首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Synechocystis sp. PCC 6803 is an attractive organism for the production of alcohols, such as isobutanol and ethanol. However, because stress against the produced alcohol is a major barrier for industrial applications, it is highly desirable to engineer organisms with strong alcohol tolerance.

Results

Isobutanol-tolerant strains of Synechocystis sp. PCC 6803 were obtained by long-term passage culture experiments using medium containing 2 g/L isobutanol. These evolved strains grew on medium containing 5 g/L isobutanol on which the parental strain could not grow. Mutation analysis of the evolved strains revealed that they acquired resistance ability due to combinatorial malfunctions of slr1044 (mcpA) and slr0369 (envD), or slr0322 (hik43) and envD. The tolerant strains demonstrated stress resistance against isobutanol as well as a wide variety of alcohols such as ethanol, n-butanol, and isopentanol. As a result of introducing an ethanol-producing pathway into the evolved strain, its productivity successfully increased to 142% of the control strain.

Conclusions

Novel mutations were identified that improved the stress tolerance ability of various alcohols in Synechocystis sp. PCC 6803.
  相似文献   

2.
3.
The PepP protein has been purified in vitro and characterized for the first time. It is encoded by the sll0136 gene of the unicellular cyanobacterium Synechocystis sp. PCC6803. It is established that the PepP protein is a Mn2+-dependent Xaa-Pro-specific aminopeptidase. The protein in the reaction of hydrolysis of the fluorescent peptide Lys(N-Abz)-Pro-Pro-pNA has a maximal activity at pH 7.6 and 32°C.  相似文献   

4.
The genome of the model cyanobacterium, Synechococcus sp. PCC 7002, encodes two paralogs of CruA-type lycopene cyclases, SynPCC7002_A2153 and SynPCC7002_A0043, which are denoted cruA and cruP, respectively. Unlike the wild-type strain, a cruA deletion mutant is light-sensitive, grows slowly, and accumulates lycopene, γ-carotene, and 1-OH-lycopene; however, this strain still produces β-carotene and other carotenoids derived from it. Expression of cruA from Synechocystis sp. PCC 6803 (cruA 6803) in Escherichia coli strains that synthesize either lycopene or γ-carotene did not lead to the synthesis of either γ-carotene or β-carotene, respectively. However, expression of this orthologous cruA 6803 gene (sll0147) in the Synechococcus sp. PCC 7002 cruA deletion mutant produced strains with phenotypic properties identical to the wild type. CruA6803 was purified from Synechococcus sp. PCC 7002 by affinity chromatography, and the purified protein was pale yellow-green due to the presence of bound chlorophyll (Chl) a and β-carotene. Native polyacrylamide gel electrophoresis of the partly purified protein in the presence of lithium dodecylsulfate at 4 °C confirmed that the protein was yellow-green in color. When purified CruA6803 was assayed in vitro with either lycopene or γ-carotene as substrate, β-carotene was synthesized. These data establish that CruA6803 is a lycopene cyclase and that it requires a bound Chl a molecule for activity. Possible binding sites for Chl a and the potential regulatory role of the Chl a in coordination of Chl and carotenoid biosynthesis are discussed.  相似文献   

5.
Plastoquinone is a redox active lipid that serves as electron transporter in the bifunctional photosynthetic-respiratory transport chain of cyanobacteria. To examine the role of genes potentially involved in cyanobacterial plastoquinone biosynthesis, we have focused on three Synechocystis sp. PCC 6803 genes likely encoding a chorismate pyruvate-lyase (sll1797) and two 4-hydroxy-3-solanesylbenzoate decarboxylases (slr1099 and sll0936). The functions of the encoded proteins were investigated by complementation experiments with Escherichia coli mutants, by the in vitro enzyme assays with the recombinant proteins, and by the development of Synechocystis sp. single-gene knock-out mutants. Our results demonstrate that sll1797 encodes a chorismate pyruvate-lyase. In the respective knock-out mutant, plastoquinone was hardly detectable, and the mutant required 4-hydroxybenzoate for growth underlining the importance of chorismate pyruvate-lyase to initiate plastoquinone biosynthesis in cyanobacteria. The recombinant Slr1099 protein displayed decarboxylase activity and catalyzed in vitro the decarboxylation of 4-hydroxy-3-prenylbenzoate with different prenyl side chain lengths. In contrast to Slr1099, the recombinant Sll0936 protein did not show decarboxylase activity regardless of the conditions used. Inactivation of the sll0936 gene in Synechocystis sp., however, caused a drastic reduction in the plastoquinone content to levels very similar to those determined in the slr1099 knock-out mutant. This proves that not only slr1099 but also sll0936 is required for plastoquinone synthesis in the cyanobacterium. In summary, our data demonstrate that cyanobacteria produce plastoquinone exclusively via a pathway that is in the first reaction steps almost identical to ubiquinone biosynthesis in E. coli with conversion of chorismate to 4-hydroxybenzoate, which is then prenylated and decarboxylated.  相似文献   

