivation time, and lower production costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号