6.
7.
Delayed Chl a fluorescence and the CO2-dependent O2 exchange were measured to assess the effect of oxidative stress inducers methyl viologen and benzyl viologen, cumene hydroperoxide, menadione, and H2O2 as well as high irradiance on the photosynthetic apparatus of Synechocystis sp. PCC 6803 wild type and its methyl viologen-resistant mutant Prq20 with impaired regulatory gene prqR. The extent of damage upon exposure to viologens proved much smaller in the mutant; the causes of this are analyzed.  相似文献   

8.
Multiple secretion pathways are known for export of protein(s) forming the S-layer in bacteria. The unicellular model cyanobacterium Synechocystis sp. strain PCC 6803 (hereafter S. 6803) also possesses a well-defined S-layer composed of Sll1951 protein. However, the mechanism of its secretion is not completely understood. In the present study, the putative T1SS (Type I secretion system) components, Sll1180 and Sll1181 [inner membrane ABC transporter and membrane fusion protein (MFP), respectively] were characterized for their role in Sll1951 secretion. The corresponding ORFs i.e. sll1180 and sll1181 were inactivated by insertion of a spectinomycin resistance gene. The viability of the homozygous mutants of both the genes indicated dispensability of the corresponding proteins under the experimental conditions. Interestingly, the culture supernatants of the mutants i.e. Δsll1180 and Δsll1181, lacked Sll1951 as observed on SDS-PAGE and confirmed by mass spectrometry. Immunofluorescence delineated a distinct outer ring of Sll1951 in S. 6803 cells only that was further iterated by transmission and scanning electron microscopy. The loss of S-layer imparted an aggregative phenotype to both the mutants. Surprisingly, Δsll1181 cells showed increased sensitivity to different antibiotics indicating a role in multidrug efflux. This is the first report establishing Sl1180 and Sll1181 proteins as partners of the previously characterized Slr1270, for Sll1951 secretion and thus S-layer biogenesis in S. 6803. Sll1181 (in conjunction with Slr1270) also acts as MFP in multidrug efflux along with a yet uncharacterized inner membrane protein.  相似文献   

9.
Insertional transposon mutations in the sll0804 and slr1306 genes were found to lead to a loss of optimal photoautotrophy in the cyanobacterium Synechocystis sp. strain PCC 6803 grown under ambient CO2 concentrations (350 ppm). Mutants containing these insertions (4BA2 and 3ZA12, respectively) could grow photoheterotrophically on glucose or photoautotrophically at elevated CO2 concentrations (50,000 ppm). Both of these mutants exhibited an impaired affinity for inorganic carbon. Consequently, the Sll0804 and Slr1306 proteins appear to be putative components of the carbon-concentrating mechanism in Synechocystis sp. strain PCC 6803.  相似文献   

10.

Background

To ensure reliable sources of energy and raw materials, the utilization of sustainable biomass has considerable advantages over petroleum-based energy sources. Photosynthetic algae have attracted attention as a third-generation feedstock for biofuel production, because algae cultivation does not directly compete with agricultural resources, including the requirement for productive land and fresh water. In particular, cyanobacteria are a promising biomass feedstock because of their high photosynthetic capability.

Results

In the present study, the expression of the flv3 gene, which encodes a flavodiiron protein involved in alternative electron flow (AEF) associated with NADPH-coupled O2 photoreduction in photosystem I, was enhanced in Synechocystis sp. PCC6803. Overexpression of flv3 improved cell growth with corresponding increases in O2 evolution, intracellular ATP level, and turnover of the Calvin cycle. The combination of in vivo13C-labeling of metabolites and metabolomic analysis confirmed that the photosynthetic carbon flow was enhanced in the flv3-overexpressing strain.

Conclusions

Overexpression of flv3 improved cell growth and glycogen production in the recombinant Synechocystis sp. PCC6803. Direct measurement of metabolic turnover provided conclusive evidence that CO2 incorporation is enhanced by the flv3 overexpression. Increase in O2 evolution and ATP accumulation indicates enhancement of the AEF. Overexpression of flv3 improves photosynthesis in the Synechocystis sp. PCC6803 by enhancement of the AEF.
  相似文献   

11.
Cyanobacteria play a major role as direct producers of biofuels, such as ethanol and butanol, with the aid of genetic engineering. However, development of a new harvesting-technology is essential to achieve economic viability of biofuel production from cyanobacteria. In this study, we demonstrated the feasibility of harvesting the unicellular cyanobacterium Synechocystis sp. PCC 6803 using pre-made filamentous fungal pellets and investigated key factors affecting efficiency of harvest, including fungal strain, pellet quantity (number of pellets), initial pH, and organic carbon source. Synechocystis sp. PCC 6803 cells attached to Aspergillus oryzae pellets, indicating that this fungal pellet had a desirable harvesting effect, while Rhizopus oryzae pellets had no effect on harvesting. Increasing pellet quantity and adding organic carbon sources, such as glucose and xylose, improved the harvesting efficiency of Aspergillus oryzae pellet; efficiency was not affected by the initial pH.  相似文献   

12.

Background

Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria.

Results

Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent.

Conclusions

Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.  相似文献   

13.
Cyanobacterial mutants defective in acyl-acyl carrier protein synthetase (Aas) secrete free fatty acids (FFAs) into the external medium and hence have been used for the studies aimed at photosynthetic production of biofuels. While the wild-type strain of Synechocystis sp. PCC 6803 is highly sensitive to exogenously added linolenic acid, mutants defective in the aas gene are known to be resistant to the externally provided fatty acid. In this study, the wild-type Synechocystis cells were shown to be sensitive to lauric, oleic, and linoleic acids as well, and the resistance to these fatty acids was shown to be enhanced by inactivation of the aas gene. On the basis of these observations, we developed an efficient method to isolate aas-deficient mutants from cultures of Synechocystis cells by counter selection using linoleic acid or linolenic acid as the selective agent. A variety of aas mutations were found in about 70 % of the FFA-resistant mutants thus selected. Various aas mutants were isolated also from Synechococcus sp. PCC 7002, using lauric acid as a selective agent. Selection using FFAs was useful also for construction of markerless aas knockout mutants from Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002. Thus, genetic engineering of FFA-producing cyanobacterial strains would be greatly facilitated by the use of the FFAs for counter selection.  相似文献   

14.
The functions of serotonin include the growth and development regulation of female germ cells as well as early embryo development. RT-PCR analysis of mRNA expression of the genes of the enzymes for synthesis and degradation and transporters and receptors of serotonin during folliculogenesis and preimplantation development of mice was performed to discover the particular mechanisms of these functions. The mRNA of tryptophan hydroxylase tph1 and monoaminoxidase maoa; membrane transporter sert and vesicular transporter vmat2; and serotonin receptors htr1b, htr1d, htr2a, htr5b, and htr7 were revealed in granulosa cells. The expression of mRNA of the aromatic amino acid decarboxylase ddc and the htr2b receptor additionally appears in the yellow body. The expression of mRNA of the genes of the tph2, ddc, and maoa enzymes; the sert, vmat1, and vmat2 transporters; and quite a number of receptors is observed during the preimplantation development, and it is transitory in most of them. The expression of all components and its dynamics suggest that the serotonergic signaling system is functionally active in mouse folliculogenesis and preimplantation development.  相似文献   

15.
16.
Oxygenic phototrophs are vulnerable to damage by reactive oxygen species (ROS) that are produced in photosystem I (PSI) by excess photon energy over the demand of photosynthetic CO2 assimilation. In plant leaves, repetitive short-pulse (rSP) illumination produces ROS to inactivate PSI. The production of ROS is alleviated by oxidation of the reaction center chlorophyll in PSI, P700, during the illumination with the short-pulse light, which is supported by flavodiiron protein (FLV). In this study, we found that in the cyanobacterium Synechocystis sp. PCC 6803 P700 was oxidized and PSI was not inactivated during rSP illumination even in the absence of FLV. Conversely, the mutant deficient in respiratory terminal oxidases was impaired in P700 oxidation during the illumination with the short-pulse light to suffer from photo-oxidative damage in PSI. Interestingly, the other cyanobacterium Synechococcus sp. PCC 7002 could not oxidize P700 without FLV during rSP illumination. These data indicate that respiratory terminal oxidases are critical to protect PSI from ROS damage during rSP illumination in Synechocystis sp. PCC 6803 but not Synechococcus sp. PCC 7002.  相似文献   

17.
Compensating changes in the pigment apparatus of photosynthesis that resulted from a complete loss of phycobilisomes (PBS) were investigated in the cells of a PAL mutant of cyanobacterium Synechocystis sp. PCC 6803. The ratio PBS/chlorophyll calculated on the basis of the intensity of bands in the action spectra of photosynthetic activity of two photosystems in the wild strain was 1: 70 for PSII and 1: 300 for PSI. Taking into consideration the number of chlorophyll molecules per reaction center in each photosystem, these ratios could be interpreted as association of PBS with dimers of PSII and trimers of PSI as well as greater dependence of PSII as compared with PSI on light absorption by PBS. The ratio PSI/PSII determined by photochemical cross-section of the reactions of two photosystems was 3.5: 1.0 for wild strain of Synechocystis sp. PCC 6803 and 0.7: 1.0 for the PAL mutant. A fivefold increase in the relative content of PSII in pigment apparatus corresponds to a 5-fold increase in the intensity of bands at 685 and 695 nm as related to the band of PSI at 726 nm recorded in low-temperature fluorescence spectrum of the PAL mutant. Inhibition of PSII with diuron resulted in a pronounced stimulation of chlorophyll fluorescence in the PAL mutant as compared to the wild strain of Synechocystis sp. PCC 6803; these data suggested an activation of electron transfer between PSII and PSI in the mutant cells. Thus, the lack of PBS in the mutant strain of Synechocystis sp. PCC 6803 was compensated for by the higher relative content of PSII in the pigment apparatus of photosynthesis and by a rise in the rate of linear electron transport.  相似文献   

18.
19.
Band 7 proteins, which encompass members of the stomatin, prohibitin, flotillin, and HflK/C protein families, are integral membrane proteins that play important physiological roles in eukaryotes but are poorly characterized in bacteria. We have studied the band 7 proteins encoded by the cyanobacterium Synechocystis sp. strain PCC 6803, with emphasis on their structure and proposed role in the assembly and maintenance of the photosynthetic apparatus. Mutagenesis revealed that none of the five band 7 proteins (Slr1106, Slr1128, Slr1768, Sll0815, and Sll1021) was essential for growth under a range of conditions (including high light, salt, oxidative, and temperature stresses), although motility was compromised in an Slr1768 inactivation mutant. Accumulation of the major photosynthetic complexes in the thylakoid membrane and repair of the photosystem II complex following light damage were similar in the wild type and a quadruple mutant. Cellular fractionation experiments indicated that three of the band 7 proteins (Slr1106, Slr1768, and Slr1128) were associated with the cytoplasmic membrane, whereas Slr1106, a prohibitin homologue, was also found in the thylakoid membrane fraction. Blue native gel electrophoresis indicated that these three proteins, plus Sll0815, formed large (>669-kDa) independent complexes. Slr1128, a stomatin homologue, has a ring-like structure with an approximate diameter of 16 nm when visualized by negative stain electron microscopy. No evidence for band 7/FtsH supercomplexes was found. Overall, our results indicate that the band 7 proteins form large homo-oligomeric complexes but do not play a crucial role in the biogenesis of the photosynthetic apparatus in Synechocystis sp. strain PCC 6803.Members of the band 7 superfamily of proteins are found throughout nature and are defined by a characteristic sequence motif, termed the SPFH domain, after the initials of the various subfamilies: the stomatins, the prohibitins, the flotillins (also known as “reggies”), and the HflK/C proteins (12, 49). The stomatins and prohibitins and to a lesser extent flotillins are highly conserved protein families and are found in a variety of organisms ranging from prokaryotes to higher eukaryotes (29, 34, 49), whereas HflK and HflC homologues are only present in bacteria.In eukaryotes band 7 proteins are linked with a variety of disease states consistent with important cellular functions (6). In general the eukaryotic band 7 proteins tend to be oligomeric and are involved in membrane-associated processes: for example, prohibitins are involved in modulating the activity of a membrane-bound FtsH protease (17, 46) and the assembly of mitochondrial respiratory complexes (30), stomatins are involved in ion channel function (47), and flotillins are involved in signal transduction and vesicle trafficking (25).In the case of prokaryotes, most work so far has focused on the roles of the HflK/C and YbbK (also known as QmcA, a stomatin homologue) band 7 proteins of Escherichia coli (7, 16, 17, 36) and the structure of a stomatin homologue in the archaeon Pyrococcus horikoshii (57). Much less is known about the structure, function, and physiological importance of band 7 proteins in other prokaryotes, especially the cyanobacteria (12).The unicellular cyanobacterium Synechocystis sp. strain PCC 6803 is a widely used model organism for studying various aspects of cyanobacterial physiology and, in particular, oxygenic photosynthesis. One of the main areas of our research is to understand the mechanism by which the oxygen-evolving photosystem II (PSII) complex found in the thylakoid membrane of Synechocystis sp. strain PCC 6803 is repaired following light damage. Recent work has identified an important role for FtsH proteases in PSII repair (19, 41). Given that FtsH is known to form large supercomplexes with HflK/C in E. coli (36) and with prohibitins in Saccharomyces cerevisiae mitochondria (46), we hypothesized that one or more band 7 proteins might interact with FtsH in cyanobacteria and play a role in the selective turnover of the D1 reaction center polypeptide during PSII repair and so provide resistance to high light stress (40). This idea was given early support by the detection of both FtsH and Slr1106, a prohibitin homologue, in a His-tagged PSII preparation isolated from Synechocystis sp. strain PCC 6803 (40) and the detection of Slr1128 (a stomatin homologue), Sll1021 (a possible flotillin homologue), and FtsH in a His-tagged preparation of ScpD, a small chlorophyll a/b-like-binding protein that associates with PSII (56). Recent mutagenesis experiments have also suggested a role for Slr1128 in maintaining growth at high light intensities (53).In this paper we have used targeted gene disruption mutagenesis and various biochemical approaches to investigate the structure and function of band 7 proteins in Synechocystis sp. strain PCC 6803, with particular emphasis on PSII function. We provide evidence that four predicted band 7 proteins in Synechocystis sp. strain PCC 6803 (Slr1106, Slr1768, Slr1128, and Sll8015) form large independent complexes, which in the case of Slr1128 forms a ring-like structure. No evidence was found for the formation of supercomplexes with FtsH. Importantly, single and multiple insertion mutants lacking up to four of the five band 7 proteins are able to grow as well as the wild type (WT) under a range of growth conditions, including high light stress. Our results suggest that band 7 proteins are not essential in Synechocystis sp. strain PCC 6803 and are not required for efficient PSII repair. Possible functions of the cyanobacterial band 7 proteins are discussed in the light of recent results from other systems.  相似文献   

20.
Antibiotic resistance is rapidly spreading among bacteria such as Staphylococcus aureus, an opportunistic bacterial pathogen that causes a variety of diseases in humans. For the last two decades, bacterial multidrug efflux pumps have drawn attention due to their potential association with clinical multidrug resistance. Numerous researchers have demonstrated efflux-mediated resistance in vitro and in vivo and found novel multidrug transporters using advanced genomic information about bacteria. This article aims to provide a concise summary of multidrug efflux pumps and their important clinical implications, focusing on recent findings concerning S. aureus efflux pumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号